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Material surfaces in stochastic flows: Integrals of motion and intermittency
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We consider the line, surface, and volume elements of fluid in stationary isotropic incompressible stochastic
flow in d-dimensional space and investigate the long-time evolution of their statistic properties. We report the
discovery of a family of d! − 1 stochastical integrals of motion that are universal in the sense that their explicit
form does not depend on the statistics of velocity. Only one of them has been discussed previously.

DOI: 10.1103/PhysRevE.107.L023101

I. INTRODUCTION

The evolution of material lines and surfaces in a turbulent
flow is important for the theory of turbulence and turbulent
transport [1–4]. It provides an inherently geometric view on
turbulent mixing [5,6]. The study of material elements is of
intrinsic interest and practical value for many applications;
e.g., the evolution of infinitesimal material lines is identical
to that of a frozen magnetic field in highly conducting media
[7,8], and the material surfaces trace the constant-property
surfaces of passive scalars in the limit of negligible molecular
diffusivity [9–11], flamelet propagation for slow flame speeds
compared with the Kolmogorov scale [12], or salinity waves
in oceans [13]. Thus, good understanding of material element
evolution is also necessary for problems of turbulent dynamo
and combustion.

On the other hand, stochastical integrals of motion are
some of the most important instruments to investigate systems
far from equilibrium, as turbulent flow is. They help to reveal
the basic mechanisms of turbulence [3]. In this letter, we find
universal (i.e., independent of velocity statistics) integrals of

motion for material elements.
The evolution of material line and area elements has been

analyzed by many authors [1,2,6,10,14–16] theoretically, ex-
perimentally, and numerically, under different assumptions
on the velocity field. Mathematically, infinitesimal mate-
rial elements correspond to differential forms. Physically,
infinitesimality corresponds to scales much less than the
Kolmogorov viscous scale length (the so-called Batchelor
regime). At these scales, separation of trajectories is expo-
nential, the same as for the evolution of material line element
length. The velocity field at such scales is linear; it is de-
termined by the velocity gradient tensor Ai j (t ) = ∂ jvi. Thus,
all statistical properties of the differential forms (and hence
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of lengths, squares, etc.) are completely determined by the
statistics of Ai j (t ) along a liquid particle trajectory.

There exists an infinite set of time-invariant configurations;
their explicit form generally depends on the statistics of the
velocity gradient tensor along particle trajectories. However,
in Refs. [17,18], a nontrivial integral of motion was found
that is universal: Its expression does not depend on details of
velocity statistics. It appears that there exists a family of such
integrals; all of them are averages (or hypersurface integrals)
of some powers of the absolute values of the differential
forms. In this letter, we find them all; for d dimensional flow,
there are d! − 1 integrals of motion.

The developed techniques also allow us to find various
nontrivial time invariants expressed by ratios of different
averages.

The existence of these universal integrals of motion is
essentially nontrivial. It is a consequence of statistical isotropy
of the flow, in combination with very particular properties of
the evolution operator of material elements.

In the next section, we formulate the problem statement
and the main results. In Secs. III and IV, we proceed to
accurate analysis of the d-dimensional case. In Sec. V, we
derive the stochastic integrals of motion. In the last section,
we discuss briefly some properties and manifestations of the
discovered integrals and some other possibilities to find inte-
grals of motion.

II. PROBLEM STATEMENT AND RESULTS

Consider a d-dimensional space filled with fluid (continu-
ous set of particles) that flows according to the equation:

dr(t )

dt
= u(t, r(t )), (1)

where u is some random stochastically isotropic and homoge-
nous (hereafter isotropic) stationary vector field with finite
(<∞) correlation time and length. Its statistics is assumed to
be known. For instance, u may obey the Navier-Stokes equa-
tion with random forcing [19], or one can use the Gaussian
δ-correlated velocity field (Kraichnan model [20]). We also
assume the incompressibility condition ∇ · u = 0.
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We are interested in the evolution of material lines and
(k < d-dimensional) hypersurfaces. Thus, we introduce a co-
ordinate grid that is orthogonal at the initial moment:

r(0, x) =
∑

eix
i, ei · e j = δi j .

Here, {ei} is a set of orthonormal orts, and x = {xi} is the
Lagrangian marker of each particle. The grid is trapped in
the stochastic flow; the position of every point of the grid
changes according to Eq. (1), and the coordinate lines and
planes become deformed and bent.

Then time evolution of the tangent vectors:

li(t, x) = ∂r(t, x)

∂xi
, (2)

is described by the equation:

dli
dt

= d

dt

∂r
∂xi

= ∂

∂xi
u = Ali, li(0) = ei, (3)

where A(t, r) is the velocity gradient tensor, Ai j = ∂ui/∂r j ;
the time derivative is taken along the particle trajectory, i.e., at
some constant x.

The tangent vector field li(t, x) is also called the Cartan
1-form and describes the evolution of an infinitesimal length
element: The length of a segment of the frozen Lagrangian
coordinate line x j �=i = const., xi ∈ L0 is

L =
∫

L0

‖li(t, x)‖dxi (no summation).

The square of a segment of a frozen Lagrangian coordinate
plane is

S =
∫

σ0

‖li ∧ l j‖dxidx j (no summation).

Thus, the surface element is described by the Cartan 2-
form s(2)

i j (t, x) = li ∧ l j , where ∧ denotes the outside (vector)
product.

Generally, the evolution of a k-dimensional Lagrangian
coordinate hypersurface is described by the Cartan k-form:

S(k)
i1..ik

(t, x) = li1 ∧ · · · ∧ lik . (4)

From isotropy, it follows that all Lagrangian coordinate
planes are equivalent: Averages of all quantities do not depend
on their orientation and position. Thus, one can restrict the
consideration to the set:

l1,

l1 ∧ l2,

. . . ,

l1 ∧ l2 ∧ · · · ∧ ld ,

and investigate the time evolution of the norms

s1 = ‖l1‖,
s2 = ‖l1 ∧ l2‖,

. . . ,

sd−1 = ‖l1 ∧ l2 ∧ · · · ∧ ld−1‖. (5)

For incompressible flow, sd is constant.

We require the velocity field to satisfy the following con-
dition: The statistics of A(t, x) = A[t, r(t, x)] taken along an
x-particle trajectory is stationary with finite correlation time
and the same for all trajectories. For incompressible flow, this
condition holds as a result of isotropy.

Now we can formulate the main result of this letter.
Let i → π (i), i = 1..d be a permutation [∀1 � i � d : 1 �

π (i) � d, π (i) �= π ( j) if i �= j]. Then in long-time asymp-
totics, there exists a stochastic integral of motion:〈

sπ (2)−π (1)−1
1 sπ (3)−π (2)−1

2 . . . sπ (d )−π (d−1)−1
d−1

〉 = const. (6)

The average in Eq. (6) can be taken either over the en-
semble of realizations of u(r) for some chosen point of the
Lagrangian grid or over any Lagrangian coordinate hyper-
plane in a given realization.

There are d! − 1 nontrivial permutations; thus, we get the
same number of universal stochastic conservation laws. We
stress that the only essential restrictions we use are the ones
listed below Eq. (1); details of statistics do not matter.

For cyclic permutations, we get d − 1 integrals of motion:〈
s−d

k

〉 = const., k = 1 . . . d − 1. (7)

The first of these integrals of motion is well known: For k = 1,
d = 3, and the problem with discrete time, it was found in
Ref. [18].

With account of isotropy, the ensemble averages can be
written as integrals of some powers of k-dimensional hy-
persurface density σk = s−1

k over the k-hypersurface moving
along with the flow: ∫

σ d+1
k dS = const. (8)

A. Note on intermittency

As we will show below, in incompressible flow, the length
of the material line increases exponentially on average as
well as the square of the material surface, etc. To the con-
trary, 〈s−d

1 〉 = const., 〈s−d
2 〉 = const., .... For negative degrees

0 > a > −d , 〈sa
k〉 decreases exponentially as a function of

time, while for a < −d , 〈sa
k〉 increases. This is a manifestation

of intermittency of material elements: Averages over positive
degrees of sk are mainly contributed by the regions where ma-
terial elements stretch most intensively, while averages over
negative degrees are dominated by even more rare regions
where the material elements undergo exponential contraction.
The integrals of motion correspond to a balance between
high speed of contraction and low probability (frequency)
of fast-contracting elements. Independently of intermittency
or nonintermittency of isotropic stochastic flow, even if it is
Gaussian, its transport properties (e.g., material elements) are
intermittent.

III. CARTAN FORMS IN d DIMENSIONS

Consider the evolution matrix Q(t ): r(t, x) = Qr(0, x).
Then from Eq. (1), it follows that

dQ
dt

= A(t )Q(t ), Q(0) = I.
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The formal solution to this equation can be written by means
of a T-exponent:

Q(t ) = T
{

exp

[∫ t

0
A(t ′)dt ′

]}
.

However, the matrices A(t ′) taken at different time moments
do not commutate, which causes immense difficulties and
makes the explicit expression for Q(t ) impossible. To deal
with this stochastic matrix equation, it is convenient to con-
sider the Iwasawa decomposition of the matrix Q:

Q(t ) = RDZ,

where R is an orthogonal matrix, D is a positive diagonal, and
Z is an upper-triangular unipotent matrix:

RRT = Î, Di j = δi jDi, Di > 0,

Zi> j = 0, Zj j = 1.

From the multiplicative Oseledets theorem [21], it follows that
almost surely there exist the limits:

lim
t→∞

(
1

t
ln Dk

)
= λk, λ1 � · · · � λd .

Now the Cartan forms in Eq. (4) can be written as

S(k)
1..k (t, x) = Qe1 ∧ · · · ∧ Qek = RD1e1 ∧ · · · ∧ RDkek .

Here, we make use of the fact that Z is upper-triangular. Thus,
the norms in Eq. (5) take the form:

sk = D1D2 . . . Dk . (9)

For our purposes, we are interested only in the evolution of
the Di components.

IV. GENERALIZED LYAPUNOV EXPONENTS

To calculate the correlators of sk , we need the averages like
〈Dm1

1 . . . Dmd
d 〉. One can show [22] that each Di satisfies the

equation:

dDi

dt
= ξiDi, (10)

where ξ(t ) = {ξ1, . . . , ξd} is a set of stationary random pro-
cesses that depend on A(t ) in a rather complicated way 1. For
each component Di, the solution of Eq. (10) is

Di(t ) = exp

[∫ t

0
ξi(t

′)dt ′
]

= exp[t ξ̄i(t )],

where ξ̄(t ) = 1
t

∫ t
0 ξ(t ′)dt ′ is the time average of ξ.

We assume that ξ(t ) satisfies the large deviations principle
[23], i.e., that the joint probability density of all ξ̄i(t ) at large
t → ∞ satisfies the relation:

Pξ̄(a1, . . . , ad ) ≡
〈∏

i

δ[ξ̄i(t ) − ai]

〉

∼ exp[−tJ (a1, . . . , ad )].

1More precisely, ξ is the diagonal part of the statistically stationary
random matrix R−1AR.

Here, the angle brackets denote the ensemble average, and the
sign ∼ means that

lim
t→∞

1

t
lnPξ̄(a1, . . . , ad ) = −J (a1, . . . , ad ).

The function J is called the Cramer function or effective
action. It is concave and has the minimum Jmin = 0 at amin =
〈ξ〉. Then

〈
Dm1

1 . . . Dmd
d

〉 =
〈
exp

[∑
mi

∫ t

0
ξi(t

′)dt ′
]〉

∼
∫

exp
{

t
[∑

miai − J (a)
]}

da,

and there exists the limit:

lim
t→∞

1

t
ln

〈
Dm1

1 . . . Dmd
d

〉 = wξ (m1, . . . , md ),

mk ∈ R, (11)

where wξ is the Legendre transform of J . The function wξ is
called the generalized Lyapunov exponent (GLE) [22,24].

Generally, the statistics of ξ is not determined by the statis-
tics of A at the same moment in time: it also depends on the
prehistory. However, in Refs. [22,25], it was shown that, in
the case of statistically isotropic A(t ), there exists a simple
relation between the statistics of ξ and A, namely,

wξ (m1, . . . , md ) = wA(m1 + η1, . . . , md + ηd )

−wA(η1, . . . , ηd ), (12)

where wA is the cumulant-generating function corresponding
to the diagonal elements of the matrix A:

wA(m1, . . . md ) = lim
t→∞

1

t

× ln

〈
exp

[∫
(m1A11 + · · · + md Add )dt

]〉
,

and ηk is a set of constants defined by

ηk = d + 1

2
− k. (13)

This relation allows us to calculate the statistical character-
istics of D for given statistics of A, particularly to find all
statistical moments.

V. STOCHASTIC INTEGRALS OF MOTION

From Eq. (11), we see that the average of some combina-
tion of powers of Di remains constant if the corresponding
wξ is equal to zero. Thus, we are interested in those sets
(m1, . . . , md ) that provide wξ (m1, . . . , md ) = 0.

Statistical isotropy and incompressibility of the flow re-
quire ∂wA/∂Aii(0) = 1

d 〈trA〉 = 0. Since wA(0) = 0 and wA

is concave, this means that, for all nonzero arguments, wA is
positive.

The function wξ (m1, . . . , md ) can be obtained from
wA in accordance with Eq. (12); thus, for all those
points (m∗

1, . . . , m∗
d ) for which wA(m∗

1 + η1, . . . , m∗
d + ηd ) =

wA(η1, . . . , ηd ) ≡ w∗
A, we have (Fig. 1)

wξ (m∗
1, . . . , m∗

d ) = 0. (14)
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FIG. 1. Illustration of the surface wξ (m1, 0, . . . , 0, md ) for d �
3 (yellow surface). The transection with the grey horizontal plane
singles out the line wξ = 0. For all the points (m1, md ) in this line,
〈Dm1

1 Dmd
d 〉 conserve for given statistics of A. The red points belong

to the line wξ = 0 independently of the statistics; the corresponding
sets {m∗

1, m∗
d} produce universal integrals of motion.

Each of these points corresponds to some stochastic integral
of motion: 〈

D
m∗

1
1 . . . D

m∗
d

d

〉 = const.

In terms of the Cartan forms in Eq. (5), considering Eq. (9),
this can be written as〈

s
m∗

1−m∗
2

1 . . . s
m∗

d−1−m∗
d

d−1 s
m∗

d
d

〉 = const.

Thus, for any stationary Lagrangian statistics of velocity gra-
dients, there exists a d! − 1-parametric family of stochastic
integrals of motion composed of si.

The solution of Eq. (14) depends on the statistics; the
powers m∗

i for any flow are determined by the specific form of
the function wA. However, it appears that all possible surfaces
wξ (m∗

1, . . . , m∗
d ) = 0 corresponding to different statistics have

several points where they all intersect. Indeed, since the pro-
cess A(t ) is isotropic, all its diagonal elements have identical
statistical properties, and wA is symmetric with respect to per-
mutation of its arguments: If π : 1 → π (1), . . . , d → π (d ) is
a permutation, then

wA(m1, . . . , md ) = wA(mπ (1), . . . , mπ (d ) ). (15)

This is valid for the set {η1, . . . , ηd}. Hence, independently of
the details of statistics, the set m∗

i = ηπ (i) − ηi is the solution
of Eq. (14); making use of Eq. (13), we find m∗

i = i − π (i),
and 〈

sπ (2)−π (1)−1
1 sπ (3)−π (2)−1

2 . . . sπ (d )−π (d−1)−1
d−1 sd−π (d )

d

〉
= const. (16)

Considering incompressibility, sd = const., and we arrive at
Eq. (6).

There are d! permutations of the set in Eq. (13); identical
transform {ηi} → {ηi} corresponds to the trivial integral of
motion, 〈1〉 = 1; for the rest of the permutations, we get the
same number of integrals.

VI. DISCUSSION

In this letter, we find d! − 1 universal stochastic integrals
of motion expressed in terms of Cartano forms or infinitesimal
material lines and hypersurfaces in a stochastic flow. The
universality means that the explicit forms of the integrals do
not depend on the details of velocity statistics. The only re-
quirement is that all correlators of the velocity gradient tensor
along the trajectory of any particle are isotropic and stationary,
with finite correlation time, and independent of the choice of a
particle. This requirement holds for incompressible isotropic
and homogenous flows with finite time and length correlation.

From the isotropy of the flow, it follows that one can take
an average along an arbitrary generic line or (hyper)surface
instead of the ensemble average (the characteristic scale of
the surface must be much more than the correlation length).
Thus, in Eq. (6), it is possible to replace the average over an
ensemble of liquid particles with an average taken over some
material line or surface or even the whole space: In terms of
the Lagrangian (frozen) coordinates x,∫

sπ (2)−π (1)−1
1 sπ (3)−π (2)−1

2 . . . sπ (d )−π (d−1)−1
d−1 dx = const.

(17)

(The integral can be taken over any subset of the coordinates
{x1, . . . , xd}.) Stochastic invariance implies that the integral
does not change exponentially as a function of time; it may
still have a power-law time dependence, which is a result of
pre-exponential multipliers in D.

For the particular case of cyclic permutations, we get〈
s−d

k

〉 = const.

For k = 1, this expression corresponds to the integral of mo-
tion found in Refs. [17,18] for random processes with discrete
time. We note that, in these works, the average was found to
conserve exactly, while in our investigation, we only prove
the conservation to logarithmic accuracy because of the pre-
exponential multiplier. However, the result in Ref. [18] gives
reason to suppose that, at least for time much longer than the
conservation time, all the integrals of motion found in this
letter conserve exactly (or with accuracy higher than logarith-
mic). The proof of this is the subject of further research.

According to Eq. (17), the integrals of motion can also
be written as integrals over a material element. Let a k-
dimensional material hypersurface {x1, . . . , xk} be marked
by a passive scalar; let its initial hypersurface density be
uniform, σk (0, x) = 1. Then as time goes, the hypersurface
density changes in accordance with the change of the hy-
persquare: σk (t, x) = 1/sk (t, x). We choose a fragment of
the hypersurface; let its initial hypersquare be S0. Then
making use of Eqs. (2) and (5), we pass from the inte-
gration over the Lagrangian coordinates to the integration
over the invariant measure (i.e., over the square of the hy-
persurface):

∫
dx1 . . . dxk = ∫

dSs−1
k . Now one can write the

cyclic-permutation integrals of motion in the form:〈
s−d

k

〉 = lim
S0→∞

1

S0

∫
dx1 . . . dxkσ

d
k

= lim
S0→∞

1

S0

∫
dSσ d+1

k .

Thus, we arrive at Eq. (8).
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This interpretation of the stochastic integrals allows a visu-
alization that illustrates their relation to the intermittency. Let
a k-dimensional hypersurface be initially marked uniformly
by some scalar (paint). As time goes on, the hypersurface
undergoes deformations, stretches, and bends. The average
density of the paint decreases exponentially, inversely to the
increase of the square. However, there are always some rare
and small regions where the density increases. The balance
between the small number of these regions and the very high
density of paint in them results in the existence of the time
invariants in Eq. (8). The higher-order statistical moments
grow, while the lower-order moments decrease as a function
of time.

Returning back to Eq. (6), we now present a recurrent
procedure to obtain the complete set of these time invariants
in d + 1-dimensional space from the set of the time invariants
in d dimensions.

First, we note that, being written in the form in Eq. (16),
which includes the multiplier sd , the d-dimensional integral
of motion is at the same time the integral of motion for the
(d + 1)-dimensional case; it corresponds to the permutations
{π (1), . . . , π (d ), d + 1}. We now write it in the form:〈

sα1
1 . . . sαd

d sαd+1

d+1

〉
,

where

αk = π (k + 1) − π (k) − 1, 1 � k � d,

αd+1 = 0,

π (d + 1) = d + 1.

Second, we make a cyclic permutation of the set
{π (1), . . . , π (d + 1)}, shifting it by i:

π̃ (k) =
{
π (k − i + d + 1), k < i,
π (k − i), k > i.

In accordance with Eq. (6) for d + 1 dimensions, this new
π̃ (k) corresponds to 〈sβ1

1 . . . sβd

d 〉, where

βk = π̃ (k + 1) − π̃ (k) − 1 =
{
αk−i+d+1, k < i,
αk−i, i < k � d,

βi = π (1) − (d + 1) − 1 = −
d∑
1

αi − (d + 1).

This set of βk determines the new (d + 1) invariant. Since any
permutation of {1, . . . , d + 1} is a cyclic permutation of some
{π (1), . . . , π (d ), d + 1}, this procedure allows us to find all
the (d + 1) invariants from known d invariants.

If one wants to continue this recursion, one has to re-
store the form in Eq. (16), i.e., to find the power βd+1

of sd+1. To this purpose, it is helpful to use the [evident
from Eq. (16)] property β1 + 2β2 + · · · + (d + 1)βd+1 = 0
for (d + 1)-dimensional time invariants.

FIG. 2. Integrals of motion for incompressible flow in three di-
mensions and the illustration of the recurrent procedure. Each square
would generate 3 more squares in the case of four dimensions.

For example, in two dimensions, we have one nontriv-
ial permutation: (2,1), with corresponding integral of motion
〈s−2

1 s1
2〉; in three dimensions, we rewrite it as 〈s−2

1 s1
2s0

3〉, with
corresponding permutation 213. The further cyclic permuta-
tions lead to (321,i = 1) 〈s−2

1 s−2
2 〉 = 〈s−2

1 s−2
2 s2

3〉 and (132,i =
2) 〈s1

1s−2
2 〉 = 〈s1

1s−2
2 s1

3〉. The other integrals of motion come
from the cyclic permutations of the ordered set (1, 2, 3). Fig-
ure 2 presents this procedure with a list of corresponding
stochastic integrals of motion for the three-dimensional case.

The developed mechanism also allows us to construct
time invariants composed of two and more averages. The
permutation properties of wA are not restricted to the sets
{m∗

i }. From Eqs. (12) and (15), it follows that, for any
set {mi}, the set {m′

i = mπ (i) + ηπ (i) − ηi} provides the same
wξ , wξ (m1, . . . , md ) = wξ (m′

1, . . . , m′
d ), and the correspond-

ing moments grow with the same rate. Hence, the ratio

〈Dm′
1

1 . . . D
m′

d
d 〉/〈Dm1

1 . . . Dmd
d 〉 neither increases nor decreases

exponentially, and we get one more set of stochastic time
invariants: 〈

s
m′

1−m′
2

1 . . . s
m′

d−1−m′
d

d−1

〉
〈
sm1−m2

1 . . . smd−1−md

d−1

〉 = const.,

m′
i = mπ (i) + i − π (i).

The intermittent nature of a stochastic flow provides a wide
range of stochastic integrals of motion; some of them are
universal and independent of statistic properties of the flow.
The formalism of GLEs appears to be a useful tool to find
them. We believe that they can be observed in direct numerical
simulations.
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