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Hidden jerk in universal creep and aftershocks
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Most materials exhibit creep memory under the action of a constant load. The memory behavior is governed by
Andrade’s creep law, which also has an inherent connection with the Omori-Utsu law of earthquake aftershocks.
Both empirical laws lack a deterministic interpretation. Coincidentally, the Andrade law is similar to the time-
varying part of the creep compliance of the fractional dashpot in anomalous viscoelastic modeling. Consequently,
fractional derivatives are invoked, but since they lack a physical interpretation, the physical parameters of the two
laws extracted from curve fit lack confidence. In this Letter, we establish an analogous linear physical mechanism
that underlies both laws and relates its parameters with the material’s macroscopic properties. Surprisingly, the
explanation does not require the property of viscosity. Instead, it necessitates the existence of a rheological
property that relates strain with the first order time derivative of stress, which involves jerk. Further, we justify
the constant quality factor model of acoustic attenuation in complex media. The obtained results are validated in
light of the established observations.
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Most materials continuously deform under constant expo-
sure to load and eventually fail. This mechanical failure is at
the core of natural calamities, e.g., avalanches, landslides, and
earthquakes. Early forecasting of a possible failure could mit-
igate the catastrophic consequences that have their origin in
natural causes and engineered ones, for example, the collapse
of bridges. Although the deformation mechanism is complex,
simple explanations using power laws with few parameters
are preferred. They have been used to describe the creep in
materials [1–6] and the rate of earthquake aftershocks [7–10].

The century-old Andrade creep law [11,12] describes a
material’s primary creep response, ε(t ), due to constant stress
as

ε(t ) = ε0J (t ), where J (t ) =
(

t

τ

)α

, (1)

ε0 is the stress-dependent initial strain at a time, t = 0, and τ

is the characteristic retardation time constant of the material.
The exponent, α, is around 1/3 for soft metals [13], and it
lies between zero and one for most heterogeneous materi-
als, including amorphous solids [12] and biological materials
[14–16]. Since the rupture time is proportional to the duration
of the primary creep [17], it becomes imperative to inves-
tigate the mechanism underlying the Andrade law. The first
few attempts to understand the creep law were motivated by
nonlinear models, for example, Schapery’s stress-strain con-
stitutive equation, but it is plagued by four unknown material
parameters with questionable reproducibility [18]. Another
model used a parallel combination of a spring and a non-
linear Eyring dashpot to numerically predict the particular
case, α = 1 [17]. The mathematical complexities that arise
due to the nonlinearity have not proved beneficial. Lately, fiber
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bundle models [19,20] have been examined in the stochastic
framework, ignoring that plasticlike primary deformation is
deterministic. Since a direct relation between a material’s
properties and the parameters τ , and α, is not yet established,
their values are extracted from the curve fit of experimen-
tal data with the theoretically predicted curves from Eq. (1)
[21]. A computationally intensive approach could probably
simulate the power-law creep in the framework of nonlocal
elasticity [22,23], but an interpretation of the parameters is
not guaranteed.

The discrete counterpart of the Andrade law is the Omori
law, and it expresses the rate of occurrence, R, of earthquake
aftershocks as a function of time since the main shock [24].
Later, the law was generalized as the Omori-Utsu (OU) after-
shock law [25,26]:

R(t ) = χ

(c + t )p
. (2)

The OU law shares an inherent connection [20] with the
Andrade law as R(t ) ∼ dJ (t )/dt , so the Omori exponent, p ∼
1 − α, the time-constant, c ∼ τ , and the productivity, χ ∼
ατ (p−1). Although p is generally around one, values between
0.5 and 1.6 have also been reported [27–29]. Since the OU law
represents the decay activity after a significant disturbance has
occurred in a system, it has been used to model avalanches
[30], universality in solar flares [31], epileptic attacks [32],
and stock market dynamics [33]. Probably the OU law was
first obtained numerically using the Carlson-Nager nonlinear
model [34,35], which was motivated by the stick-slip mech-
anism of friction [36]. Another nonlinear model based on
stress-induced corrosive damage mechanics unified the An-
drade law and the OU law [1]. Few explanations stem from
the mathematical result approximating a power law from the
probability density of the broad distribution of characteristic
waiting times between consecutive events [37]. However, that

2470-0045/2023/107(2)/L022602(6) L022602-1 ©2023 American Physical Society

https://orcid.org/0000-0003-3145-1958
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.L022602&domain=pdf&date_stamp=2023-02-21
https://doi.org/10.1103/PhysRevE.107.L022602


VIKASH PANDEY PHYSICAL REVIEW E 107, L022602 (2023)

can only predict the specific case, p = 1 [7,38]. It is not a
formal proof of the law because the converse is not always true
[39]. Besides, such distributions’ breadth and form are diffi-
cult to comprehend. An explanation based on self-organized
criticality lacked a deterministic interpretation because of its
inherent statistical nature [30]. Some works connected the OU
law with the specimen geometry [3], microscopic dynamics
[9], thermal noise [40], mean field theory [41], and fractal
hierarchical block model [42]. Although the validity of the
OU law has been confirmed for six decades, its understanding
is far from complete [7]. Currently, a model free from curve
fit does not exist [43–45], which is also evident from the
ambiguity attached to the origin of c in the OU law, whether
physical or instrumental [35,46].

Coincidentally, the Andrade law shares a surprising con-
nection with the fractional dashpot, whose constitutive
relation is [47]

σ (t ) = Eτα dαε(t )

dtα
, (3)

where σ is the stress, ε is the strain, E is the constant
modulus of elasticity, and α ∈ (0, 1) is the fractional order
of the derivative. For a causal function, f (t ), dα f (t )/dtα =
df (t )/dt ∗ t−α/�(1 − α), where ∗ represents the convolu-
tion operation, and �(·) is the Euler Gamma function [48].
The fractional dashpot plays a versatile role in anomalous
viscoelastic modeling as it interpolates between a Hookean
spring and a Newtonian dashpot in the limits as α → 0 and as
α → 1, respectively. The motivation to adopt the framework
of fractional derivatives is three fold. First, we know that a
convolution in the time domain translates to a product in the
Laplace domain, s, so L{dαε(t )/dtα} = [sε(s) − ε0]/s1−α ,
where ε(s) = L{ε(t )}, and ε0 is the instantaneous elastic
strain at a time, t = 0. Since creep compliance corresponds
to the creep response to the input of constant stress, σ0, we
have ε0 = σ0/E , and L{σ0} = σ0/s. Substituting the Laplace
transforms of the respective terms in Eq. (3), the solution
in the s domain is ε(s) = ε0[1/s + 1/(ταs1+α )]. The inverse
Laplace transform yields ε(t ) = ε0[1 + (t/τ )α/�(1 + α)],
from which the time-varying part turns out to be similar
to the Andrade law. Interestingly, though Scott Blair and
Reiner had proposed Eq. (3) to describe the Nutting law
[47], they were probably unaware of its connection with
the Andrade law. Second, the observations support α �= 1
in Eq. (1), and p �= 0 in Eq. (2), implying that creep and
aftershocks are memory-laden non-Poissonian events [49].
So, failure is not an instantaneous process; instead, it ac-
cumulates over time. Fortunately, memory is embedded in
the definition of a fractional derivative in the form of the
temporal power-law kernel. Fractional derivatives are also
preferred because they offer a succinct representation of ma-
terial behavior, usually described using linear-system theory
involving convolutions between integer-order time deriva-
tives and time-dependent coefficients [47,50]. Moreover,
the Fourier transform property, F[dα f (t )/dtα] = (iω)αF(ω),
where F(ω) is the Fourier transform of f (t ) in the fre-
quency domain, ω, indicates that fractional derivatives are a
natural generalization of the Newtonian derivatives. Third,
the stick-slip-induced grain-shearing mechanism was suc-
cessfully understood using fractional derivatives [51]; the

mechanism is common to both material deformation [36,52]
and earthquake aftershocks [9,53]. Recently, fractional deriva-
tives were used to study the OU law, but the lack of an
interpretation of the order, α, undermines the confidence in
those results [41,54].

As shown in Fig. 1(a), Hooke’s law, σ (t ) = Eε(t ), its dif-
ferential form, σ̇ (t ) = E ε̇(t ), and Newton’s law of viscosity,
σ (t ) = ηε̇(t ), where, η is the coefficient of viscosity, sym-
bolically represent the three sides of a square whose vertices
are labeled as, σ , ε, and their respective time derivatives.
The fourth side is missing because there is probably no re-
lationship between σ̇ (t ) and ε(t ). In order to complete the
square, we propose the property of “jerkity,” represented by
the rheological element “jerken,” with the following constitu-
tive relation:

σ̇ j (t )

ε j (t )
= λ, (4)

where σ j and ε j are the stress and the strain in the jerken,
respectively. The “coefficient of jerkity,” λ > 0, has the
units of modulus of elasticity per unit of time. The name,
jerken, is motivated by the fact that a finite strain is pos-
sible only when σ̇ j (t ) �= 0, which corresponds to a nonzero
third-order derivative of displacement, also referred to as jerk
in classical mechanics. In contrast, the properties of elas-
ticity and viscosity give a finite strain for constant positive
stress.

We justify the property of jerkity as follows. The deforma-
tion of a material is a function of its stiffness and the applied
force. If the change in force is slow in time, the respective
jerk is negligible. In such a case, the material experiences
almost a quasistatic condition that cannot cause a wave ex-
citation. In contrast, a time-varying force can only cause a
wave excitation, similar to creating a propagating wave pulse
in a string when one of its loose ends is jerked. Andrade’s
observations of “copper quakes” also support that material
deformation and aftershocks are mediated by wave diffusion
[11]. This justifies the transition from a recoverable elas-
tic deformation to an unrecoverable plastic-like deformation.
Further, deformation in heterogeneous materials manifests
due to stick-slip processes assuming that stresses are rarely
stationary in laboratory creep tests and the earth’s crust
[36,53,55].

Although Mott’s microscopic theory intuitively described
the emergence of the power law creep from thermally-
activated jerk movement of dislocations, see Fig. 2 in
Ref. [56], the jerk mechanism was probably never consid-
ered mathematically in the past theories. The constitutive
relation of jerkity, Eq. (4), yields unphysical results if not
modified appropriately. For example, in the case of a positive
constant, λ, the stress response of the jerken to a constant
strain input is a stress that grows linearly with time, which is
thermodynamically impossible. Another problem with Eq. (4)
is that in a tensile experiment, it predicts an expansion
for an increasing tension, σ̇ j (t ) > 0, but also an immediate
contraction for a decreasing tension, σ̇ j (t ) < 0. The latter
implies a physically invalid negative work, verifiable by its
dynamic response to the standard loading test. For the cyclic
input of ε j (t ) = εm sin(ωt ), where εm is the maximum am-
plitude of the strain, the corresponding stress response is
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FIG. 1. (a) Jerkity is the missing rheological property that relates σ̇ (t ) with ε(t ). (b) The creep compliance of the fractional dashpot is
approximately the same as that of a parallel combination of a jerken and a spring, expressed by Eq. (5).

σ j (t ) = λεm[1 − cos(ωt )]/ω � 0, i.e., an unphysical nonneg-
ative stress output for the input of a succession of positive and
negative deformations.

The thermodynamic consistency is restored if λ is assumed
to decrease with time. A linearly increasing, 1/λ(t ) = ξ +
θt , is the simplest possible choice, where ξ > 0 and θ =
d (1/λ)/dt |t=0> 0, are the constant part and the time-varying
part of 1/λ, respectively. The presence of ξ ensures that no
singularity is encountered at time, t = 0. The time-varying
nature of the material constants arises from the permanent
alterations in microscopic structure due to constant exposure
to mechanical, thermal, and chemical stresses [36,57,58]. The
time dependence of λ(t ) could manifest from the local stress
heterogeneity that stems from the underlying fractality that is
inherently present in almost all random media [59]. As the
material deforms over time, its fractality and stress hetero-
geneity also evolve. The material deforms through a series of
time-varying jerk steps. The problem of the negative work is
resolved if the jerken is connected in parallel with a spring of
constant modulus of elasticity, E . So, an increasing 1/λ(t ) and
the action of a spring in parallel are the necessary conditions
to make the property of jerkity physically permissible. Thus,
the model in Fig. 1(b) is unique in its own right, in which
the crossed-box symbol represents the jerken. Further, as the
jerken is a linear element, the framework of superposition
principles and integral transforms are applicable.

Since the stresses due to the spring and the jerken may
either oppose each other or add together, we investigate the
two cases separately. For the first case, the total stress is
σtot (t ) = σs(t ) − σ j (t ), where σs and σ j are the stresses in the
spring and the jerken, respectively. If the total applied stress,
σtot , is a constant, then σ̇s(t ) − σ̇ j (t ) = 0. As σ̇s(t ) = E ε̇s(t ),
and σ̇ j (t ) = λ(t )ε j (t ), we have E ε̇s(t ) − ε j (t )/(ξ + θt ) = 0,
where εs is the strain in the spring. Since the strain stays the
same in the parallel branches, let εs(t ) = ε j (t ) = ε(t ), which
leads to a first-order linear ordinary differential equation,
ε̇(t )/ε(t ) = 1/[E (ξ + θt )]. The integration gives ln ε(t ) =
[ln(ξ + θt )]/(Eθ ) + ln C. At the time, t = 0, the jerken does
not experience any stress; instead, the spring takes all the
applied stress, so the initial strain is ε0 = σtot/E . We obtain
the integration constant, ln C = ln ε0 − (ln ξ )/(Eθ ), which,
when substituted back into its parent expression, gives the

creep response as

ε(t ) = ε0

(
1 + θ

t

ξ

)1/(Eθ )

. (5)

At large timescales, θt/ξ � 1, the time-varying part of
Eq. (5) approximates the Andrade law such that,

τ = ξ

θ
, and α = 1

Eθ
. (6)

In light of Eqs. (2), (5), and (6), we interpret the parameters
of the Omori-Utsu law as

p = 1 − 1

Eθ
, and τ = c = ξ

θ
. (7)

For the second case, the total stress is σtot (t ) = σs(t ) + σ j (t ).
The respective results are obtained as

α = − 1

Eθ
, and p = 1 + 1

Eθ
, (8)

leaving c unchanged.
The derivation agrees with the prediction that the power-

law creep is a superposition of two separate creep mechanisms
and that α is independent of the applied stress [11,60]. The
creep mechanisms manifest from the interplay of the prop-
erties of elasticity and time-varying jerkity. As Andrade’s
law is limited to 0 < α < 1, it arises only in the first case,
i.e., when the two mechanisms oppose each other. This is
supported by the most observed value of α = 1/3 for soft
metals, though such a fixed value indicates a possible interde-
pendence between E and θ for such materials. For materials
with small values of Eθ , α is large, implying a fast creep.
Surprisingly, although the creep law and the aftershock law
were independently proposed, Andrade [11] drew parallels
between geological quakes and “copper quakes” for α = 1/3,
i.e., p = 2/3, which suggests that the opposing nature of
the two mechanisms is common to both universal creep and
earthquake aftershocks.

In contrast to the Andrade law, the OU law arises in both
cases, i.e., when the two creep mechanisms due to elasticity
and jerkity add up and oppose each other. In the case of the op-
posing nature of the two mechanisms, as mentioned in Eq. (7),
p = 1 − α < 1. If the stresses due to the two mechanisms add
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TABLE I. Optimized parameters of the Omori-Utsu law for the
four aftershock sequences Parkfield, Northridge, Hector Mine, and
Landers [64]. The mainshock magnitude is in the Gutenberg-Richter
scale.

Earthquake location Mainshock c
(year) magnitude (days) p

Parkfield (2004) 6.0 0.0039 1.09
Northridge (1994) 6.7 0.012 1.18
Hector Mine (1999) 7.1 0.024 1.21
Landers (1992) 7.3 0.08 1.22

together, then according to Eq. (8), p = 1 − α > 1 because
α < 0. Since the thermodynamic constraints [61] limit, 0 <

|α| < 1, the physically permissible values, p ∈ (0, 2), may be
seen as a falsifiable prediction from our model. The observed
values, 0.5 � p � 1.6, are within the limits imposed by the
fractional framework. The observation that p is stress inde-
pendent and χ is time independent concur with Refs. [20]
and [62], respectively. In light of the fractional diffusion-wave
equation obtained from the fractional dashpot [51], the diffu-
sive wave mediates the creep in materials and the propagation
of aftershock energy, which agrees with Ref. [63]. Further,
the magnitude of a mainshock depends on the release of the
stored potential energy, which is directly proportional to the
elastic constant, E , of the earth. Since a large value of E leads
to a small contribution from α, both the expressions of p from
Eqs. (7) and (8) constrain its value in the neighborhood of
p = 1 for high-magnitude mainshocks. Besides, large values
of θ also favor p = 1. The contribution from α for small
values of E is large, so a significant deviation of p < 1 values
from p = 1 are expected for low magnitude mainshocks; for
example, see Figs. 1 and 2 in Ref. [27]. In the case of p > 1 for
intermediate to high magnitude earthquakes, as E is supposed
to be sufficiently large, it is expected that p is close to one.
However, it does not reflect strongly from the data of the
California earthquake catalog mentioned in Table I [64]. This
anomaly can be justified if such earthquakes are characterized
by small values of θ such that Eθ is sufficiently small. The
more significant the deviation of p > 1 values from p = 1
for strong earthquakes, the smaller the value of θ . Moreover,
since there is possibly a mutual interdependence between E
and θ , the value of p = 1 ± 1/(Eθ ) depends on the interplay
between the creep mechanisms due to elasticity and jerkity.

The assumption of a constant load underlying the OU law
agrees with Ref. [8]. Further as c = ξ/θ → 0, it implies, θ →
∞, so, α = ±1/(Eθ ) → 0. Hence, p = 1 ± 1/(Eθ ) → 1
gives the Omori law, i.e., c ≈ 0 when p ≈ 1, which agrees
with Table I. The observation [65] that stress accumulation
depends on c is true since c is related to the rheological prop-
erties of the earth’s crust through ξ and θ . Thus, c, indeed, has
a physical origin, though its value could be difficult to extract
in many real scenarios unless the high-frequency signals of
aftershocks are carefully analyzed [66].

We now justify the frequency independent, constant quality
factor, Q, commonly observed in acoustic wave attenuation in
earth materials [58] and biological tissues [59]. The constant-
Q models characterized with few parameters improve seismic

inversion [67]. Despite the importance of those models in
understanding mantle convection currents [68], they lacked a
physical interpretation because they are inherently linked with
the Andrade law, but now it is resolved as follows. The in-
verse quality factor is 1/Q(ω) = J2(ω)/J1(ω), where J1(ω) −
iJ2(ω) = J (ω) = iωF[J (t )] is the creep compliance function,
and i = √−1 [69]. The real part, J1(ω), and the imagi-
nary part, J2(ω), are coupled through the Kramers-Kronig
relations. Since the Kramers-Kronig relations stem from the
principles of linearity and causality, constant-Q models are
preferred as they give an attenuation coefficient almost lin-
early dependent upon the frequency, which is also supported
by laboratory and field measurements [67]. Using the Fourier
transform property, F[tα] = (iω)−1−α�(1 + α), we extract,
J1(ω) ∝ ω−α cos(πα/2), and J2(ω) ∝ ω−α sin(πα/2). So,
1/Q(ω) ∝ tan απ/2, i.e., a frequency-independent constant.
We impose a rigorous test on the interpretation of α, which is
motivated by the causality principle [58]. The test dictates that
the correct mechanism for a constant-Q must predict 1/Q = 0
at zero frequency [71]. The zero frequency implies t/τ → ∞,
which occurs if τ = ξ/θ → 0, implying θ → ∞. So, α =
1/(Eθ ) → 0, and 1/Q ∝ tan απ/2 → 0, as expected. It is
evident that the phase lag, δ = απ/2, between the stress and
the strain is frequency independent; instead, it depends on the
material’s physical properties. The lag is less for a material
with a large value of Eθ , which is also independently verifi-
able. As θ increases, the retardation time constant, τ = ξ/θ ,
decreases.

The study presented in this Letter agrees with the possibil-
ity of a simple process described by general principles [13,70].
We have shown that linking the fractional dashpot with an
analogous mechanical model gave explicit physical interpreta-
tions to the Andrade law and the Omori law, which also agree
with the established observations. Surprisingly, the property
of viscosity is not required to describe the two laws. Instead,
the property of time-varying jerkity, along with the property
of elasticity, is invoked to derive the laws. The findings may
boost confidence in those results in which the constant-Q
model and the power-law velocity dispersion have been linked
with the fractality of the medium [58,59,71–73]. Further, this
opens the possibility of connecting the rheological properties
of a medium with its geometrical heterogeneity.

In contrast to the previously proposed nonlinear theories,
the methodology adopted in this Letter is of linear fractional
derivatives. This is a potential paradigm shift in how the
memory exhibits of a physical phenomenon can be modeled as
a nonlinear system using integer-order derivatives and a linear
system using fractional derivatives. However, the framework
of linear fractional derivatives rules out the possibility of
any chaotic behavior. A possible critique could be that the
model used in obtaining the laws is phenomenological, and
they lack a connection with the microdynamics of the pro-
cesses. On a similar note, we cannot ignore that the power-law
creep is well established in soft metals and amorphous mate-
rials, independent of their material-specific microstructures.
Besides, all macroscopic properties of a material may not
always be deductible, even if a complete description of the
microscopic interactions is available [74]. Using a lumped-
parameter model to describe the power laws is similar to
applying mean field theories to study complex problems.
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An example is the utility of the Navier-Stokes equation to
study fluid dynamics; the equation is largely independent of
the complexities that most fluids exhibit at microscopic scales.

The author would like to thank the reviewers for their
insightful comments and efforts toward improving the quality
of the manuscript.
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