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Intense surface eruptions are observed along the curved surface of a confined cylindrical film of hydrogel
subject to laser-induced converging-diverging shock loading. Detailed numerical simulations are used to identify
the dominant mechanisms causing mechanical instability. The mechanisms that produce surface instability are
found to be fundamentally different from both acoustic parametric instability and shock-driven Richtmyer-
Meshkov instability. The time scale of observed and simulated eruption formation is much larger than that
of a single shock reflection, in stark contrast to previously studied shock-driven instabilities. Moreover, surface
undulations are only found along external, as opposed to internal, soft solid boundaries. Specifically, classic
bubble surface instability mechanisms do not occur in our experiments and here we comment only on the new
surface undulations found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new
class of impulsively excited surface instability that is driven by cycles of internal shock reflections.
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Introduction. Soft solids such as human connective tissue
are subjected to large amplitude stress waves in a variety of
medical procedures such as shock wave lithotripsy, which is
common for the removal of kidney stones [1–4], and his-
totripsy cancer treatments [5–7]. Soft matter response to high
strain rates and loading conditions is also relevant to the
study of blast induced injuries of human and animal tissues
[8–10]. Beyond practical applications, soft material dynamics
have been found to exhibit a number of instabilities of the-
oretical interest, including Rayleigh-Taylor [11–13], Faraday
[14], parametric [15–17] and Richtmyer-Meshkov instabilities
[18–20]. Many of these mechanisms are closely related to
fluid dynamic instabilities. However, soft solids can produce
a number of distinctive instability patterns which fluids do not
[21,22].

In this Letter, we describe such a dynamic instability that
was discovered while studying the response of hydrogels to
converging shock loading. In contrast to previous work on
shock driven Richtmyer-Meshkov instabilities [18,23,24], in
our experiments surface undulations develop on a time scale
much larger than that of the initial shock dynamics and form
after multiple internal reflections. Our impulse driven exper-
iment precludes the possibility of classic forced parametric
resonance within the specimen, and we show via numerical
simulation that surface instability is instead controlled by
nonlinearity in the material response to shock loading.

Our experimental setup, depicted schematically in Fig. 1,
is a 50- µm-thick specimen of a soft hydrogel sandwiched
between two 300- µm-thick glass plates. The gel is a polyacry-
lamide network prepared by mixing 10 ml aqueous solutions

of 12% wt. acrylamide (A8887 Sigma-Aldrich), 5% wt.
Epson 522 printer ink, 2.5% wt. sodium alignate (A2033
Sigma-Aldrich), 0.023% wt. N,N-methylenebisacrylamide
(146072 Sigma-Aldrich) and 0.043% wt. ammonium per-
sulphate (A3678 Sigma-Aldrich). 0.03% wt. N,N,N’,N’-
tetramethylethylenediamine (T9281 Sigma-Aldrich) is added
prior to pouring the mixture onto a glass slide. The mixture
is covered with a second slide and crosslinked for an hour
using 254 nm UV light exposure with an energy deposi-
tion rate of 6 W/m2. The N,N-methylenebisacrylamide acts
as a crosslinker. Ammonium persulphate is a thermal ini-
tiator. N,N,N’,N’-tetramethylethylenediamine accelerates the
crosslinking. Printer ink is needed to absorb the laser energy
that generates shock waves. A laser pulse of 8-ns duration
containing 230 µJ of energy is focused on a 180 µm-diameter
ring of the specimen using our experimental setup previously
described in Refs. [25,26]. The laser energy melts material
along the circumference of the cylinder, thereby separating
it from the remainder of the hydrogel sheet, and excites an
intense pressure wave that propagates toward its center. A
high-frame-rate camera (SIMX 16, Specialized Imaging) is
used to acquire 16 images spaced by 0.6 µs. As an illuminat-
ing probe, we use a 640-nm-wavelength laser (SI-LUX640,
Specialized Imaging) of 30 µs pulse duration, which is longer
than the total time required to acquire the 16 frames with the
high-frame-rate camera. Figure 2 shows the images obtained.

Consistent with prior studies of converging shocks in wa-
ter, cavitation is observed early on in the center of the disk
and is a consequence of dilatational stresses exceeding the
tensile strength of the gel after the shock initially focuses
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FIG. 1. Schematic of hydrogel specimen sandwiched between
glass plates (left), detail of the initial circular 180 µm-diameter laser
ring (center) and waves emanated from laser-ablated ring (right).

and begins to diverge [27]. At much larger times, localized
deformation patterns in the form of surface eruptions nucleate,
grow and decay between 3 and 8 µs. No undulations develop
along the external boundary of the ablation zone, though a
variety of instabilities are known to occur along such curved
external gel domains due to steady gas pressure [28] or iner-
tial effects [21]. The specimen inside the laser ring does not
show evidence of inelastic deformation or damage in its final
state. Surface instability along only the internal boundary of
a toroidal laser ablation ring has not yet been reported in soft
matter, and we note that these effects were not observed in
analogous experiments using water [27].

In order to provide insight into the underlying physics, we
conducted detailed finite element simulations of our exper-
iment using our research code

∑
MIT [29]. For simplicity,

we only model the domain inside the circular ablation region
using a circular mesh with initial radius R0 equal to 90 µm
consisting of 34 480 first order, plane strain triangular el-
ements. The volumetric constitutive response of the gel is
modeled using the Tait equation of state which is justified
given the material’s large water content (∼85%). The two
required model parameters define the infinitesimal bulk mod-
ulus at the origin and the degree of stiffening in the nonlinear
response. In our simulation, we adopt a bulk modulus at the

FIG. 2. Time sequence of images obtained in laser-shock experi-
ment on hydrogel. The images are taken every 0.6 µs. The dark region
around the edge of the pictures corresponds to the laser-ablated
hydrogel material. The images clearly show the formation of a cav-
itation bubble at around 0.6 µs which disappears at around 7.2 µs.
Pronounced unstable deformation patterns appear on the surface at
some time between 2.4 and 3.0 µs.

origin κ of 2 GPa and a stiffening exponent γ̄ of 6.15 [30],
which correspond approximately to the volumetric response
of water. A neo-Hookean elastic model is adopted to describe
the deviatoric stress response, which has been shown to effec-
tively describe the quasistatic response in hydrogels [13,31–
35]. The required model parameter is selected so that the
shear modulus at the origin μ matches the stiffness of our
specimen in its reference configuration at 5 KPa. The elastic
strain energy function W is given in terms of the Jacobian J of
the deformation gradient F and the first invariant I of the right
Cauchy-Green tensor C:

W = κ

γ̄ − 1

(
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The elastic first Piola-Kirchhoff stress is computed as

P =
(

− κ

γ̄ − 1
(J−γ̄ − J ) − μ

3

I

J
2
3

)
F−T + μ

J
2
3

F. (2)

It bears emphasis that the material model considered here
accounts for nonlinear volumetric material response. Both
Rayleigh-Taylor and parametric instabilities of soft solids
have been studied extensively assuming either isochoric de-
formations [16,21] or the low Mach number approximation of
Keller and Miksis [36–38]. Our modeling framework captures
these instabilities in the incompressible and acoustic regimes
respectively, but our interest in shock driven experiments mo-
tivates this more general approach.

It was found that the simulations are able to capture the
mechanisms of instability on the surface without the need for
explicitly describing the complex laser energy deposition pro-
cess, and instead by simply applying a mechanical load along
the boundary. Specifically, the boundary conditions applied
consisted of a square pressure pulse duration tpulse of 8 ns on
the cylinder surface with an amplitude Ppulse of 2.0 GPa, which
corresponds to an energy deposition of approximately 75 µJ.
We estimate that approximately a third of the laser energy
in the experiment is injected into the hydrogel cylinder, and
have found that loading conditions of this intensity accurately
reproduce experimental observations. As commonly required
in simulations of shock-wave propagation, we add artificial
viscosity for shock stabilization using linear and quadratic
viscosity parameters of c1 = 1.0 and cL = 0.1 [39]. We utilize
second-order explicit Newmark time integration with mass
lumping to evolve the dynamic fields in time [40,41]. The time
step is selected to maintain a CFL number of one half which
guarantees numerical accuracy and stability.

Simulation Results. In order to visualize the sequence of
interesting events that take place during the various reflec-
tions of the ensuing stress waves, we monitor the evolution
of the minimum and maximum radial displacements on the
free surface, Fig. 3. For comparison purposes we plot a
scalar metric of instability amplitude Ā = rmax−rmin

R0
on the right

axis. rmax and rmin denote the maximum and minimum radial
displacement along the domain boundary. We also provide
representative snapshots of the evolution of the relevant me-
chanical fields at times of particular interest in Figs. 4–6.
Animated videos containing the full -dynamic evolution of
these fields are provided in the Supplemental Material [42].
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FIG. 3. Maximum (red) and minimum (blue) radial displacement
along the boundary plotted over time. The difference between the two
has been normalized by the initial radius of 90 µm and is shown in
green.
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FIG. 4. Hydrostatic stress contours plotted at times 80, 110 ns on
a ±0.3 GPa scale. Observe the tensile wave traveling inward.
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FIG. 5. Hydrostatic stress contours on a scale from −0.65 GPa
to zero at 213, 408, 592, and 768 ns. The diverging shock is visible
in these frames taken 20 ns prior to each of the final four reflections.
The simulations capture eruption formation.

10

5

0.0

-5

-10

H
o
o
p

S
tr

es
s

[M
P
a
]

155 ns 180 ns

10

5

0.0

-5

-10

H
o
o
p

S
tr

es
s

[M
P
a
]

350 ns 375 ns

FIG. 6. Top: Hoop stress on a ±10.0 MPa scale at 155 and
180 ns. Bottom: Hoop stress on a ±10.0 MPa scale at 350 and 375 ns.

The initial hydrostatic stress wave shocks up as it con-
verges toward the center. Convergence occurs at 29 ns at
which point the entire domain is in compression. As the stress
wave diverges, the center is placed under tension, a condition
that persists until 202 ns.

At 55 ns, the shock wave reflects off the boundary, accel-
erating it outward in the radial direction, and the free surface
in turn reflects a tensile stress wave toward the center of the
domain. Figure 4 illustrates the circular tension wave at 80 ns.
The tensile wave moves far slower than the shock because the
bulk modulus decreases when under tension. It takes 147 ns
for the tension wave to focus into the center of the domain
while the shock traversed the same distance in 26 ns. The
central tensile region and the reflected stress wave join into
a common, shrinking tensile core. Outside this region the
hydrostatic stress is still positive, but significantly smaller.

At 202 ns, the tensile region contracts to a point and the
continued inward motion of material causes hydrostatic com-
pression at the center which drives a second diverging shock.
This concludes one complete cycle of the pressure wave.
Subsequent pressure wave cycles consist of a tensile phase
followed by a radially expanding shock. Converging shocks
do not occur in later cycles and are only present at the start of
the simulation. Additional shock reflections are found at 233,
428, 612, and 788 ns.

Discussion. Figure 3 demonstrates that the boundary radial
displacement initially remains nearly homogeneous, but axial
symmetry breaks down over time as evidenced by the di-
verging maximum and minimum radial displacement curves.
The consequent increase in Ā indicates the formation of
localized deformation features or surface eruptions around
the circumference which are shown in Fig. 5. Both figures
show that the surface undulation amplitude grows with each
cycle of wave reflection and reaches up to 15% of the ini-
tial radius on the fourth cycle before starting to decrease
due to viscous dissipation. This is remarkably similar to the
surface eruptions observed experimentally. We note that the
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characteristic wavelength nondimensionalized by the sample
radius ranges between 0.37 and 0.45 in both our simula-
tions and our experimental observations, which corresponds
to between 14 and 17 clearly visible undulations along the
boundary.

Figure 3 shows that the breakdown of symmetry (when
the maximum and minimum displacements diverge) starts
at around 80 ns after the first inflexion point of the radial
surface displacement, i.e., when the boundary acceleration
changes signs although the surface is still moving outward.
The incipient inward acceleration toward the heavier ma-
terial is responsible for the onset of the instability, but in
contrast to the inertial effects driving Rayleigh-Taylor type
mechanisms in converging shock settings [43–47] it is the
tensile release wave, not the compressive shock that nucleates
surface undulations. The effect also appears similar to the
classic Richtmyer-Meshkov instability, which occurs when
a fluid interface is rapidly accelerated by the passage of a
shock wave from the less dense toward the more dense fluid
[23,24], but in stark contrast with the Richtmyer-Meshkov
instability our simulations show interface acceleration caused
by radial tension not by shock compression. In fact, in our
experiments and simulations the shocks actually propagate
from the middle toward the lighter laser ablated region, which
provides a surface regularizing effect responsible for the rapid
decreases of the undulation amplitude Ā with each reflection,
Fig. 3. The detailed animations provided in the Supplemental
Material [42] confirm both the tensile wave-driven radially
inward surface acceleration as the mechanism for nucleation
of localized deformation, as well as the stabilizing effects of
outward-moving shock reflections.

An analysis of the evolution of the circumferential (hoop)
stress exposes a second mechanism that contributes to the
growth of the surface instability, namely the development of
a compressive circumferential stress, which occurs when the
boundary is pulled radially inward, Fig. 6. As in other types
of elastic instabilities where the main mechanism driving
the onset and growth is compression in directions tangent
to a free surface [48], we find that hoop compression plays
a key role in generating large scale eruptions. In particular,
the destabilizing compressive hoop stresses develop under
radial tension which indicates significant deviatoric stress and
results in surface rotations and undulations. For instance, in
Fig. 6 at 180 ns, the radial displacement is negative along the
free surface and hence the circumferential strain is negative,
but the radial stress remains tensile. In Fig. 3 it is apparent that
the radial displacement plots continue to curve downward due
to radial tension even after the displacement and hoop strain
first attain negative values. Boundary radial stresses do not
become compressive and push the domain outward until just
prior to the shock arrival. The maximum hoop compression
that occurs due to radial tension along the boundary is 11
MPa at 180 ns and we continue to observe MPa-scale hoop
compression in subsequent pressure cycles. Although these
hoop stresses are small compared to the GPa-scale pressures
arising from shock compression, they are still large when
compared to the 5 KPa shear modulus of the soft hydrogel.

The simulations capture growth of many wave numbers
during the initial oscillation cycles when undulation formation
is driven primarily by radially inward acceleration, see Fig. 7.

FIG. 7. Evolution of the Fourier modes of the surface undulation
(normalized by the domain radius) plotted against nondimensional
time t̄ = t/R0

√
κ/ρ.

In this figure, the color represents the amplitude of the Fourier
modes of the nondimensional boundary radial displacement
field plotted along the vertical axis as a function of the
nondimensional time t̄ plotted along the horizontal axis. As a
convenient measure of the time scale we normalize by the time
for acoustic propagation from the boundary to the center of the
domain: t̄ = t

τ
where τ = R0

√
ρ

κ
. Though many modes are ex-

cited by inertial effects, the large scale undulations we show-
case in this Letter are clearly of a moderate wave number on
the order of 20. We find that the hoop compression effect pref-
erentially amplifies these intermediate wave numbers at later
times once inertial effects have dissipated. A detailed order
parameter study which includes Refs. [49–56] is provided in
the Supplemental Material and underscores this finding [42].

According to our analysis, cylindrical Rayleigh-Taylor or
parametric instabilities as reported in Refs. [15,57–59] may
develop regardless of the scale of the hydrostatic stress be-
cause these instabilities do not require nonlinear volumetric
material response, but the instability reported in this paper
requires sufficiently large pressures and wave dispersion upon
shock reflection. Richtmyer-Meshkov instabilities do require
a nonlinear equation of state but develop due to baroclinic
effects induced by compressive shock waves. Even in the con-
text of reshocked Richtmyer-Meshkov instability, where first a
converging and then a diverging wave drive instability growth,
the domain does not typically enter the tensile phase of the
pressure cycle [18,60]. In our case, we have considered many
cycles of internally reflecting large amplitude stress waves
and have found that the overall period of oscillations and
emergence of large elastic surface instabilities is controlled by
the tensile material response when in the strongly nonlinear
range.

The key features of the simulations are also evident in our
experimental observations. A soft material’s critical cavitation
stress scales with shear stiffness [61,62], which precludes
water from sustaining the large amplitude tensile stress cycles
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that are needed to form this new class of surface instabil-
ities. The novel mechanism is not found in water in our
recent experiments or in previous studies [27]. Additionally,
experimental undulations form only along one side of the
laser ring because the external surface of the ablation zone
does not experience oscillatory loading due to internal wave
reflections and does not develop compressive hoop stress.
Rather, the external hydrogel is placed under circumferential
tension by the thermal expansion of material inside the laser
ablation ring. Hoop compression along the external surface of
a curved laser ablation zone does not typically develop on a
submicrosecond time scale for gel cavities with characteristic
lengths of ∼100 µm [37] and consequently such curved sur-
faces form instabilities slower than those reported here [21].
Additionally, the time scale of both observed and simulated
instability growth considered here is more than an order of
magnitude faster than the oscillation period typically used
to generate forced parametric instability of comparably sized
bubbles in soft gels [15]. High frequency forced vibrations
are challenging to excite uniformly due to wave scattering,

but our laser-driven experiment generates high frequency and
highly nonlinear oscillations inside the hydrogel cylinder. Our
accompanying elastodynamic model demonstrates that cycles
of large amplitude waves can rapidly induce surface instabili-
ties in materials possessing both sufficient softness and tensile
strength.

Conclusion. In summary, we have observed and simulated
a different nonlinear elastodynamic instability which is driven
by radial acceleration and circumferential hoop compression.
Materials exhibiting this instability must possess sufficient
ultimate strength to sustain large amplitude nonlinear pressure
waves. It should be emphasized that this instability has only
been described recently since it occurs along the boundary of
shocked soft solids with small radii of curvature. The exper-
imental setup considered here is ideally suited for exploring
this regime of mechanical response.
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