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Emergence of extreme events in a quasiperiodic oscillator

Premraj Durairaj ,1 Sathiyadevi Kanagaraj ,1 Suresh Kumarasamy ,1 and Karthikeyan Rajagopal1,2

1Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600 069, Tamilnadu, India
2Department of Electronics and Communications Engineering, University Centre for Research and Development,

Chandigarh University, Mohali 140 413, Punjab, India

(Received 7 July 2022; revised 29 December 2022; accepted 23 January 2023; published 24 February 2023)

Extreme events are unusual and rare large-amplitude fluctuations can occur unexpectedly in nonlinear dy-
namical systems. Events above the extreme event threshold of the probability distribution of a nonlinear process
characterize extreme events. Different mechanisms for the generation of extreme events and their prediction
measures have been reported in the literature. Based on the properties of extreme events, such as those that are
rare in the frequency of occurrence and extreme in amplitude, various studies have shown that extreme events
are both linear and nonlinear in nature. Interestingly, in this Letter, we report on a special class of extreme events
which are nonchaotic and nonperiodic. These nonchaotic extreme events appear in between the quasiperiodic and
chaotic dynamics of the system. We report the existence of such extreme events with various statistical measures
and characterization techniques.
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Extreme events are unanticipated, rare events that occur
in many natural and engineering systems. Extreme events
(EEs) can exist in various forms, including floods, cyclones,
droughts, pandemics, power outages, material ruptures, ex-
plosions, chemical contamination, and stock market crashes,
among others [1]. Such events have a severe impact on
real-world situations. Thus, it is necessary to understand the
relevant mechanism and its generic characteristics for the
occurrence of EEs in order to prevent such EEs. As a result, re-
searchers have focused on exploring EEs in diverse nonlinear
oscillators [2–5], maps [6], and neural networks [7]. Further,
extreme events have also been identified in a superfluid helium
[8], plasma [9], optical fibers [10], lasers [11], and capillary
waves [12], etc.

However, depending on the characteristics of a dynamical
system, the occurrence of EEs has been discovered under a
variety of mechanisms, including internal crises, on-off inter-
mittency, blowout bifurcations, stick-slip bifurcations, and so
on [6,11,13–15]. For instance, prior studies reveal that EEs
can arise as a result of the abrupt expansion and destruction
of chaotic attractors produced by internal or external crises
[11,14]. Further, interior crises are found to be a critical
mechanism for the occurrence of EEs, when the trajectory of
chaotic attractors reaches the stable manifold of a saddle or
unstable periodic orbit, which increases the size of the chaotic
attractors. Such a sudden expansion of the chaotic attractor
may result in an EE. In addition, Pomeau-Manneville inter-
mittency is identified as another mechanism for the existence
of EEs. Such intermittency can occur when periodic oscilla-
tions are interspersed by chaotic bursts, which further results
in very large-amplitude events. EEs can also exist through the
following other mechanisms. The sliding bifurcation near the
discontinuous boundary can cause an EE. The trajectory of
the attractors might hop between coexisting attractors due to

noise in multistable systems, which can cause unusually large
events. This is referred to as noise-induced intermittency. The
trajectory of the attractors in coupled systems departs from
the synchronization manifold to the transverse direction of the
manifold. During such a transition, a synchronization error of
dynamics can show to be zero or nonzero and is referred to as
on-off intermittency [16].

Moreover, previous studies discovered that extreme or rare
events can occur as a result of chaotic or stochastic pro-
cesses [16]. In particular, the appearance of EEs has been
reported in microelectromechanical cantilevers with discon-
tinuous boundaries and diode lasers with phase-conjugate
feedback [17,18]. By applying harmonic pump modulation to
a fiber laser, the emergence of rogue waves has been identified
[2,19–21]. The EEs in stochastic transport on networks has
been demonstrated using multiple random walks on complex
networks [22,23]. Now, the interesting question is whether
extreme events can be induced by nonchaotic signals. In
the literature, a study has shown nonchaotic and nonperi-
odic signals have been well studied in the name of strange
nonchaotic dynamics, which arises during the attractor tran-
sition from quasiperiodicity to chaos [24]. One can find the
generation mechanisms of these strange nonchaotic attractors
in the literature [24–26]. The results in the present Letter
show that similar to the strange nonchaotic dynamics, the
nonperiodic and nonchaotic dynamics show large-amplitude
extreme events. The present Letter opens a different area of
study where the nonchaotic nonlinear process can also lead to
extreme events.

To show the nonchaotic extreme events, we consider a
Morse oscillator (MO) which is used to describe the mo-
tion of diatomic molecules. Importantly, the MO has made
substantial contributions in the fields of classical, semiclassi-
cal, and quantum mechanics [27,28]. The MO was used for
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FIG. 1. (a) Time evolution of xn for the nonchaotic dynamics
with forcing amplitudes as (a) f = g = 0.255, and (b) f = g =
0.278. The xn is the nth local peaks of the variable x. The horizontal
black dotted-dashed and red dashed lines are the critical threshold
lines defining the extreme events (refer to the text for the meaning of
N and A). (c) The probability distribution function corresponds to the
extreme events and (d) return interval (R) (interevent interval) with
respect to the probability of recurrence times (PR) of the EE for (b).
The solid circles and solid lines in (d) represent the numerical data
and the corresponding power-law fit. We fixed the other parameter
values as γ = 0.35, ω1 = 0.3, and ω2 = (

√
5−1
2 ).

photodissociation molecules without any damping. In the
presence of driving and damping, the MO was exploited for
multiphoton excitation of molecules, pumping the local mode
of polyatomic molecules [29]. We consider a quasiperiodi-
cally forced MO and its dynamical equation can be written
as

ẋ = y,

ẏ = f sin(ω1t ) + g sin(ω2t ) + e−2x − e−x − γ y, (1)

where x and y are the state variables of the system and γ is
a damping parameter. The amplitudes of the first and second
force are represented by f and g and the corresponding fre-
quencies are denoted by ω1 and ω2, respectively.

To manifest the existence of extreme events, we first de-
picted the time evolution of the x variable in Figs. 1(a) and
1(b) by fixing the amplitude of the first and second forc-
ing as f = g = 0.255 and f = g = 0.278. We observe from
Fig. 1(a) that some of the oscillation (event) has larger ampli-
tudes, while the rest of them take lower amplitudes. To check
whether the larger-amplitude oscillations satisfy the extreme

event criteria defined in the literature, we use the following
relation,

xEE = 〈xn〉 + Nσxn , (2)

where xEE is the critical amplitude threshold and N is a mul-
tiplication factor. The mean and standard deviation of the
variable x is represented by 〈xn〉 and σxn , respectively. Here,
the xn (an event) are the local peaks of the variable x. An
event or a local peak can satisfy extreme event criteria if it has
a value higher than the critical threshold defined by Eq. (2)
with N � 4. To confirm the presence of EE, we plotted the
critical threshold on the time series for N = 5 and N = 4 in
Figs. 1(a) and 1(b). We used two different N values depending
on the time series. Though the choice of N is arbitrary, we set
the minimum N value as 4 in the present study. We also find
the critical value of Nmax for a range of each f value—the
details will be discussed below. In both cases, we can see
that some of the large-amplitude events cross the threshold
line, confirming the presence of EE. Since the choice of N
is arbitrary in the previous criterion, we use another criterion
defined by the abnormality index, An = H fn

H1/3
[17], where H fn

is the difference between the maximum height of the event
n and the mean height of its population, H fn = xn − 〈xn〉n,
and H1/3 is the average value among the highest one-third
values of H fn. If an event xn has abnormality An greater than
2, then the event is termed an extreme event. We find that both
cases in Figs. 1(a) and 1(b) satisfy the above criterion with
abnormality index A = 3 denoted by a dashed horizontal line
in the plots. It is evident that a few rare large-amplitude events
cross the abnormality index line. We computed the probability
distribution function (PDF) in Fig. 1(c) for the time series
shown in Fig. 1(b). The EE critical threshold at N = 4 is plot-
ted as a vertical dashed line on the PDF diagram. In the plot,
the events with a finite probability above the critical threshold
line characterize the extreme events. We can plot a similar
probability distribution for Fig. 1(a), however, for simplicity,
we have plotted the PDF corresponding to Fig. 1(b).

The above analysis shows that the observed behavior sat-
isfies the extreme event criterion in the amplitudes. Another
important characteristic of extreme events is an interevent
interval. The interevent interval defines the frequency oc-
currence of the events and should not have discrete values
(discrete values mean the periodic occurrence of events),
rather it should have a distribution over a range. In order
to examine the distribution of events in the observed time
series, we find interevent intervals (R) between successive
extreme events. Subsequently, we find the probability of such
interevent intervals (PR) as shown in Fig. 1(d). The interevent
interval and its probability obey power-law relations as given
by log10(PR) = a log10(R)b, where a and b are constants with
values a = −0.006 and b = 2.96, respectively. The obtained
numerical values are depicted in a solid circle, and a continu-
ous line shows the corresponding power-law fit. The route for
the emergence of EE and its transitions is further estimated
below using Lyapunov exponents (LEs), amplitude maxima
Xmax, critical factor Nmax, and a two-parameter analysis.

To illustrate the global dynamical transition of the at-
tractors and route of the EE, the two-parameter diagram is
drawn in ( f , g) space using the maximum LE as shown
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FIG. 2. (a) The two-parameter bifurcation diagram in ( f , g)
space. Using the range of Lyapunov exponents (λ) (denoted by the
color bar) the dynamical regions are marked. (b) The maximum
Lyapunov exponents as a function of forcing amplitude f (= g),
(c) Maximum amplitude of the events xmax (red) and the correspond-
ing Nmax [Eq. (3)] of the event (blue) by varying the magnitude of
f (= g). The black line represents the extreme event critical threshold
(xEE) drawn from Eq. (2) for N = 4. The other parameter values are
fixed as in Fig. 1.

in Fig. 2(a). The range of LE (shown in the color bar)
denotes the emergence of quasiperiodic, nonchaotic, and
chaotic attractors in the respective parameters of f and g. If the
forcing amplitudes f and g are small, attractors have a maxi-
mum negative LE, indicating the presence of a quasiperiodic
(QP) attractor region. To better comprehend QP attractors, we
plotted their time-evolution and phase portrait trajectories in
the Supplemental Material Figs. S1(a)(i) and S1(a)(ii) [30]
for f = g = 0.23, which show their bounded nature. Thus,
the EE critical threshold for this attractor is greater than
the amplitude of QP attractors. By increasing f and g val-
ues, the QP attractor transits to a chaotic (CH) attractor via
strange and nonchaotic dynamics in which the LE takes the

values from negative (near zero) to positive. To distinguish
between the strange nonchaotic and chaotic attractors, the
time-evolution and phase portrait trajectories are shown in
Figs. S1(b)(i) and S1(b)(ii) and Figs. S1(c)(i) and S1(c)(ii) in
the Supplemental Material [30] by fixing f = g = 0.278 and
f = g = 0.33, respectively. Also, the frequency spectra can be
used to distinguish quasiperiodic, strange nonchaotic attractor
(SNA), and chaos. We have the frequency spectrum analy-
sis in the Supplemental Material in Figs. S4(a)– S4(c) [30].
When compared to the chaotic attractor (which has a greater
number of large-amplitude oscillations), we found the SNA
shows fewer large-amplitude oscillations. The Supplemental
Material’s Fig. S1 [30] can be consulted for more informa-
tion. Furthermore, to show the dynamical transitions clearly,
we displayed maximum Lyapunov exponents in Fig. 2(b)
by keeping the parameter ( f = g) and varying it along the
diagonal dashed line shown in Fig. 2(a). In Fig. 2(b), the
maximum LE is illustrated as a function of forcing amplitudes
f and g ( f = g) in the range [0.23 < f (= g) < 0.32]. We
observe that when the forcing amplitudes are minimum in
the mentioned range, LE takes negative values, indicating
quasiperiodic dynamics. While increasing the parameter, the
transition of LE from negative to positive values indicates the
dynamical transition of quasiperiodic behavior to chaotic be-
havior. Furthermore, we found that the negative values of LE
near zero exhibit strange nonchaotic behavior; extreme events
are seen in this region. The literature has shown that the EEs
occur under chaotic dynamics [16] through distinct routes,
and stochastic processes such as stochastic transport on net-
works have been demonstrated using multiple random walks
on complex networks [22,23]. Among the various routes, the
occurrence of EEs in nonchaotic dynamics is different.

To validate the occurrence of EEs in the SNA region, we
find the maximum amplitude xmax, extreme event threshold
xEE, and maximum value of N (Nmax) of a given time series. In
Fig. 2(c), we have plotted the above quantities by varying the
magnitude of f = g. The plot explains the regime of extreme
events in the following way. During the nonextreme regime,
the critical threshold xEE is larger than the xmax. It means that
the threshold is larger than the large-amplitude oscillations
and does not satisfy the extreme event criterion. While in the
EE regime, the xmax is larger than the EE critical threshold
xEE (shaded EE region). This explains that extreme events
have a larger amplitude than the extreme event criterion. Note
that the SNA regime in the parameter range f ∈ 0.28–0.2912
shows no extreme events. As we discussed above, we fixed
N = 4 as an arbitrary constant from the literature [31]. How-
ever, the maximum value of the N can be determined by
rewriting Eq. (2) as

Nmax = max(xEE) − 〈xn〉
σxn

. (3)

In the SNA region shown in Fig. 2(c), we found that
the multiplication factor taking values between 4 � Nmax �
5.611 when the forcing amplitudes are in the range from 0.256
to 0.28 denoted by the shaded transparent pattern. The plot
of Nmax shows that depending on the parameter choice, the
arbitrary value can be chosen N ∈ {4, 5.611}. Thus the above
results satisfy all the criteria proposed for the extreme events
and justify the existence of EEs in the SNA regime.
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FIG. 3. Basin of attraction for f = g = 0.278. QP1, QP2, and
QP3 are the quasiperiodic attractor 1, quasiperiodic attractor 2, and
quasiperiodic attractor 3, respectively. SNA represents the strange
nonchaotic attractor. We fixed the other parameter values the same as
in Fig. 1.

As we discussed earlier, the observed EEs are nonchaotic
and nonperiodic. At the same time, the parameters corre-
sponding to the strange nonchaotic EEs show multiple stable
behaviors. The multistable behavior can be seen from the
basins of attraction drawn for a range of initial conditions.
Figure 3 is drawn by varying the initial states x0 and y0 of the
system for the parameters given in the caption to Fig. 1. We
can see that the basin of nonchaotic and nonperiodic behavior
or SNA is embedded within the basin of quasiperiodic dy-
namics. Outside the SNA basin, we have found three different
basins which contain quasiperiodic attractors. All the three
different quasiperiodic attractor basins and the SNA basin,
denoted by QP1, QP2, QP3, and SNA, respectively, are shown
in Fig. 3. In Supplemental Material Fig. S2 [30], each of
the quasiperiodic attractors is depicted. Figure 3 shows that
extreme events occur for specific values of initial conditions.
The size of these basins changes as we vary the parameter
within the EE regime marked in Fig. 2.

Similarly, to determine the regime of the extreme event
in the parametric space between f and g, a two-parameter
diagram is drawn as shown in Fig. 4. The white regime in
the plot shows the extreme events for the combinations of
parameter ( f , g) separated with the help of Eq. (2) from the
nonextreme events (NEE, denoted by the blue color). By
comparing Fig. 2(a) with Fig. 4 we can say that EEs occur in
the SNA region (however, some of the SNA parameter regime
may not contain EEs).

To show the generality of the existence of EEs in the SNA
regime, we present the regime of EEs for γ = 0.4 in the
Supplemental Material Figs. S3(a) and S3(b) [30]. This result
validates the presence of strange nonchaotic extreme events
in the selected parameter regime. In the following section, we
characterize the observed behavior as strange and nonchaotic
in nature. For this purpose, we perform a singular continuous
spectrum analysis and distribution of finite-time Lyapunov
exponents.

FIG. 4. Two-parameter phase diagram in ( f , g) space [plotted
using Eq. (2) for fixed initial condition (x0, y0) = (0.3, 0.2)], to dis-
tinguish the existence of extreme events (EE) and nonextreme events
(NEE), respectively. We fixed the other parameter values as in Fig. 1.

To validate the strange nonchaotic dynamics, we plot
a singular continuous spectrum [24,32] in Fig. 5 using a
partial Fourier sum of the signal x given by X (α, N ) =
∑N

m=1 xme2π imα , where α is proportional to the external fre-
quency (ω1) and N is the length of the time series. The red
and black lines show the singular continuous spectrum and the
corresponding power-law fit. When N is considered as time,
|X (α, N )|2 grows with N , that is, |X (α, N )|2 ∼ Nβ , where β is
the slope. When the signal possesses the properties of strange
nonchaotic dynamics, the corresponding slope values lie be-
tween 1 < β < 2. For this case, the slope value β = 1.576
confirms the existence of strange nonchaotic dynamics shown
in Fig. 5(a). The corresponding path of Brownian motion with
a fractal structure in the complex [Re(x), Im(x)] plane also
confirms the strange nonchaotic dynamics in Fig. 5(b).

The strange nonchaotic dynamics are also validated using
another statistical characterization known as the distribution
of finite-time Lyapunov exponents. The distribution takes both
positive and negative values, but the area under the curve
is maximum in the negative regime for strange nonchaotic
dynamics. Figure 6 plotted for three different finite-time in-
tervals T = 500, 1000, and 1500, where the distribution has a
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FIG. 5. Singular continuous spectrum for fixing the forcing am-
plitudes f , g = 0.278. (a) The logarithmic plot of log10 |x(α, N )|2
against N . The red and black lines denote the numerical values and
the corresponding power-law fit. (b) Fractal path in the complex
plane of x. The other parameter values are defined as γ = 0.35,
ω1 = 0.3, ω2 = (

√
5−1
2 ).
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FIG. 6. Finite-time Lyapunov exponent with respect to probabil-
ity distribution function (PDF) for SNAs by fixing the three distinct
finite time periods T = 500 (red line), T = 1000 (blue dashed line),
and T = 1500 (black dotted line) with f , g = 0.278.

large negative region compared to the positive region showing
nonchaotic dynamics. From these analyses, the observed dy-
namics are strange (nonperiodic) as well as nonchaotic, which
also shows the large amplitude and rare events.

The present Letter shows a mechanism of the emergence of
extreme events in a quasiperiodically forced Morse oscillator.
As a function of forcing amplitude, we found the transition

from a quasiperiodic (QP) to chaotic (CH) attractor via strange
nonchaotic extreme events. During such extreme event dy-
namics, we found a long excursion of trajectories that are
away from the bounded attractor, while the chaotic attractors
show many higher-amplitude peaks. To confirm the existence
of EEs, we estimated the critical threshold, and it is observed
that the higher-amplitude peaks in the EE cross the critical
threshold while the peaks in the CH and QP attractor do not.
The dynamical transitions of the attractors and the occurrence
of nonchaotic EE dynamics are manifested through maximum
Lyapunov exponents. The observed extreme events are fur-
ther validated using the probability distribution and return
interval (interevent interval) with respect to the probability of
recurrence times of the EE. Extreme events are abnormal and
unexpected events that occur in many natural and man-made
systems. Understanding the mechanism or route can help to
anticipate the onset of EEs. Early works on extreme events
showed the chaotic nature of the extreme events because of
the rare and extreme amplitude properties of extreme events.
The present study shows an unknown emergence of extreme
events that are nonchaotic and nonperiodic extreme events.
This finding sheds light on the direction where extreme events
can occur as a nonchaotic process.
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