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Central to the field of quantum machine learning is the design of quantum perceptrons and neural network
architectures. A key question in this regard is the impact of quantum effects on the way such models process
information. Here, we establish a connection between (1 + 1)D quantum cellular automata, which implement a
discrete nonequilibrium quantum many-body dynamics through successive applications of local quantum gates,
and quantum neural networks (QNNs), which process information by feeding it through perceptrons intercon-
necting adjacent layers. Exploiting this link, we construct a class of QNNs that are highly structured—aiding
both interpretability and helping to avoid trainability issues in machine learning tasks—yet can be connected
rigorously to continuous-time Lindblad dynamics. We further analyze the universal properties of an example
case, identifying a change of critical behavior when quantum effects are varied, showing their potential impact
on the collective dynamical behavior underlying information processing in large-scale QNNs.
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An established concept for classifying phases of matter
and transitions among them is that of universality. This builds
on the observation that, near a critical point, different sys-
tems display macroscopic behavior that does not depend on
their microscopic details [1]. Consequently, a wide variety of
systems exhibit the same collective scaling behavior for key
observables. In equilibrium this can be observed, e.g., in the
magnetization of the Ising model and the specific volume of
a van der Waals gas, both of which follow the same scaling
laws near the critical point. In the realm of nonequilibrium
phase transitions (NEPTs) universality can be, for instance,
observed in dynamical processes that feature an absorbing
state—a particular configuration of the system which, once
reached, causes the dynamics to halt. These systems feature
emergent collective behavior that typically belongs to the so-
called directed percolation (DP) universality class. This is,
e.g., the case for both the continuous-time classical contact
process (CCP) [2,3] and the discrete-time Domany-Kinzel
cellular automata (DKCA) [3–9], which, despite their very
different microscopic formulation, display the same quanti-
tative large-scale critical physics. We note that this concept
of physical universality is separate from other conceptions
of universality, such as computational universality which is
important in the field of information processing, though the
question of how such concepts can relate is an interesting one
in its own right, particularly in physically inspired models of
computation such as cellular automata [10].

Recently, it has been found that quantum effects can lead to
a change of the universal behavior of nonequilibrium stochas-
tic processes. This has been observed in a continuous-time
open quantum version of the contact process model [11–16],

with a similar change also found within so-called (1 + 1)D
quantum cellular automata (QCA) [17] [see Fig. 1(a)]. QCA
represent an extension of classical cellular automata (CCA)
into the quantum domain [18–22] and can, for instance,
be realized on quantum hardware based on Rydberg atoms
[23–27]. Moreover, QCA are also closely related to quan-
tum neural networks (QNNs) [see Fig. 1(a)], which are of
considerable interest in current quantum machine learning
research [28–31]. This interest is driven by the idea that QNNs
might accomplish learning tasks related to quantum data more
efficiently than their classical counterparts [32].

Building on the connection between (1 + 1)D QCA and a
paradigmatic class of QNNs [17,28], we address the question
of how information processing in large QNNs can be analyzed
through the lens of quantum dynamics, and how quantum
effects can dramatically alter the dynamical behavior in QNNs
designed for application to quantum machine learning (QML)
tasks. To this end, we first introduce a class of quantum
perceptrons (gates) that provide highly structured (few param-
eter) QNNs, whose information processing can be interpreted
clearly as a dissipative many-body quantum dynamics that is
equivalent to generic continuous-time Markovian open quan-
tum time evolutions in a particular limit. In the field of
QML, similar highly structured models have recently shown
promise in the task of (unitary) dynamics learning [33]. Not
only does the nature of these models make them easy to
interpret in terms of physical dynamics, it has also been sug-
gested that their structure can aid trainability [34], an issue
that is faced by more general unrestricted QNNs [31,35].
This then provides the motivation for the restricted class of
QNNs presented here as potential interpretable models for
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FIG. 1. QCA and QNNs .(a) (1 + 1)D QCA propagate an initial
quantum state, defined on a one-dimensional lattice, along a discrete-
time direction via the application of quantum gates. First, one applies
the gates successively to all qubits (sites) of a given row. This com-
pletes one time step and one subsequently advances to the next row.
This discrete time evolution is closely related to the dynamics of a
computation on a recurrent QNN. Here information is processed by
perceptrons that link adjacent layers, thereby propagating the input
(initial state) to the output (final state). (b) We consider a gate Gk,t

with two control qubits (on time slice t) and one target qubit (on time
slice t + 1). For the shown decomposition of the gate one obtains an
effective open system dynamics (with single-site dissipation) through
unitary gates: first, a unitary Uk−1,k is applied to control qubits,
which implements a Hamiltonian evolution. Second, an entangling
gate Dk acts on one of the controls and on the target qubit, resulting
in dissipation. Finally, a propagation step which is implemented by
applying a swapping operation, SWAPk , between control and target
qubits.

the learning of Lindblad (nonunitary) dynamics. Finally, we
exploit the QNN-QCA connection again to investigate the
impact of quantum effects on collective behavior. To do this,
we focus on a case where the QNN (taken from the class
established previously) has a dynamics displaying an NEPT.
Using numerical simulations based on tensor networks (TNs),
we investigate long propagation times, corresponding to deep
QNNs, and large system sizes, corresponding to a large num-
ber of neurons per layer. We find that, indeed, quantum
fluctuations can impact on emergent properties within QNNs,
i.e., as a function of the parameters of the perceptrons they
lead to changes in the universal critical dynamics.

Relationship between QCA and QNNs. A (1 + 1)D QCA
consists of a two-dimensional lattice of sites, each one having
as basis states an empty one, |◦〉, and an occupied one, |•〉.
Similar to CCA, the whole lattice is prepared with all sites
in state |◦〉, apart from those in the first row, here denoted
as row t = 0 as shown in Fig. 1(a). The latter encode the
initial state of an effective one-dimensional system, such as
a chain of L two-level systems, where L is the width of the
lattice. The state of (1 + 1)D QCA then evolves iteratively as
|ψt+1〉 = Gt |ψt 〉, where Gt is a global-update operator defined
via the application of local (unitary) gates Gk,t , ∀k. Each Gk,t

acts on a set of so-called control sites in the neighborhood of
site k in row t and on the target site k in row t + 1 [see an
example in Fig. 1(b)]. The successive update of consecutive

rows allows one to interpret the vertical dimension of the
lattice [cf. Fig. 1(a)] as an effective time dimension for the
evolution of the one-dimensional system encoded in the QCA.
Its (reduced) state, at time t , is given by the density matrix
ρ(t ) = Trt [|ψt 〉〈ψt |], with Trt indicating trace over all sites
but those in row t . Since Gt acts nontrivially only on two
adjacent rows, the (reduced) dynamics of ρ(t ) is given by

ρ(t + 1) = Trt+1[Gtρ(t ) ⊗ |0〉〈0|t+1G†
t ], (1)

where |0〉t+1 is the state of row t + 1, initialized with all
(target) sites in |◦〉. In order not to overload the notation, we
will use here the symbol Gt to indicate both the full unitary
operator and its reduced form solely supported on row t and
t + 1.

As illustrated in Fig. 1(a), (1 + 1)D QCA are structurally
equivalent to layered QNNs composed of perceptrons [28,31].
The input layer of the QNN is the initial state of the one-
dimensional system encoded in the QCA, while the remaining
nodes of the network, i.e., those in the hidden layers and in
the output layer, are initialized in the fiduciary state |◦〉. The
(neural) nodes of two adjacent layers are connected by (uni-
tary) perceptrons, which are implemented by the application
of the gate Gt in the QCA. In the context of QNNs, the time
dimension of the QCA represents a direction quantifying the
progress of a computation, and the state at the output layer
corresponds to the state ρ(t ) of the QCA, as defined in Eq. (1),
at a chosen final time [cf. Fig. 1(a)]. Since we consider here
gates Gk,t which are identical for all t and k, our QCA in fact
reproduces a recurrent QNN [34].

Information processing through dissipative quantum dy-
namics. As discussed above, (1 + 1)D QCA, and thus also
QNNs, encode a discrete-time dynamics [cf. Eq. (1)]. Here,
we introduce a class of gates (perceptrons), Gk,t , for which,
in a given limit of their parameters, this dynamics be-
comes equivalent to a continuous-time many-body open
quantum system evolution. This is of potential interest for
the learning of dissipative quantum dynamics, with similar
highly structured perceptrons having proved important for
learning closed, Hamiltonian dynamics [34]. However, this
construction also enables the examination of the information
processing of QNNs in terms of equivalent dynamical proper-
ties (see, e.g., Ref. [36]).

The dissipative quantum dynamics we will consider is de-
scribed by the so-called Lindblad generator [37]

L[ρ] = −i[H, ρ] +
∑

μ

(
JμρJ†

μ − 1
2 {J†

μJμ, ρ}). (2)

Here the commutator term, which includes the Hamiltonian
H , gives rise to a coherent quantum evolution, while the
dissipator, which depends on the jump operators Jμ, encodes a
nonreversible (classical) process. For the sake of concreteness,
we consider a QCA with gates Gk,t acting on two control sites
and a single target site, as is the case for the gate shown in
Fig. 1(b). Generalizations to more control sites are straight-
forward.

In order for the dynamics in Eq. (1) to be (approximately)
equivalent to the continuous-time dynamics generated by L,
we require that ρ(t + 1) ≈ ρ(t ) + δtL[ρ(t )], where δt is a
small, as compared to the timescales of the system, time
increment. This can be achieved (see Supplemental Material
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[38]) via a global-update operator Gt , composed of local gates
[cf. Fig. 1(b)]

Gk,t = SWAPkDkUk−1,k, (3)

applied in a right-to-left sweep gate ordering. Here, Uk−1,k =
e−iδthk−1,k (with the special case U0,1 = I, i.e., open boundary
conditions) unitarily evolves the control sites k − 1, k with the
local Hamiltonian hk−1,k . The operator Dk , given by

Dk = exp[iθ (σ+
k ⊗ σ−

k + σ−
k ⊗ σ+

k )], (4)

with σ− = (σ+)† = |◦〉〈•|, generates entanglement between
the control site (k, t ) and the target site (k, t + 1) which re-
sults in dissipation in the form of local decay from state |•〉 to
state |◦〉 at site k. The parameter θ needs to be small in order
to approximate a continuous-time update. For small δt , we
assume θ ≈ √

γ δt , where γ provides the decay rate. Finally,
the operator SWAPk performs a swap of site (k, t ) with site
(k, t + 1), which is needed to advance the state of the system
to the next row. Note that, in the case of a fully coherent
Hamiltonian evolution one has Dk = I, and the target sites
become redundant [39–43].

In order to see that using the local gates in Eq. (3) gives rise
to a continuous-time Lindblad dynamics, we consider Eq. (1),
which in the present case reads [38]

ρ(t + 1) =
∑

m

KmUtρ(t )U †
t K†

m. (5)

Here, m = (m1, m2, . . . , mL ), with mk = ◦, • labeling the
basis states. The operator Ut = ∏

k Uk−1,k implements the
full unitary update, while Km = ∏

k Kmk ,k , with Kmk ,k =
〈mk|Dk|◦〉, are the (Kraus) operators associated with local
decay. Recalling Eq. (4), one has

K◦,k = I + [cos(θ ) − 1] nk , K•,k = i sin(θ )σ−
k , (6)

where n = |•〉〈•|. For small angles θ ≈ √
γ δt 	 1, we can

expand the Kraus operators Km in powers of δt . Up to first
order in δt , in Eq. (5) one has at most a single mk = •. Since
this can happen for all k, the sum of these contributions leads
to a term equivalent to the first sum in Eq. (2), acting on
Utρ(t )U †

t . Expanding the term with all mk = ◦ in Eq. (5) gives
instead the second sum in Eq. (2) applied to Utρ(t )U †

t as well
as the contribution Utρ(t )U †

t itself. Finally, expanding also
the Uk−1,k up to first order in δt , gives rise to a Lindblad
operator which has the form of Eq. (2), with Hamiltonian
H = ∑

k hk−1,k and jump operator Jk = √
γ σ−

k .
Emergent collective many-body behavior. Having shown

that QNNs effectively implement open quantum dynamics,
we exploit this connection to investigate emergent quantum
many-body behavior in large-scale QNNs. To this end, we
focus on a scenario in which critical behavior associated
with an NEPT can be observed. We achieve this by consid-
ering a Hamiltonian with hk,k+1 = �(σ y

k nk+1 + nkσ
y
k+1) and

σ y = −i|•〉〈◦| + H.c., which establishes coherent oscillations
between the two states of a given site only if at least one
of the neighboring sites is in state |•〉, e.g.. |◦•〉 ↔ |••〉, a
process which can be interpreted as quantum branching and
coagulation. The reason for this choice is that, in combina-

FIG. 2. Mean-field phase diagram: (a) Mean-field estimate for
the stationary value of 〈n〉. To estimate the critical line, the gradi-
ent along each p1 slice was calculated, and the point of maximum
absolute gradient taken as the estimate for the critical p2 value. The
transition is estimated to be continuous when this gradient is below
a threshold, set here to 10 (the number of sampling points in the
p2 direction is 2001), and discontinuous otherwise. The separating
“transition point” is indicated by a red circle. (b) Two slices are
shown for p1 = 0.2, 0.8. For these, the mean-field equations were
iterated over T = 10 000 steps. For p1 = 0.2, one can clearly observe
a discontinuity in the stationary value of 〈n〉.

tion with local decay, it gives rise in the small δt limit to
the so-called quantum contact process (QCP), theoretically
studied in Refs. [14,16], and recently experimentally explored
in Ref. [44]. The ensuing dynamics displays an NEPT into
an absorbing state (with all sites in |◦〉) and emergent critical
behavior influenced by quantum effects [14]. Due to univer-
sality, this phase transition also emerges when δt is not small,
which is certainly the case in a generic QNN, where the gates
Gk,t implement discrete updates.

To systematically analyze this model, we reparametrize
it as follows: θ = arcsin(p2), with p2 = sin2(

√
γ δt/2) and

�δt = (1/
√

2) arcsin
√

p1. The two real parameters p1, p2 ∈
[0, 1] can be interpreted as probabilities associated with the
transitions |◦•〉 ↔ |••〉 due to the coherent branching and
coagulation, and with the local decay |•〉 → |◦〉, respectively.
The continuous-time dynamics in Eq. (2) is then reproduced
by Eq. (1) when taking p1, p2 → 0, for which δt → 0.

Mean-field analysis. To investigate how quantum effects
manifest in emergent behavior of large-scale QNNs, we study
the stationary behavior of the associated QCA and look for
signatures of NEPTs and critical behavior. We first derive the
stationary phase diagram through a mean-field analysis, which
allows us to gain insight on its overall structure [18,19,21] (see
[38] for details).

In Fig. 2(a) we show the mean-field phase diagram. When
p2 is sufficiently large (large decay probability), the state
ρ(t ) converges towards a stationary one with zero density
of sites in the state |•〉, i.e., 〈n〉 = 0. This phase is known
as absorbing phase. On the other hand, for sufficiently small
p2, the stationary density 〈n〉 can be finite, 〈n〉 > 0. This
establishes the existence of an active phase. The phase tran-
sition between these two regions appears discontinuous when
p1 � 0.66 and continuous otherwise [see Fig. 2(b)]. When
p1 = 1, the mean-field equation for the density of occupied
sites can be explicitly solved [38] giving solutions 〈n〉 = 0 as

L022102-3



GILLMAN, CAROLLO, AND LESANOVSKY PHYSICAL REVIEW E 107, L022102 (2023)

well as

〈n〉 = 3

2
+ 1

p2 − 1
. (7)

This second solution vanishes continuously approaching
p2 → 1/3 from above. This behavior is similar to that ex-
pected from a (mean-field) NEPT in the DP universality class,
which is displayed by the CCP, i.e., the classical version of the
contact process in which branching and coagulation occur as
incoherent nonreversible processes.

These findings show that a large QNN can indeed dis-
play emergent collective behavior akin to that of an NEPT.
For p1 = 1, it appears that the QNN/QCA, as constructed
here, exhibits classical collective behavior. However, reducing
the value of p1 changes the nature of the phase transition
phenomenology, from a continuous to a first-order one. A
similar phenomenon was identified in an open quantum con-
tact process model with competing classical (incoherent) and
quantum (coherent) branching and coagulation [11]. There,
the discontinuous mean-field transition turns out to in fact be
a continuous NEPT whose universal exponents are different
from DP due to quantum effects [14]. This suggests that
quantum fluctuations indeed can impact on the processing of
information and concomitant collective effects in QNNs.

Tensor-network analysis. To confirm that tuning p1 indeed
changes the NEPT, we employ (nonperturbative) TN methods.
The approach taken here follows that of Ref. [21], and directly
approximates the evolution of ρ(t ) in a vectorized representa-
tion. We consider an initial state with all sites in |•〉 and the
evolution of the density 〈n〉 up to T = 100 time steps.

The first task is to estimate the position of the critical
line separating the active phase and the absorbing phase. To
this end, we take two different approaches, both exploiting
that 〈n(t )〉 obeys a power-law behavior in time on the critical
line. This means that, at criticality, 〈n(t )〉 ∼ t−α , where α is
a dynamical exponent characterizing the universal behavior
of the model. Details on the methods employed are given
in [38].

As shown in Fig. 3, the TN phase diagram qualitatively
agrees with the mean-field one, although the active phase
seems to extend to higher values of p2 in the latter case. In
order to gain insights on the critical behavior of the model,
we analyze the critical exponent α by investigating the be-
havior of the effective exponent α(t ) = − log2〈n(2t )〉/〈n(t )〉.
The latter becomes constant for exact power laws, in which
case it further provides an estimate for α (see Ref. [38] for
details).

As shown in the inset of Fig. 3, while the precise estimation
of α and associated errors is challenging, for p1 � 0.5, the
obtained value of the exponent always lies far from the 1D DP
value αDP ≈ 0.16, and is in fact close to that of the 1D QCP,
αQCP = 0.32 [14]. This suggests that, despite being far from
the continuous-time limit, the dynamics displays the same
critical behavior as the QCP and, unlike the CCP, does not fall
into the DP universality class. However, as shown in the inset,
errors, particularly due to finite-size effects, increase with p1

and determining the universality class in this regime becomes
more and more challenging. It is therefore difficult to reliably
estimate a particular location where the universality class
changes from that of the QCP to DP. This issue is compounded

Active Phase

Absorbing Phase

FIG. 3. Tensor-network phase diagram: The density 〈n〉 is esti-
mated by evolving ρ(t ) over T = 100 steps, with a bond dimension
of χ = 512, lattice size of L = 128, and starting from a fully occu-
pied state. The critical line shown in green (triangles) is estimated by
taking the average of two estimates, one using linear fits of 〈n(t )〉 in a
log-log scale, and another using an effective exponent α(t ) (see [38]
for details). The error bars combine the two errors on these estimated
values of p2 (each induced by the resolution of the parameter grid).
The inset shows the corresponding critical exponents (green trian-
gles), obtained by averaging α(t ) over t ∈ [80, 100]. Errors occurring
on each effective exponent separately are indicated by the error bars
and involve contributions from finite sizes, finite bond dimensions,
and finite parameter grid resolutions [38]. As can be seen, errors
tend to increase with p1. To gain a higher accuracy estimate of the
exponent for p1 = 1, the procedure was repeated with L = 256 (blue
square in the inset). The dotted (dashed) line shows the exponent α

expected for the DP (QCP) universality class.

by the suggestion that, in fact, due to the competition between
quantum and classical effects, the dynamical exponent may
even vary continuously [16]. As such, we here consider the
extreme point p1 = 1 and run a finer parameter scan with a
larger system size to reduce errors. The resulting estimate for
the critical exponent lies very close to that of 1D DP (cf. inset
of Fig. 3), indicating that indeed the universality class must
change at some point, as suggested by the mean-field analysis.

Summary and outlook. We have established a connection
between perceptron-based QNNs and (1 + 1)D QCA, which
emerge as natural generalizations of CCA for the study of
quantum nonequilibrium processes. This connection allows
the processing of information in QNNs to be linked to many-
body quantum dynamics. We have introduced a class of highly
structured few-parameter QNN architectures, suitable, e.g.,
for applications to QML for nonunitary dynamics, and shown
how these can encode continuous-time open quantum dynam-
ics in a certain limit. By building on the quantum and classical
versions of the contact processes—many-body systems whose
collective properties are altered by quantum effects—we
demonstrated that indeed universal (detail-independent) dy-
namical properties of information processing in QNNs can
quantitatively change by the prevalence of quantum fluctu-
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ations. A natural future avenue for investigation is into the
trainability of the class of QNNs introduced here, and the
establishment of performance benchmarks for QML tasks
such as nonunitary dynamics learning. Such studies can be
conducted, e.g., within the recently introduced TensorFlow
Quantum programming framework [34]. Furthermore, with
recent studies examining the scaling of quantum correlations
during NEPTs in model architectures such as the one pre-
sented here [21], the present work also provides a promising
foundation for investigating the relationship between quantum
correlations and performance on information processing tasks
in QNNs more generally.
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