
PHYSICAL REVIEW E 107, L013001 (2023)
Letter

Self-healing solitonic slip pulses in frictional systems
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A prominent spatiotemporal failure mode of frictional systems is self-healing slip pulses, which are propa-
gating solitonic structures that feature a characteristic length. Here, we numerically derive a family of steady
state slip pulse solutions along generic and realistic rate-and-state dependent frictional interfaces, separating
large deformable bodies in contact. Such nonlinear interfaces feature a nonmonotonic frictional strength as
a function of the slip velocity, with a local minimum. The solutions exhibit a diverging length and strongly
inertial propagation velocities, when the driving stress approaches the frictional strength characterizing the
local minimum from above, and change their character when it is away from it. An approximate scaling theory
quantitatively explains these observations. The derived pulse solutions also exhibit significant spatially-extended
dissipation in excess of the edge-localized dissipation (the effective fracture energy) and an unconventional edge
singularity. The relevance of our findings for available observations is discussed.
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Introduction. Compact spatiotemporal structures in driven
dissipative systems, featuring long-range interactions, are of
prime importance in a wide variety of physical systems [1,2].
A prominent example is frictional systems, composed of two
deformable bodies in contact along a frictional interface, e.g.,
a geological fault in the earth’s crust. When driven exter-
nally, interfacial slippage commences, accompanied by partial
contact rupture and frictional strength reduction. This failure
process—e.g., a propagating earthquake—is intrinsically in-
homogeneous and often takes the form of spatially-compact,
solitonic slip pulses [3–24]. In particular, it was shown that the
duration of slip at a point on a fault is significantly shorter than
the overall rupture duration, indicating its spatially-compact
nature.

Slip pulses are self-healing in nature [5]. They feature
significant strength reduction near their leading edge that
invades a nearly quiescent, nonslipping interfacial state, but
also strength recovery at their trailing edge, involving in-
terfacial healing. Consequently, they feature a characteristic
slipping length L over which nearly stationary contact is re-
covered. The trailing edge healing/restrengthening process is
intimately related to the nonequilibrium nature of frictional
interfaces, which undergo contact aging under nominally qui-
escent conditions [25–31]. Between the two edges, pulses
feature finite slip velocities v. Numerous geophysical obser-
vations, laboratory experiments, and numerical simulations
demonstrated that driven frictional systems can spontaneously
generate long-lived, self-healing slip pulses [3–24]. Yet,
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understanding the existence and properties of such self-
healing pulses remains incomplete and challenging.

The problem involves a coarse-grained interfacial consti-
tutive law, relating the frictional strength τ (v, . . .) to the slip
velocity v and to a set of internal state fields represented by
the ellipsis [28,30,32–34]. These describe the spatiotemporal
structural state of the interface, corresponding to an evolving
ensemble of contact asperities, and play the role of nonequi-
librium order parameters. τ (v, . . .) is intrinsically nonlinear
and accounts for significant energy dissipation. The nonlinear
and dissipative interfacial constitutive law is coupled to the
elastodynamic deformation of the bodies forming the inter-
face, implying that distant parts of the interface are coupled
by long-range spatiotemporal elastic forces. Finally, frictional
systems are typically driven externally by far-field forces, e.g.,
a homogeneous shear stress τd.

Considering two large and identical linear elastic bodies
in frictional contact, described by a spatial coordinate x, and
focusing on objects propagating steadily at a velocity cp, the
interplay between the various physical ingredients discussed
above is encapsulated in the following nonlinear integral
equation [35]

τ [v(ξ ), φ(ξ )] = τd − μF (β )
∫ ∞

−∞

v(z)

z − ξ
dz, (1)

where ξ =x − cpt in a comoving coordinate (t is time).
τ (v, φ) is the frictional strength that depends, in addition to v,
also on the field φ(ξ ) that quantifies the amount of interfacial
contact. The dynamics of φ(ξ ) account for the competition
between contact aging and slip-induced rejuvenation, to be
discussed below.

τ (v, φ) equals the interfacial shear stress, corresponding to
the right hand side of Eq. (1). It is composed of the external
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driving shear stress τd and of a weighted integral over the slip
velocity field v(ξ ), which represents the long-range elasto-
dynamic interaction between different parts of the interface.
μ is the shear modulus of the bodies and F (β ) is a known
function that accounts for material inertia, where β ≡cp/cs

is the dimensionless propagation velocity and cs is the shear
wave speed of the bodies.

Steady state pulse solutions to Eq. (1) are those that satisfy
the self-healing boundary conditions v(ξ →±∞)→0, i.e.,
solutions that feature a spatially compact v(ξ ). In this Letter,
we numerically derive a family of such solutions for a generic
and physically realistic interfacial constitutive law τ (v, φ)
[28,30,32–34,36]. We thoroughly analyze the properties of the
emerging slip pulses and theoretically explain them. Finally,
the relevance of our findings for available observations is
briefly discussed.

The interfacial constitutive law. Eq. (1) constitutes a well
defined problem once τ (v, φ) and the evolution equation for
φ(ξ ) are specified. Over the last few decades, it has been
established that the local contact area at frictional interfaces,
which is typically orders of magnitude smaller than the nom-
inal contact area, grows with the stationary contact (v→0)
time t proportional to ln(1 + t/φ∗), where φ∗ is the contact
aging onset time [25–31]. Contact aging leads to frictional
strengthening and is described by an internal state field φ of
time dimension, which identifies with t for v→0. Conversely,
under steady sliding conditions at a slip velocity v, φ is
proportional to 1/v [31], leading to contact rejuvenation and
frictional weakening. The transition between the two regimes
occurs over a characteristic slip distance D. These observa-
tions are accounted for by [28,30,34]

−β cs ∂ξφ(ξ ) = 1 − |v(ξ )|φ(ξ )

D
(2)

in terms of the comoving coordinate ξ .
The dimensionless frictional strength f (v, φ)≡τ (v, φ)/σ ,

where σ is the normal stress that presses the two bod-
ies together, incorporates the contact area φ dependence
and an additional logarithmic rheological dependence on v

[28,30,32–34,36], as presented in detail in [37]. Under steady
sliding conditions, where Eq. (2) implies φ=D/v, the steady
sliding friction curve τss(v)/σ = f (v, φ=D/v) features an N
shape, as demonstrated experimentally [36]. An example is
presented in Fig. 1, where τss(v) is velocity-strengthening
(dτss(v)/dv>0) at extremely small v, then it becomes loga-
rithmically velocity-weakening (dτss(v)/d ln(v)=const.<0),
and eventually logarithmically velocity-strengthening, beyond
the minimum of the curve at (vmin, τmin).

A family of steady state pulse solutions. Eqs. (1) and (2) cor-
respond to two space dimensions, i.e., translational invariance
along the interface in the direction perpendicular to x (the out-
of-plane direction) is assumed. Here, we focus on out-of-plane
shear (mode-III symmetry), where v(ξ ) is perpendicular to the
pulse propagation direction, and FIII (β )=

√
1 − β2/(2πβcs)

(which vanishes as β →1). The counterpart in-plane (mode-
II) solutions readily follow [37].

The self-healing boundary conditions, previously ex-
pressed as v(ξ →±∞)→0, take the form v(ξ →±∞)=
vstick, where vstick is an extremely low slip velocity (cf. Fig. 1).
Consequently, a pulse corresponds to a closed (homoclinic)

FIG. 1. τss (solid line, in units of the normal stress σ ) vs
v/vmin, featuring an N shape with a local minimum at (vmin, τmin )
(circle). For τd >τmin (e.g., the horizontal dashed-dotted line), the
equation τss(v)=τd features three solutions: the leftmost one (at
extremely low v) is denoted by vstick (square), the rightmost one is
denoted by vss (triangle), and an intermediate one on the velocity-
weakening branch (not marked). Two closed (homoclinic) orbits
(v(ξ ), τ (ξ )), representing self-healing slip pulses, are added (dashed
dotted line for τd/τmin =1.05 and the dashed line for τd/τmin =1.20).

orbit in the (v(ξ ), τ (ξ )) plane, which starts and ends at
(vstick, τd ). Two such closed orbits, for two different τd values,
are illustrated in Fig. 1.

We developed an accurate and robust numerical method to
solve Eqs. (1) and (2) with the self-healing boundary condi-
tions v(ξ →±∞)=vstick, as detailed in [37]. The formulated
problem admits a family of steady state self-healing pulse
solutions as a function of τd, a few of which are presented in
Fig. 2. In Fig. 2(a), v(ξ ) is presented, revealing a long healing
tail at the trailing edge and a strong slip velocity amplification,
by several orders of magnitude, near the leading edge.

In Fig. 2(b), the shear stress τ (ξ )—which equals the fric-
tional strength—is presented. τ (ξ ) attains a peak near the
leading edge, which is significantly larger than the driving
stress τd, attained far ahead of the pulse (to the right, full
relaxation is not shown. Note also that the peak value itself
is truncated in the figure). It then attains a minimum value,
which decreases with τd, but appears to converge to a value
τm that is close to τmin. Finally, τ (ξ ) slowly approaches τd

at the trailing edge, as the self-healing boundary condition is
satisfied. The obtained solutions are highly accurate, featuring
numerical convergence down to an error of O(10−15) and
remarkable robustness with respect to the integration domain
size [37].

The pulse length and propagation velocity: theoretical
considerations and scaling relations. We first focus on the
variation of the pulse properties with τd, most notably the
pulse length L and the dimensionless pulse propagation ve-
locity β. Note that the former does not appear in the problem
formulation, but is rather defined a posteriori.

Under certain conditions, we expect L—operationally de-
fined as the full width at half maximum of a logarithmic
representation of v(ξ ) [37]—to diverge at a spacial driving
stress τ∗. The physics here is that a steady state pulse may
sometimes be envisioned as composed of a cracklike rupture
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FIG. 2. (a) ln(v/vstick + 1) vs ξ (normalized by the elasto-
frictional length L0 [37]) for several pulse solutions traveling from
left to right at a velocity β(τd )cs. τd for each curve is indicated in the
legend in the inset, which presents the same results as the main panel,
but in linear scale (v is normalized here by vmin). Note that the y axis
in the inset is truncated and that the curves for the two largest τd’s
are not clearly discernible. (b) τ/τmin vs ξ/L0 for the same solutions
shown in panel (a). The minimal value τm of the three lowest τd

curves (horizontal dotted line) and τ∗ (horizontal dashed dotted line,
see Eqs. (3) and (4) and the discussion therein) are marked. (inset) A
zoom in on the two largest τd curves.

front—yet another prominent spatiotemporal mode of rupture
of frictional systems [22,38–43]—and a healing front, both
propagating in the same direction at the same velocity [20].
L is selected by the frictional interaction between these two
fronts. Steady state cracklike fronts are related to the right-
most solution of τss(v)=τd, denoted by vss in Fig. 1, where the
stable fixed-point vss invades the vstick fixed-point [20,40,44].
A healing front corresponds to the opposite/inverse situation,
where the nearly quiescent state vstick invades the sliding one,
vss [20].

If isolated steady state cracklike and healing fronts ex-
ist at the same propagation velocity at τd =τ∗, a pulse of
infinite extent (L→∞) can be constructed by simply su-
perimposing these two noninteracting fronts. This physical
picture was validated for frictional systems of small height
[20] and is expected to remain valid for the infinite height
systems considered here. It is relevant for pulses that probe
the velocity-strengthening branch of the friction curve, where

FIG. 3. β(τd ) (left y axis) and L(τd ) (right y axis, normalized by
μG∗

c/τ
2
min) of the obtained pulse solutions. We set G∗

c =0.65 J/m2,
previously obtained for the corresponding crack-like rupture [43].
The solid lines correspond to the theoretical predictions in Eqs. (3)
and (4), see text for details.

vss resides. This is demonstrated by the closed v−τ orbit
corresponding to τd/τmin =1.05 in Fig. 1. Consequently, we
expect the physical picture of pulses being viewed at interact-
ing cracklike and healing fronts to be valid for τd near τmin,
and L to diverge at τd =τ∗, which is very close to τmin (below
which vss does not exist anymore).

The existence of a minimum (vmin, τmin) of the friction
curve and of vss are by no means necessary conditions for
the existence of steady state pulses. These correspond to
closed v − τ orbits that start and end at (vstick, τd ), and do
not necessarily probe the minimum of the friction curve and
the velocity-strengthening branch near it. This is expected to
be the case for larger values of τd, away from the minimum
τmin, as is indeed demonstrated the closed v − τ orbit
corresponding to τd/τmin =1.2 in Fig. 1. In this regime, we
expect L to depend only mildly on τd. These expectations are
verified in Fig. 3 (right y axis), where L(τd ) is plotted and
observed to strongly increase with decreasing τd, possibly
consistent with a divergence as τmin is approached, and to
vary mildly with τd for larger values of τd. The corresponding
results for β(τd ) appear in Fig. 3 (left y axis), where β is
observed to become strongly inertial (β →1) for small τd and
quasistatic for larger values.

To understand the behavior of L(τd ) and β(τd ) with de-
creasing τd, near τmin, we first note that the rate dependence of
τss(v) in Fig. 1 is predominantly logarithmic, i.e., rather weak.
The recently developed theory of unconventional singularities
of frictional rupture [45,46] predicts that for weak rate depen-
dence the order of the edge singularity experienced by various
fields differs from the classical − 1

2 singularity of fracture
mechanics only mildly [45]. With this in mind, we explore the
possibility that some physical quantities approximately follow
scaling relations inspired by classical pulse solutions featuring
the classical − 1

2 edge singularity.
Classical pulses with Coulomb (rate independent) friction

[3] feature a length L, where inside the pulse τ (ξ )=τres (the
residual stress τres corresponds to a dynamic/sliding fric-
tion coefficient of magnitude τres/σ ) and out of it v(ξ )=0.
The transition from static Coulomb friction out of the pulse
to dynamic/sliding Coulomb friction inside is characterized
by a finite fracture energy Gc, associated with a cohesive
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zone slip of magnitude δc [3,47,48]. Formally, the bound-
ary condition τ (ξ )=τres inside the pulse is valid for slip δ

satisfying δ>δc (i.e., out of the cohesive zone). Solutions
featuring a − 1

2 power-law divergence near the leading edge
at ξp, and no divergence (but a discontinuous derivative) at the
trailing edge, take the form v(ξ )=v0

√
(L + ξp − ξ )/(ξ − ξp)

[3]. The slip velocity at the middle of the pulse, v0, sat-
isfies 2csβ =v0μ

√
1 − β2 (τd − τres )−1 and L satisfies πL=

μGc

√
1 − β2 (τd − τres)−2 [3].

These relations do not constitute a complete solution, as
they feature three unknowns—β, L and v0—and only two
constraints. However, as our rate-and-state pulses solutions
for τd near τmin involve a characteristic slip velocity vmin

(absent in the classical problem), we identify v0 with avvmin,
with av of O(1). Moreover, we identify the stress τres with
τ∗—the hypothesized stress at which L diverges—expected
to be very close to τmin. Finally, as we expect our pulses to
feature an effective fracture energy Gc that is similar to their
cracklike counterparts, we set Gc =aG G∗

c , with aG of O(1) and
G∗

c is the known cracklike value [43].
Taken together, we obtain

β = av

(
vmin μ

2τmin cs

) √
1 − β2

(τd/τmin − τ̃∗)
, (3)

L̃ ≡ τ 2
minL

μ G∗
c

= aG

√
1 − β2

π (τd/τmin − τ̃∗)2
, (4)

where L̃ is the nondimensionalized L and τ̃∗ ≡τ∗/τmin. These
predictions are quantitatively verified in Fig. 3 (solid lines),
with τ̃∗ =1.0087, av =1.15 and aG =0.69 [note that τ∗ is
distinct from τm, cf. Fig. 2(b)]. We thus conclude that the
approximate scaling relations in Eqs. (3) and (4), together
with the physical concepts and ideas incorporated into them,
properly describe our steady state pulses for τd near τ∗.

Energy dissipation and unconventional edge singularity.
The above analysis indicates that our pulses for τd close to
τ∗ (but not away from it) resemble in some respects clas-
sical pulses with Coulomb (rate independent) friction. Yet,
on general grounds, we expect the intrinsic rate (and state)
dependence of friction to make qualitative differences. To
highlight this, we consider the slip pulse energy budget, in
particular the local breakdown energy Ḡ(δ) [22]

Ḡ(δ) =
∫ δ

0
[τ (δ′) − τm]dδ′. (5)

Here δ(r)= (βcs)−1
∫ r

0[v(s) − vstick]ds (s increases from the
leading edge backward) is the slip accumulated by the pulse
and τm is the minimum of τ (ξ ) for τd close to τ∗, cf. Fig. 2(b).

For classical pulses, we have τm =τres and Ḡ(δ)=Gc for
δ>δc (recall that for classical pulses τ (δ)=τres for δ>δc),
independently of the driving stress τd, and hence also of β and
L. In Fig. 4, we present Ḡ(δ) of our solutions for τd close to
τ∗. It is observed that all curves overlap at small δ, indicating
the existence of a well defined effective fracture energy Gc

(and of δc [37]), corresponding to edge-localized dissipation.
The various curves fan out at Gc �0.6 J/m2, marked in Fig. 4
(in quantitative agreement with their cracklike counterparts,
see caption of Fig. 3 and [43]). For larger δ’s, the curves sig-
nificantly deviate from Gc (reaching values as high as ∼4Gc,
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FIG. 4. Ḡ(δ) of Eq. (5), normalized by Gc =0.6 J/m2, vs slip δ

normalized by δc =3.7×10−6 m, for τd’s as indicated in the legend.
The values of Gc and δc are extracted from the collapse of all curves
at small δ, as shown in Fig. S4 of [37]. Indeed, the different curves fan
out at Ḡ(δc )�Gc. (inset) A singularity analysis of the near leading-
edge fields, see legend and [37]. The singularity order of the fields
is �−0.45 (dashed line and scaling triangle), see text for additional
details.

attained for the smallest τd considered), revealing excess dis-
sipation that is distributed over the pulse length, which is
entirely absent in classical pulses.

A recently developed theory [45,46], mentioned above,
showed that such spatially-extended excess dissipation is as-
sociated with the existence of unconventional singularities,
i.e., with near leading edge fields featuring a singularity order
different from the classical − 1

2 one. For the logarithmic rate
dependence in Fig. 1, the singularity order deviation is pre-
dicted to be rather small, but the excess dissipation is large and
increases with L. To test these predictions, we simultaneously
fitted v(ξ ) behind the pulse leading edge (i.e., ξ <ξp in Fig. 2)
to v(ξ )∼ (ξp−ξ )ζ and τ (ξ ) ahead of the leading edge (i.e.,
ξ >ξp in Fig. 2) to τ (ξ )−τm ∼ (ξ−ξp)ζ , for the smallest τd

considered (largest L). The results are shown in the inset of
Fig. 4, where the singularity order is ζ �−0.45, which indeed
deviates from − 1

2 , as predicted. These results clearly demon-
strate that rate-and-state pulses reveal qualitative differences
compared to their classical counterparts.

Summary and outlook. We derived a family of steady state
self-healing (solitonic) slip pulses in frictional systems for
a realistic, experimentally supported, interfacial constitutive
law. The physical properties of the pulses have been thor-
oughly analyzed and theoretically explained. These results
are of general importance for understanding spatiotemporal
structures in driven nonlinear dissipative systems, featuring
long-range interactions, and in particular for understanding
the failure dynamics of frictional systems. For example, they
can lead to improved source time functions for seismic inver-
sion [24].

In the latter context, it is established that elasto-frictional
instabilities—where large amounts of stored elastic energy
are abruptly released—can spontaneously trigger long-lived
pulse-like rupture (i.e., propagating long distances without
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appreciably changing its properties). How do such dynam-
ically generated long-lived pulse-like ruptures relate to the
steady state pulse solutions derived here? To fully address this
question, one should first determine the dynamic stability of
the derived solutions (when steady state conditions are not
imposed), which is currently unknown. There are, however,
some indications that these solutions might be dynamically
unstable [5,20,21].

If true, then one can speculate that the growth rate of the
dynamic instability is small and hence while steady state pulse

solutions do not constitute a stable attractor (in the dynamical
systems sense), a frictional system can nonetheless reside for
rather long times near it. Addressing these important ques-
tions requires dynamical calculations, which is a challenge for
future investigations.
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