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Energy landscape design principle for optimal energy harnessing by catalytic molecular machines
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Under temperature oscillation, cyclic molecular machines such as catalysts and enzymes could harness energy
from the oscillatory bath and use it to drive other processes. Using an alternative geometrical approach, under fast
temperature oscillation, we derive a general design principle for obtaining the optimal catalytic energy landscape
that can harness energy from a temperature-oscillatory bath and use it to invert a spontaneous reaction. By driving
the reaction against the spontaneous direction, the catalysts convert low free-energy product molecules to high
free-energy reactant molecules. The design principle, derived for arbitrary cyclic catalysts, is expressed as a
simple quadratic objective function that only depends on the reaction activation energies, and is independent
of the temperature protocol. Since the reaction activation energies are directly accessible by experimental
measurements, the objective function can be directly used to guide the search for optimal energy-harvesting
catalysts.
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In stochastic thermodynamics, catalysts and enzymes can
be considered cyclic molecular machines [1–10]: The catalyst
undergoes a cycle of state changes to assist the conversion of
reactant(s) to product(s), and returns to its initial state. In a
stationary environment, the catalytic cycle reaches a nonequi-
librium steady state (NESS), driven by the thermodynamically
spontaneous reaction (�G < 0) to a biased direction.

In idealized stationary environments, molecular machines
can transduce free energy from one form to another [11–13].
By contrast, molecular machines in realistic time-varying en-
vironments can demonstrate unusual dynamical and thermo-
dynamic behavior beyond NESS. For example, a periodically
oscillating environment could drive a detailed-balanced sys-
tem to mimic a dissipative system [14,15]. Moreover, the
driving force provided by the time-changing environment
could drive enzymes or molecular complexes to function as
engines, ratchets, or pumps [16–28]. Also, periodically oscil-
lating temperatures could drive catalysts to alter the reaction
kinetics or even shift the equilibrium concentration [29–31].
These results indicate that catalysis could also demonstrate
unusual behavior in time-varying environments.

Many existing works on molecular ratchets focus on
their dynamics with a given fixed energy landscape
[10,22,27,28,32–40]. However, only recently has the optimal
design of the energy landscape for functional molecular ratch-
ets and pumps [41–44] been explored. This Letter focuses on
identifying a different regime of driven catalysis and the cor-
responding design principles of its optimal energy landscape.

Consider a catalyst and a chemical reaction whose forward
direction is always spontaneous for a continuous range of
stationary temperatures. If temperature oscillates within the
range, can the catalyst drive the reaction backward? If yes,
the catalyst harnesses environmental energy to convert low
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free-energy products to high free-energy reactants. Although
counterintuitive, this effect is similar to Parrondo’s paradox
[45], where a gambler can win a game by periodically switch-
ing between two losing strategies.

This Letter derives a universal objective function to find the
catalyst’s energy landscape that can maximally drive the reac-
tion against its spontaneous direction. The objective function
[Eq. (13)] is simply related only to the activation energies in
the catalytic cycle, shown as αi j in Fig. 1. Thus, this theory
is directly applicable to experimental selections of catalysts
or designing catalytic reaction pathways to achieve energy
harvesting.

Consider a general Markov model of the cyclic kinetics of
catalysis sketched in Fig. 1, as a single-loop catalytic pathway
consisting of N states. By completing a cycle, the reactant A is
converted into product B, and the catalyst returns to its initial
state. There are 2N transitions on the N-state cycle between
adjacent states whose rates follow the Arrhenius law,

Ri j = ri j,0 exp(−βαi j ), (1)

for state j to i. Here, β is the inverse temperature, and αi j is the
activation energy of the transition from j to i (see Fig. 1). The
temperature-independent prefactor ri j,0 can be proportional
to the concentration of the external molecule (A or B) if an
external molecule is absorbed in the transition.

The dynamics of the catalysis can be described by the
master equation

d �p
dt

= R̂(β ) · �p, (2)

where �p is a N-dim column vector characterizing the proba-
bility of each state, R̂(β ) is the transition rate matrix at given
inverse temperature β, the off-diagonal elements of R̂ are Ri j ,
and the diagonal elements are chosen such that each column
of R̂ sums to 0.
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FIG. 1. A general model of a catalyzed reaction, where the cata-
lyst undergoes a cyclic pathway consisting of N intermediate states
and 2N transitions. A and B represent the sets of reactants and prod-
ucts, which can join/leave the catalytic loop at arbitrary locations.
We choose a convention that the forward reaction goes clockwise.
The transition from j to i and its rate Ri j is illustrated by the energy
landscape

Throughout this Letter, we assume that the chemical bath
is infinitely large, so the chemical concentrations remain
constant. Then at a fixed temperature, this system reaches
a NESS, �pss where R̂(β ) · �pss = 0. Then the spontaneous
reaction’s rate is characterized by the net NESS probability
current,

Jss = R21 pss
1 − R12 pss

2 , (3)

where at NESS, the current is uniform across the loop, and
we choose to define it between states 1 and 2. In this work,
we choose the convention that clockwise (CW) current is
positive, corresponding to the forward reaction (A to B), and
the counterclockwise (CCW) current is negative. If the Gibbs
free energy of A is higher than B (GA > GB), the forward
reaction is spontaneous, leading to a positive NESS current
Jss > 0. The affinity, which is equal to the free-energy differ-
ence between A and B, determines the direction,

A ≡ β−1
∑
〈i, j〉

εi j ln Ri j = GA − GB = −�G, (4)

where �G is the free-energy change corresponding to the
forward reaction, and the

∑
〈i, j〉 sums over all of the 2N tran-

sitions from j to i on the loop. We have adopted the following
sign indicator of a transition from j to i:

εi j =
{

1 forward,

−1 backward.
(5)

If A > 0, the spontaneous reaction is forward, A < 0 back-
ward, and if A = 0, the system is at thermal equilibrium
without net reaction flow. In this Letter, we assume GA is
always greater than GB within the temperature range of inter-
est, and thus A > 0 and Jss > 0, and the spontaneous reaction
always goes forward (CW).

If the temperature nonquasistatically oscillates in time, the
chemical reaction is driven out of NESS. The system even-
tually reaches a time-periodic state (i.e., a periodic orbit in
probability space), �p(t + τ ) = �p(t ), where τ is the period of
temperature oscillation. There have been studies of the pe-
riodic states under periodic temperature modulation [29,30].
However, it is generally impossible to analytically solve the
dynamics for arbitrary systems or arbitrary reaction land-
scapes. To derive the generic design principle, in this Letter,

we consider the fast oscillation limit τ → 0 [46], where a
perturbation analysis [47] for small periods τ could reveal
an analytical solution of the periodic orbit shrinking into a
fixed point �p(t ) → �p∗, which leads to a general principle that
applies to arbitrary reaction energy landscapes. [See Supple-
mental Material (SM) Sec. I [48].] The fixed point �p∗ can be
considered as an effective NESS corresponding to an effective
rate matrix R̂∗,

R̂∗ · �p∗ = 0, (6)

where the effective rate matrix is merely the time average of
R̂(β(t )) over a period:

R̂∗ ≡ lim
τ→0

1

τ

∫ τ

0
R̂(β(t ))dt . (7)

At the fast oscillation limit, one can find the average current
by using �p ∗ and R̂∗ similar to that in Eq. (3):

J∗ = R∗
21 p∗

1 − R∗
12 p∗

2. (8)

In contrast to NESS, the affinity is no longer well defined since
the temperature is no longer a fixed constant. Here, without a
constant temperature, we introduce an dimensionless affinity,

Ã =
∑
〈i, j〉

εi j ln Ri j, (9)

where Ri j is not restricted to a fixed-temperature rate matrix
R̂(β ) but can also be defined for the effective rate matrix R̂∗.
At a constant temperature, the Ã calculated from a stationary
temperature rate matrix R̂(β ) can be related back to A by Ã =
βA(β ) = −β�G. When temperature rapidly oscillates, one
can define the effective dimensionless affinity Ã∗ by plugging
the effective rate matrix R̂∗ in Eq. (9).

Under oscillatory temperature, the direction of reaction
(the sign of J∗) is solely determined by the active driving
force Ã∗: If Ã∗ > 0, the reaction on average proceeds for-
ward (J∗ > 0); if Ã∗ < 0, the reaction on average proceeds
backward (J∗ < 0).

Thus, the goal of searching for a catalyst to invert a spon-
taneous reaction is formulated in terms of Ã∗: Consider a
spontaneous reaction where �G < 0, J (β ) > 0, and Ã(β ) >

0 for any temperature within a continuous range. When tem-
perature oscillates within the range, what catalyst facilitates a
negative Ã∗ < 0 (i.e., the reaction is inverted and J∗ < 0)?

In this Letter, based on the geometric properties of Ã, we
obtain a universal objective function, Eq. (13), to find the
optimal catalytic reaction inversion. Historically, geometry
has played important roles in thermodynamics. Gibbs first
used geometry to demonstrate the thermodynamic properties
within the space of state functions [49]. Recently, Crooks [50],
Ito [51,52], and Dong [53] have derived various general ther-
modynamic results by utilizing differential geometry within
various types of probability-distribution spaces.

Rather than working within a probability space,
this Letter focuses on the geometry in the 2N-
dimensional space consisting of kinetic rates: r =
(R21, R12, . . . , Rji, Ri j, . . . , R1N , RN1). According to Eq. (1),
the reaction rates are determined by both temperature β−1

and the catalytic energy landscape αi j’s. For any catalyst
specified by its energy landscape αi j’s, its kinetic rates r(β )
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FIG. 2. The 2N-dimensional design space of r =
(R21, R12, . . . , Rji, Ri j, . . . , R1N , RN1). The yellow β locus crossing
three points AOB is the set of r(β ) corresponding to a given energy
landscape at all possible inverse temperature β’s. The blue surface
represents a (2N − 1) manifold defined by Ã(r) = const that
contains point O. The gradient of Ã(r) at point O is shown as the
blue normal vector ∇Ã. When we consider temperature oscillation
between β1,2 = β0 ± �β, their corresponding rate matrices are
points A and B. The rate matrix at β0 is represented by point
O. The effective rate matrix R̂∗ corresponds to the midpoint D
between A and B. At infinitesimal temperature amplitude, the vector−→
OC = −→

OB − −→
AO becomes d2r/dβ2 in Eq. (11).

parametrized by inverse temperature β are illustrated by a
yellow β locus in Fig. 2.

Without losing generality, let us illustrate our theory using
a simple square-wave temperature oscillation between β1 and
β2 of equal time duration. At constant temperature, β1 (or β2),
the kinetic rate matrix R̂(β ) or equivalently r(β ) is illustrated
by the point A (or B) on the β locus in Fig. 2. Under fast
temperature oscillation, the effective rate matrix is simply the
arithmetic mean,

R̂∗ = R̂(β1) + R̂(β2)

2
, (10)

and is represented by point D, the midpoint between A and B
in the r space.

Recall that the generalized dimensionless affinity Ã(r) is
a function on the r space, and its sign dictates the direction
of averaged flow. By construction, within the range of β ∈
[β1, β2], the reaction free energy �G(β ) < 0 and Ã(r(β )) >

0. Typically, point D is not on the yellow locus r(β ). Thus
Ã(r) at point D can take a very different value than that on the
yellow locus. When Ã(r) < 0 at point D, the catalyst inverts
the reaction direction when temperature oscillates rapidly.

Geometrically, the catalyst is represented by a locus r(β )
in the r space. The analysis above allows us to characterize
the catalyst’s ability to invert the reaction by how much the
locus r(β ) curves toward the steepest descent direction (gra-
dient) of Ã(r). Notice this geometrical characterization is not
dependent on the specific protocol of temperature oscillation.

The qualitative geometrical argument above can be quan-
tified by two vectors. First, the bending of the β locus r(β )
can be characterized by the second-order derivative vector
d2r/dβ2 (see vector

−→
OC in Fig. 2). This curvaturelike vector

is the acceleration vector for the motion of point r(β ) as the β

varies. The entries of d2r/dβ2 are

d2Ri j

dβ2
= α2

i jRi j . (11)
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FIG. 3. Reaction rate (average probability current at periodic
steady state) vs temperature oscillation frequency f = τ−1 for
both the optimal energy landscapes for reaction inversion and en-
hancement, obtained for A = −�G = 1, αmax = 11, β0 = 0.9, and
�β = 0.3.

Second, the variation of Ã in the r space is characterized by
the gradient vector ∇Ã(r) (as the blue arrow in Fig. 2), whose
entries are

∂Ã
∂Ri j

= εi j

Ri j
. (12)

Combining the above, the catalyst’s ability to invert the reac-
tion direction is characterized by the inner product between
the second-order derivative vector d2r/dβ2 and the gradient
vector of Ã,

C({αi j}) = ∇Ã · d2r
dβ2

=
∑
〈i, j〉

εi jα
2
i j, (13)

which serves as a universal objective function to find the
optimal catalytic energy landscape that can achieve strong
reaction inversion.

An alternative derivation based on a finite-difference analy-
sis of temperature oscillation between β0 − �β and β0 + �β

is shown in Fig. 2 and the SM (see SM Sec. II [48]). Here,
C({αi j}) is directly proportional to �Ã, the difference of Ã of
R̂∗, and the NESS Ã(β0) at constant temperature β0,

�Ã ≡ Ã(R̂∗) − Ã(r(β0)) = C({αi j})
�β2

2
+ o(�β2). (14)

Due to the nice geometric properties of the constant-Ã(r)
manifold and the β locus [54], the Ri j from Eqs. (11) and
(12) cancels out, and the resulting objective function Eq. (13)
takes a simple quadratic form that only depends on the ac-
tivation energies of the catalyst αi j’s, and is independent of
the specific temperature protocol. For the same geometrical
reason, C applies to large-amplitude temperature oscillation
[see Fig. 4(b)].

The objective function C({αi j}) is directly accessible by
experiment via direct measurements of the activation energies
αi j’s. Thus, our result [Eq. (13)] provides an easy approach
to predict the arbitrary catalysts’ ability to invert reaction
direction under fast temperature oscillation.

For illustration, Fig. 3 demonstrates the frequency response
of the optimal three-state catalyst landscape ({αi j}) under
the following design constraints. First, we fix the reaction’s
free-energy change �G(β ) = −1 for all β’s. As a result, the
affinity must be constant A = −�G = 1 regardless of the
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FIG. 4. Objective function C and the scaled affinity change
2�Ã/�β2 for randomly generated energy landscapes under the
same set restriction with the optimization problem (A = −�G = 1,
αmax = 11, β0 = 0.9). The red and black crosses correspond to the
optimal energy landscapes for reaction inversion (minimizing C) and
enhancement (maximizing C).

choice of the catalyst. Second, we assume that the reaction
rate prefactor ri j,0’s are all fixed to be the same constant. By
doing so for any constant temperature,

A = −
∑
+

αi j +
∑
−

αi j = 1, (15)

where
∑

+ (or
∑

+) is the sum over all forward (or backward)
reaction transitions. Third, as we search for the optimal land-
scape (activation energies), we restrict the activation energies
of all 2N transitions in the range αi j ∈ [0, αmax]. Here, we
assume the reaction’s affinity is weaker than the maximum
allowed activation energy: A = 1 < αmax.

According to our result, to find the optimal catalyst with
the strongest driving force against spontaneous reaction under
temperature oscillation, one needs to minimize the objective
function

C =
∑
+

α2
i j −

∑
−

α2
i j, (16)

which is a simple quadratic minimization problem on a convex
set. For N = 3, the optimal solution of αi j’s are

αinv
+ =

(
2αmax − 1

3
,

2αmax − 1

3
,

2αmax − 1

3

)
, (17)

αinv
− = (αmax, αmax, 0), (18)

where αinv
+ are the activation energies αi j’s for the three for-

ward transitions and αinv
− are for the three backward transitions

(see SM Sec. IV [48]). The order of the three forward (or three
backward) αi j’s does not impact the result.

Beyond the fast oscillation limit, the optimal catalyst can
invert the reaction at finite frequency f ’s (see Fig. 3). At the
critical frequency f = fc, the reaction free-energy force �G
is completely stalled by inversion force from the catalyst, and
the reaction stops (Jperiod = 0); at larger frequency f > fc,
the catalyst’s driving wins over �G and reaction direction is
inverted (Jperiod < 0). At the fast oscillation limit f 
 1, we
can use the matrix tree theorem [55] to obtain from the ef-
fective rate matrix R∗ the effective current J∗ = (R∗

13R∗
32R∗

21 −
R∗

12R∗
23R∗

31)/κ , where κ > 0 (see SM Sec. III [48]). Thus the
sign of current J∗ is always the same as that of Ã∗.

It is worth pointing out that the objective function Eq. (13)
can be used toward an inverse effect of catalytic reaction

inversion, i.e., driving force enhancing. By maximizing
Eq. (13) (see SM Sec. IV [48]),

αenh
+ = (αmax, αmax, 0), (19)

αenh
− =

(
2αmax + 1

3
,

2αmax + 1

3
,

2αmax + 1

3

)
(20)

defines a reaction-enhancing catalyst that optimally enhances
the spontaneity of a reaction. The reaction current enhanced
at various frequencies f is shown in Fig. 3.

Even though C [Eq. (13)] is obtained from the local cur-
vature, due to nice geometric properties of Ã(r) and r(β ),
it remains a good optimization objective function even for
large-amplitude temperature oscillations (e.g., for β0 = 0.9,
�β = 0.3). We demonstrate that for both small and large am-
plitudes, C is approximately linearly correlated to the change
of thermodynamic driving force. The linear correlation is
shown in Fig. 4 for both small �β = 0.05 and large �β = 0.3
by scatter plots of 104 points. Each point is obtained from
one randomly generated energy landscape {αi j}. Notice in
the small-amplitude limit, �β � 1, C is equal to 2�Ã/�β2

[Eq. (14)]. The optimal catalysts for reaction inversion and
enhancement (obtained by minimizing and optimizing C) are
highlighted as red and black crosses, appearing at the two ends
of both scatter plots.

At stationary temperature, kinetic intuition may argue that
the higher the activation energy, the slower are the correspond-
ing transition rates. However, when temperature oscillates, our
theory indicates that a big variation in the activation energies
of the inverse reaction direction and mild activation energies
of the forward reaction direction could suppress the forward
reaction and favor the inverse direction. Moreover, design-
ing the catalytic reaction inversion suffers from a trade-off
relation between strength and speed. Strong inversion (large
|�Ã|) favors the choice of larger activation energies (larger
αi j), which impedes the net reaction current.

In conclusion, this Letter demonstrated a geometric ap-
proach to derive the general design principle of optimal
oscillatory-driven catalysis. In this regime, we demonstrate
catalysts that can harness energy from an oscillatory-
temperature bath and utilize the energy to enhance or invert
a spontaneous reaction. The design principle is formulated by
an objective function Eq. (13), which only depends on the ac-
tivation energies of the energy landscape in a quadratic form.
Due to the nice geometric properties of the thermodynamic
driving force Ã, the objective function is independent of the
temperature protocol. Moreover, this result obtained from the
fast oscillation limit can still be used to invert spontaneous
reactions at finite-frequency temperature oscillation. Since
activation energies are accessible in the experimental study of
reaction mechanisms, this result could be experimentally ver-
ified and directly used to guide the design of useful catalysts
for energy harnessing.
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gradient of Ã and the acceleration vector of the β locus has
an elementarywise inverse dependence on Ri j .

[55] J. Schnakenberg, Network theory of microscopic and macro-
scopic behavior of master equation systems, Rev. Mod. Phys.
48, 571 (1976).

L012102-6

https://doi.org/10.1103/PhysRevE.99.012119
https://doi.org/10.1021/acs.chemrev.9b00254
https://doi.org/10.1021/acs.jpcb.7b10621
https://doi.org/10.1038/47220
https://doi.org/10.1073/pnas.1406122111
http://link.aps.org/supplemental/10.1103/PhysRevE.107.L012102
https://doi.org/10.1063/1.3023366
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.121.030605
https://doi.org/10.1103/PhysRevResearch.3.013175
https://doi.org/10.1103/PhysRevLett.128.230603
https://doi.org/10.1103/RevModPhys.48.571

