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Large deviations of a tracer position in the dense and the dilute limits of single-file diffusion
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We apply the macroscopic fluctuation theory to analyze the long-time statistics of the position of a tracer in the
dense and the dilute limits of diffusive single-file systems. Our explicit results are about the corresponding large
deviation functions for an initial step density profile with the fluctuating (annealed) and the fixed (quenched)
initial conditions. These hydrodynamic results are applicable for a general single-file system and they agree with
recent exact results obtained by microscopic solutions for specific model systems.
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Introduction. A one-dimensional interacting many-particle
system with a restriction that particles cannot bypass each
other is called a single-file system. Due to the single-file con-
straint, a large displacement of an individual particle needs to
push surrounding particles in the same direction (see Fig. 1).
This caging effect leads to nontrivial transport properties.
Most notably, a tracer particle follows subdiffusion with a
diffusivity that is sensitive to the initial condition even at
large times [1–3]. In general, for large times, the subdiffusion
corresponds to the fractional Brownian motion with Hurst
exponent H = 1/4 [1,3,4].

The single-file system was introduced more than 60 years
ago as a model to describe ion transport through cell mem-
branes [5]. Since then a wide variety of physical, chemical,
and biological processes have been described using single file
motion: Molecular diffusion inside a porous zeolite medium
[6,7], water transport inside carbon nanotube [8], sliding of
large protein molecules inside DNA [9], and transport of ions
through super-ionic conductors [10] are just a few such exam-
ples.

The subdiffusive nature was first theoretically shown by
Harris [11] for Brownian point particles with hard-core repul-
sion and subsequently demonstrated in experimental systems
[8,12–15]. There have been numerous attempts [16–19] to
extract the statistics of tracer position in general single-file
systems with arbitrary interaction. Most general results are
available for the mean and the variance of the tracer position.
Calculation of all the cumulants, equivalently the cumulant
generating function (CGF) of tracer position in general single-
file systems is still a challenging open problem.

A remarkable exact result for the tracer-CGF is in the
single-file system of symmetric exclusion process where the
result was derived by a solution of the microscopic dynamics
for a fluctuating (annealed) initial state [20,21]. There are
no analogous results available for general single-file systems.
For a fixed (quenched) initial state of the symmetric exclu-
sion process, there are exact results for half-filling [3] and
for the high-density limit, [22]. The low-density limit of the
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symmetric exclusion process corresponds to the hard-core
Brownian particles, which was exactly solved [2,16].

In this Letter, we present a unified approach for several of
these earlier model-specific results [20,22,23] and generalize
them for a larger class of systems. This approach is based on a
perturbation solution of a fluctuating hydrodynamic theory [2]
in the low and high-density limit. Our main results are about
an exact expression for the CGF in a generic diffusive single-
file system in the two limits for both annealed and quenched
initial settings.

The fluctuating hydrodynamic approach in [2] is an appli-
cation of the macroscopic fluctuation theory (MFT) [24–28]
that was developed two decades ago and extends the Onsager-
Machlup theory [29] for far-from-equilibrium states. The
theory is defined in a macroscopic scale where all microscopic
details are embedded in a finite number of transport coeffi-
cients. For the diffusive single-file systems that we consider,
the mobility σ (ρ) and the diffusivity D(ρ) are the relevant
transport coefficients [2,28] which are functions of the locally
conserved macroscopic density of particles ρ(x, t ). In this
approach, the problem of calculating the CGF of tracer posi-
tion in a single-file reduces to a variational problem, which is
hard to solve in general [2]. Recently, there has been remark-
able progress in exact solutions [21,30–32] of the variational
problem for related observables. These solutions based on
integrability techniques are a tour de force, but specific to the
models and the observables concerned. For generic transport
coefficients, a solution of the variational problem still remains
intractable except for the specific boundary condition related
to the CGF of currents [33].

We show that for the tracer diffusion the variational prob-
lem can be systematically approached using a perturbation
expansion in density. To the leading order, we get the CGF
in the dilute and the dense limits for a generic single-file
diffusion. For the special case of the symmetric exclusion
process, our results agree with the expression of CGF obtained
by microscopic solutions [20,22,23].

Besides generality, the hydrodynamic approach gives addi-
tional information about how the surrounding density profile
is correlated with the tracer displacement, which is recently
reported using exact microscopic calculations [21,34].
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FIG. 1. A realization of a single-file system where particles con-
fined in a narrow channel are constrained such that no particle can
cross each other. The red particle denotes a tracer in the bath of
identical other particles (blue).

Hydrodynamic formulation. In a coarse-grained descrip-
tion, time evolution of density field ρ(x, t ) in a single-file
diffusion is given [2,28] by the fluctuating hydrodynamics
equation

∂tρ = −∂x j with j = −D(ρ)∂xρ +
√

σ (ρ) η, (1)

where η(x, t ) is a zero-mean Gaussian noise with covariance
〈η(x, t )η(x′, t ′)〉 = δ(x − x′)δ(t − t ′). Here ρ(x, t ) is the di-
mensionless occupied-volume-fraction. A local equilibrium
condition relates the two transport coefficients to the free
energy density f (ρ) by a fluctuation-dissipation relation
2D(ρ) = σ (ρ) f ′′(ρ) [35]. Displacement of a tracer Xt at time
t is related to the density field by the single-file constraint [2]∫ Xt

0
dx ρ(x, t ) =

∫ ∞

0
dx (ρ(x, t ) − ρ(x, 0)), (2)

where the tracer is assumed to be initially at the origin. This
relation (2) gives the tracer position Xt as a functional of
the history of density ρ(x, t ). Different noise realizations of
η(x, t ) in Eq. (1) generate different histories for ρ(x, t ), which
in turn results in different displacements of the tracer. Proba-
bility weight for a history of ρ(x, t ) is given by an action,
which comes straightforwardly following the Martin-Siggia-
Rose-Janssen-de-Dominicis (MSRJD) formalism [2,35,36]
for Eq. (1). The additional source of stochasticity comes from
initial state. Considering probability of density fluctuations in
the initial state P(ρ(x, 0)) ∼ e−F (ρ(x,0)) (the ∼ denotes leading
dependence in the hydrodynamic scale), the generating func-
tion 〈eλXT 〉 of the tracer position at time T can be expressed as
a pathintegral [2]

〈eλXT 〉 =
∫

D[ρ, ρ̂] e−ST [ρ̂,ρ], (3)

where ρ̂(x, t ) is the MSRJD response field and the action

ST [ρ̂, ρ] = − λXT [ρ] + F [ρ(x, 0)] +
∫ T

0
dt

∫ ∞

−∞
dx

×
(

ρ̂ ∂tρ − σ (ρ)

2
(∂xρ̂ )2 + D(ρ)(∂xρ)(∂xρ̂ )

)
.

(4)

For the action to be meaningful we assume that ρ and ρ̂ vanish
at x → ±∞, which does not affect the tracer statistics at
finite T .

A rescaling of the spatial coordinate by
√

T and time by
T , shows that ST is proportional to

√
T . Then for large T , the

path integral in (3) is dominated by the path (ρ̂, ρ) ≡ (p, q)
that minimizes the action and the cumulant generating func-
tion μ = ln〈eλXT 〉 of the tracer for large time T is given by neg
ative of the minimal action. A variational calculation gives the

least-action path as a solution of [2]

∂t p + D(q)∂xx p = −σ ′(q)

2
(∂x p)2

∂t q − ∂x(D(q)∂xq) = −∂x(σ (q)∂x p),
(5)

with appropriate boundary conditions that depend on the ini-
tial state.

To illustrate an unusual long-time memory effect for the
single-file transport, two types of initial states are usually
studied [1,2]. For the annealed case the initial state is in
equilibrium, with [2,35]

F (ρ(x)) =
∫ ∞

−∞
dx

∫ ρ(x)

ρ̄(x)
dr

2D(r)

σ (r)
(ρ(x) − r), (6)

where ρ̄(x) is the mean-density profile of the initial state. In
this case, the boundary conditions are on the field p(x, t ),

p(x, 0) = −λ
δXT

δq(x, 0)
+ δF

δq(x, 0)
,

p(x, T ) = λ
δXT

δq(x, T )
.

(7)

A quenched setting corresponds to the case where the ini-
tial density profile is fixed at the mean-density ρ̄(x) and no
fluctuations are allowed. In this case F (ρ(x, 0)) = 0 and the
boundary conditions are

q(x, 0) = ρ̄(x) and p(x, T ) = λ
δXT

δq(x, T )
. (8)

The names annealed and quenched are inspired by sim-
ilar ensembles in disordered systems [37]. In analogy with
the partition function in spin glass we define the annealed
CGF μA = ln〈eλXT 〉history+initial and the quenched CGF μQ =
〈ln〈eλXT 〉history〉initial where the initial profile is analogous to
disorder. In the latter definition, the logarithm being a slowly
varying function compared to e−F (ρ), contribution to 〈〉initial

is dominated by the mean-profile ρ̄(x) and this justifies our
choice for the fixed initial density in the variational formula-
tion for the quenched case.

For both initial settings, the minimal action reduces to a
simple expression [2]

ST [p, q] = −λY + F (q(x, 0)) +
∫ T

0
dt

∫ ∞

−∞
dx

σ (q)

2
(∂x p)2,

(9)
with Y ≡ XT [q] for the least action path. A solution of the
least-action path (5) with appropriate boundary conditions and
the appropriate F [ρ] function gives the CGF μ 
 −ST [p, q]
for large T in the corresponding ensemble.

An explicit solution for the least-action path (5) for arbi-
trary D(ρ) and σ (ρ) is not available. A perturbation solution
in λ is possible [2] which leads to first few moments of tracer
position, but not the CGF. We take an alternative avenue
by treating density as a perturbation parameter, which gives
the CGF as a series in density. We consider two cases, the
dilute and the dense limit, and determine the CGF for general
singlefile in both annealed and quenched settings.

Although the hydrodynamic formulation is applicable to
an arbitrary initial profile, we consider an example of step
density profile ρ̄(x) = ρa�(−x) + ρb�(x), which has been
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frequently studied for tracer diffusion [20,22,23,38]. For ρa �=
ρb, the bulk of the system evolves towards an asymptotic equi-
librium effectively biasing the tracer in one direction. For the
annealed setting, the two halves of the system are initially in
equilibrium at different densities, and they are joined together
for t > 0.

Dense limit. The density in (1) is the dimensionless
occupied-volume-fraction with a maximum value of one.
For a simple exclusion process, ρ(x)dx gives the fraction
of occupied sites in a hydrodynamic length between x and
x + dx. In the limit where ρa and ρb are close to value one,
there are very few number of vacant spaces in the single-
file. In this limit the transport coefficients D(ρ) 
 D(1), and
σ (ρ) 
 (ρ − 1) σ ′(1). [Vanishing mobility for ρ → 1 can be
understood from the fluctuation-dissipation relation 2D(ρ) =
σ (ρ) f ′′(ρ), and that in the dense limit leading contribution
to the free energy density f (ρ) comes from the positional
entropy of voids.]

We consider an expansion for the least-action path, q =
1 + q1 + q2 + · · · and p = p0 + p1 + p2 + · · · , where the
subscript denotes the order in 1 − ρ. To leading nontrivial
orders the least-action path in Eq. (5) follows

D(1)−1∂t p0 + ∂xx p0 = −α(∂x p0)2,

D(1)−1∂t q1 − ∂xxq1 = −2α∂x(q1∂x p0), (10)

where α = σ ′(1)/2D(1). We shall see that solution at this
order is sufficient for determining the leading term in the CGF.

A canonical transformation [39] P = eαp0 and Q =
q1e−αp0 reduces the equations (10) to a decoupled diffusion
and an antidiffusion equation which are easy to solve, leading
to a general solution

eαp0(x,t ) =
∫ ∞

−∞
dz eα p0(z,T ) gT −t (z − x), (11a)

q1(x, t ) =
∫ ∞

−∞
dz q1(z, 0) e−α(p0(z,0)−p0 (x,t )) gt (z − x),

(11b)

with the diffusion kernel

gt (x) =
exp

(
− x2

4D(1)t

)
√

4πD(1)t
. (12)

(a) Quenched case. For the quenched case, perturbation ex-
pansion of the boundary condition in Eq. (8) gives q1(x, 0) =
ρa�(−x) + ρb�(x) − 1, and p0(x, T ) = λ�(x), where we
used an expansion XT [q] ≡ Y = Y1 + · · · . (Vanishing of Y0

is understood from the absolute confinement of tracer in the
fully packed limit.) Expanding Eq. (2) we get

Y1 =
∫ ∞

0
dx(q1(x, T ) − q1(x, 0)) (13)

and with this a perturbation expansion of Eq. (9) gives the
leading order term of the CGF

μQ(λ) 
 λY1 − σ ′(1)

2

∫ ∞

−∞
dx q1 (∂x p0)2, (14)

where we used F [q] = 0. The expression is further simplified
[40] to

μQ(λ) 
 − (1 − ρb)
∫ ∞

0
dx (p0(x, 0) − λ)

− (1 − ρa)
∫ ∞

0
dx p0(−x, 0), (15)

by using (13), an identity

(1/2)σ ′(1)q1(∂x p0)2 = ∂t (q1 p0)

+ ∂x[D(1)(q1∂x p0 − p0∂xq1)

+ σ ′(1)q1 p0∂x p0] (16)

that comes from Eq. (10), and by using the vanishing q1 and p0

at x → ±∞. An explicit expression for the CGF in Eq. (15)
is then obtained by using the solution for p0(x, 0) in (11a) for
the quenched boundary condition, which gives

μQ(λ) 
 −
√

4D(1)T

α
RQ(0, αλ|1 − ρa, 1 − ρb) (17a)

in the dense limit, where

RQ(y, b|r, s) = r
∫ ∞

y
dξ ln

[
1 + eb − 1

2
erfc(ξ )

]

+ s
∫ ∞

−y
dξ ln

[
1 + e−b − 1

2
erfc(ξ )

]
.

(17b)

(b) Annealed case. The boundary condition (7) for p(x, T )
is identical to that in the quenched case, therefore the solution
for p0(x, t ) from Eq. (11a) is the same in both cases. A
straightforward perturbation expansion of the second bound-
ary condition in (7) expresses q1(x, 0) in terms of p0(x, 0),

q1(x, 0) =
{−(1 − ρa)eαp0(x,0), for x � 0,

−(1 − ρb)eα(p0(x,0)−λ), for x > 0,
(18)

which is then used in (11b) for an explicit solution for q1(x, t ).
Following a similar perturbation analysis of the minimal ac-
tion in Eq. (9), and using the above boundary condition for
q1(x, 0) leads to a simple expression for the leading term of
CGF in the dense limit,

μA(λ) 
 − (1 − ρa)

α

∫ 0

−∞
dx (eαp0(x,0) − 1)

− (1 − ρb)

α

∫ ∞

0
dx (e−αλ+αp0 (x,0) − 1), (19)

which with the solution for p0(x, 0) gives an explicit expres-
sion for μA(λ) that is almost identical in form to (17a), except
the RQ replaced by RA where

RA(y, b|r, s) = r(eb − 1)
∫ ∞

y
dξ

1

2
erfc(ξ )

+ s(e−b − 1)
∫ ∞

−y
dξ

1

2
erfc(ξ ). (20)

Dilute limit. The limit of small ρa and ρb corresponds to
very few particles compared to the space available. Intuitively,
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the dilute limit corresponds to point particles with a noncross-
ing condition where exact results are available [1,2,20]. We
confirm this intuition using a systematic perturbation solution
of the general hydrodynamic theory in the low-density limit.

The analysis is similar to that in the dense limit, and we
present only the important steps. For simplicity, we shall use
similar notations used in the dense limit, but their meaning
here will be restricted to the dilute limit unless mentioned
otherwise. In the dilute limit, the diffusivity D(ρ) 
 D(0) and
the mobility σ (ρ) 
 ρσ ′(0). (The vanishing mobility is by
similar reasoning as discussed in the dense limit.) Using an
expansion of the least-action paths, q = q1 + q2 + . . . a nd
p = p0 + p1 + p2 + . . . (the subscript denotes the order in
density) in Eq. (5) gives the equation followed by the leading
nonvanishing terms p0 and q1 which are similar in form with
Eq. (10), except for the difference that the terms are for the
dilute limit, namely α = σ ′(0)/2D(0) and D(1) is replaced
by D(0). Their general solution is similar to (11b).

A crucial difference with the dense limit comes in
the expansion XT [q] ≡ Y = Y0 + Y1 + · · · in Eq. (2), where
Y0 is nonvanishing and given by the single-file con-
straint

∫ Y0

0 dx q1(x, T ) = ∫ ∞
0 dx(q1(x, T ) − q1(x, 0)). Intu-

itively, this means that in the dilute limit the tracer can move
(in contrast to the dense limit where Y0 vanishes due to full
packing). In fact, by dimensional argument, at low density,
the tracer position is expected to scale with the interparticle
separation, and thereby inversely with density. This means
the CGF in the dilute limit is expected to follow a scaling
μ(λ) 
 ρ h(λ/ρ). In our perturbation theory, we take this into
account by considering λ of the order of the density.

(a) Quenched case. In the dense limit, the boundary con-
dition (8) gives a condition for the leading order q1(x, 0) =
ρa�(−x) + ρb�(x), and p0(x, T ) = B �(x − Y0), where B =
λ/q1(Y0, T ).

Similarly, expanding the minimal action (9) for the
quenched case, and using the equation for p0 and q1 with their
boundary conditions, we get [40] the leading order term of the
CGF in the dilute limit

μQ(λ) 
 λY0 −
∫ ∞

−∞
dx q1(x, T )p0(x, T )

+
∫ ∞

−∞
dx q1(x, 0)p0(x, 0), (21)

where Y0 for the quenched case follows the single-file con-
straint

∫ ∞
Y0

dx (q1(x, T ) − ρb) = Y0ρb.
The expression (21) requires the solution for q1(x, t ) and

p0(x, t ), which is straightforward to get from the general
solution (11) by treating B as a parameter in the boundary
condition. The solution shows that q1(x, T ) has a jump dis-
continuity at x = Y0 and therefore B can not be determined
self-consistently from its definition. It needs to be determined
by further optimizing μQ with respect to B [2]. Using the
explicit solution for q1(x, t ) and p0(x, t ) in (21) we get [40]
a parametric solution of the CGF in the dense limit

μQ(λ) 

√

4D(0)T

α
{αλy + RQ(y, b|ρa, ρb)} (22a)

with (17b), where y and b are determined from

∂RQ
∂b

= 0 and
∂RQ
∂y

= −αλ. (22b)

The two relations in (22b) came respectively from the single-
file condition for Y0 and the additional optimization condition
dμQ/dB = 0.

(b) Annealed case. In the dilute limit, the boundary condi-
tion (7) gives

p0(x, 0) = B�(x) + 1

α
ln

q1(x, 0)

ρ̄(x)
(23)

and p0(x, T ) = B�(x − Y0), where B = λ/q1(Y0, T ).
Similar to the quenched setting, solutions for q1(x, t ) and

p0(x, t ) are determined by treating B as a parameter which is
to be determined from an optimization with respect to B.

To the leading order in the dilute limit, the minimal action
in Eq. (9) for the annealed case gives the CGF

μA(λ) 
 λY0 + 1

α

∫ ∞

−∞
dx (q1(x, 0) − ρ̄(x)), (24)

where we used a similar identity (16) for the dilute limit, the
boundary condition for p0(x, T ), and the single-file constraint∫ ∞

Y0
dx q1(x, T ) = ∫ ∞

0 dx q1(x, 0) that is due to (2) in the
dilute limit. The single-file condition gives Y0 in terms of B
which is further determined from the optimization condition
dμA/dB = 0.

Incorporating the solution for q1(x, t ) in (24) and the ad-
ditional conditions for Y0 and B, we obtain [40] an expression
for the annealed CGF in the dilute limit that is almost identical
in form to (22), except the RQ replaced by RA defined in (20).

Large deviations. Our primary results are the explicit ex-
pression for the CGF in two limiting densities for two different
initial states. For the quenched case, the dense limit result is
in (17) and the dilute limit result is in (22). Their result for
the annealed case are similar in form with RQ replaced by RA
defined in (20). These results are equivalent of the large time
asymptotic of the probability of tracer position

P

(
XT√
4D0T

= y

)
∼ exp

[
−

√
4D0T

|α| φ(y)

]
, (25)

where φ(y) is the large deviation function (LDF) and D0 is the
leading diffusivity in the two density limits; α defined earlier
in the two limits relates to the isothermal compressibility KT

by α = ρKT in the dilute limit, and α = −KT /(1 − ρ) in the
dense limit [40]. The LDF relates to the CGF by a Legendre
transformation, and using the derived expression for the latter
it is straightforward to obtain the following results: In the
dense limit,

φQ(A)(y) 
 −by − RQ(A)(0, b|1 − ρa, 1 − ρb), (26)

and in the dilute limit,

φQ(A)(y) 
 −RQ(A)(y, b|ρa, ρb), (27)

where for each case the parameter b is determined by an
optimization condition ∂φ/∂b = 0. Similarity of the closed-
form-expression for the different limits is encouraging for
solutions at arbitrary density.
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FIG. 2. The large deviation function φ(y) in (27) for the step
initial density with ρa = 0.05 and ρb = 0.01 that corresponds to
the dilute limit. The blue solid line denotes the quenched case and
the red dashed line denotes the annealed case. The inset shows the
corresponding results (26) for the dense limit with ρa = 0.99 and
ρb = 0.95.

Note that the LDF in (25) is independent of specific details
of model systems which are in the parameters D0 and α. The
results for φ(y) in Eq. (26) match with the results [22,23] in
the dense limit of the symmetric exclusion process for which
D(ρ) = 1 and σ = 2ρ(1 − ρ). Results in Eqs. (27) agree with
the results [2,3] for hard-core Brownian point particles.

In the annealed case, expression for LDF can be further
simplified to an explicit formula. For the dilute limit we get

φA(y) = (
√

ρah(y) −
√

ρbh(−y))2 (28)

with h(y) = 1
2

∫ ∞
y erfc(x)dx. (See [40] for a similar formula

in the dense limit.)
A comparative plot of the LDF for different cases is shown

in Fig. 2 for step initial profiles with ρa > ρb. The step initial
state not only drifts the mean position of the tracer, but it also
makes fluctuations asymmetric around the mean as seen in

the asymmetry of φ(y). Note that annealed LDF is wider than
quenched LDF, which indicates a larger fluctuation for the
former case. Similarly, the narrower LDF for the dense limit
(inset of Fig. 2) compared to the dilute limit reflects that the
tracer is less mobile in the former limit.

Concluding Remarks— We presented analytical results for
the long-time statistics of the tracer position in a general
single-file diffusion. Our results complement similar recent
results [1,3,22,23] for specific model systems obtained using
a solution of microscopic dynamics. Besides cumulants, the
least action path q(x, t ) in our analysis gives how the density
profile of surrounding particles evolves leading to a tracer
position XT .

Our analysis presented here is a perturbation solution of
the general theory reported earlier in [2]. The theory is based
on a hydrodynamic formulation that, although less rigorous
than a microscopic solution, gives the correct result for all
cumulants at large times and it is applicable for a wider class
of systems. However, our perturbation approach relies on the
analyticity of the transport coefficients around the two limits,
and it would fail for systems like the random average process
[41]. For limits where transport coefficients are singular, the
weak-noise-theory of MFT is itself questionable.

In our perturbation approach, higher order terms could be
systematically solved and that would give improved results for
a wider range of density. It would be interesting to compare
our general results for rare fluctuations in computer simulation
of single-file with different inter-particle interactions. A par-
ticularly interesting case is when the tracer is confined in an
external potential [23,42,43]. Theoretically, most challenging
would be to extend the hydrodynamic approach for biased
dynamics, when only the tracer is driven or when all particles
are driven [22,23,38,44–47].
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