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Correlation functions (CFs) are universal structural descriptors; surface-surface Fss and surface-void Fsv CFs
are a subset containing additional information about the interface between the phases. The description of the
interface between pores and solids in porous media is of particular importance and recently Ma and Torquato
[Phys. Rev. E 98, 013307 (2018)] proposed an elegant way to compute these functions for a wide variety of
cases. However, their “continuous” approach is not always applicable to digital experimental 2D and 3D images
of porous media as obtained using x-ray tomography or scanning electron microscopy due to nonsingularities in
chemical composition or local solid material’s density and partial volume effects. In this paper we propose to use
edge-detecting filters to compute surface CFs in the “digital” fashion directly in the images. Computed this way,
surface correlation functions are the same as analytically known for Poisson disks in case the resolution of the
image is adequate. Based on the multiscale image analysis we developed a C0.5 criterion that can predict if the
imaging resolution is enough to make an accurate evaluation of the surface CFs. We also showed that in cases
when the input image contains all major features, but do not pass the C0.5 criterion, it is possible with the help
of image magnification to sample CFs almost similar to those obtained for high-resolution image of the same
structure with high C0.5. The computational framework as developed here is open source and available within
the CorrelationFunctions.jl package developed by our group. Our “digital” approach was applied to a
wide variety of real porous media images of different quality. We discuss critical aspects of surface correlation
functions computations as related to different applications. The developed methodology allows applying surface
CFs to describe the structure of porous materials based on their experimental images and enhance stochastic
reconstructions or super-resolution procedures, or serve as an efficient metrics in machine learning applications
due to computationally effective GPU implementation.
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I. INTRODUCTION

Correlation functions (CFs) are invaluable universal de-
scriptors of structure and in this context are utilized in a
multitude of scientific disciplines: material sciences [1,2],
rock [3] and soil physics [4–6], cosmology [7], and food en-
gineering [8], to name just a handful. As such, CFs were used
to characterize the morphology [9] and representativeness
via correlation lengths [10,11], compare structures [12–14],
compress structural information [6,15,16], describe structural
dynamics [5,17,18], extract features for deep learning [6,
19–21], perform stochastic reconstructions [22–26], and fuse
multiscale images [15,27,28]. Stochastic reconstruction is a
special topic of interest, as this approach allows to solve
an inverse problem and recover structure from a known set
of correlation functions—and this ability for recovery is the
basis for majority of potential usages in the list above. Early
reconstruction techniques mainly involved two-point proba-
bility S2 function, but were improved to include lineal L2

function [10,23,29], cluster C2 function [12,30] and poten-
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tially surface FSS and FSV functions. With the proper handling
[24] it is possible to incorporate numerous CFs into a re-
construction procedure. Increasing the number (and order)
of functions leads to higher information content of the CFs
set [31–33] and, thus, allows reconstructing and performing
stationarity/representativeness characterization [14] for struc-
tures of any complexity.

There are two ways to obtain correlation functions for a
given structure at hand—either measure them experimentally
with the help of scattering intensity [34,35], or measured from
images. The first approach suffers from the limitation of CFs
that can be obtained this way [36], while the second one pro-
vides information with limited resolution or/and resolution
to field-of-view ratio [15]. Moreover, the most useful imag-
ing methods such as x-ray computed tomography (XCT) and
scanning electron microscopy (SEM) due to their underlying
physical principles provide gray-scale images which, as we
shall argue later on, need to be segmented into constituent
phases before CFs computation. It is important to note that
such gray-scale images do not represent spatial distribution
of the phases, but, for example, x-ray spatial attenuation
or electron back-scattering intensities. However, if properly
segmented, high-resolution digital images do provide a pos-
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sibility to compute any correlation function. Experimental
measurements using small angle scattering (SAS) are tradi-
tionally used to evaluate S2, but it is also possible to relate
scattering intensities to surface correlation functions [37,38].
It would be of great practical importance to obtain surface
correlation functions from both SAS and imaging (focused ion
beam milling combined with SEM allows to obtain the finest
imaging resolution and sample CFs from polished surfaces
as opposed to surface imaging [39]) to estimate coefficients
for surface and bulk scattering (see Eq. (13) in Ref. [38]).
But there is a catch—SAS possesses close to infinite surface
resolution as opposed to digital pixelized images with inherent
segmentation problems due to partial volume effects, some-
thing we discuss extensively in this paper.

Recently, Ma and Torquato [38] laid foundation to pre-
cise surface correlation function computations and showed
the usefulness of these CFs evaluation for numerous prob-
lems. They have implemented an elegant solution with the
help of infinite resolution random fields that (if the fields
are thresholded) allows finding an exact intersection with the
sampling line. In addition, they also showed that surface CFs
for digital images can be computed by converting integer
fields (i.e., location of the phases) to float fields with the
help of Gaussian filter [38]. Unfortunately, their solution is
not readily applicable to the majority of grayscale images due
to nonsingularity in their chemical constitution (pixels/voxels
in studied grayscale images may contain multiple material
phases). The reason is the difference between the contour and
real interface between different phases within the material due
to the partial volume effects [40] for XCT imaging—the pres-
ence of multiple phases within the same pixel/voxel. In other
words, the attenuation is a function of both density and atomic
number, which usually are distributed nonuniformly below the
XCT imaging resolution. Somewhat similar is also relevant
for SEM imaging, as secondary or back-scattered electrons
are effectively a convolution of partial signals coming from
different depths [41]. The exact subvoxel thresholding based
on gray-scale image (similar to the technique used in [38])
is only available in case it is monomineral, i.e., the solid
phase consists of a completely chemically homogeneous sub-
stance that contrasts perfectly with air/vacuum filled pore
phase—this is rarely the case for natural materials. Moreover,
even if the image of a monomineral sample (in natural porous
media carbonate rocks can be considered monomineral de-
pending on their genesis) has subresolution features on XCT
image, while it is possible to compute the porosity of the
voxel, it is still not possible to extract the interface. All these
and additional problems (such as, for example, experimental
noise and artifacts from inverse Radon transform) arising
during gray-scale image processing as related to image seg-
mentation were extensively discussed elsewhere [42]. Thus,
we argue, that the usage of current state-of-the-art segmen-
tation techniques is necessary prior to the conversion to a
coarse-grained scalar field. Moreover, finding an intersection
between a line segment and the contour is a computationally
expensive procedure that prevents on-the-fly application of
surface functions. If a binary image (consisting of pores and
solids) is produced by adequate segmentation technique, then
we still lack a robust and computationally effective procedure
to evaluate surface CFs from experimental XCT and SEM

FIG. 1. A schematic depiction of a binary porous media (pores
are shown in color) with examples of positive events for surface FSS ,
FSV and two-point probability S2 correlation functions. The zoomed
in area represents the difference between the true “continuous” in-
terface in between pore and solid phases with pixelized “digital”
interface emerging due to limited resolution of digital images.

images of natural heterogeneous materials, for instance, rocks
and soils.

To compute surface functions one first needs to elucidate
the interface between two phases (we shall consider only
pores and solids, but, obviously, the computations can be
performed to multiphase systems in the similar manner). The
interface area has infinitesimal volume, but its location on
the digital image is not easy due to the pixelization of the
interface between the binary phases [38]. By adopting the
interface width ε = pixel/voxel size one can create a very
crude approximation of the real interface, but the usage of
interfaces between voxels “as is” leads to known problems in
surface area and surface geometry evaluation, in application
of 3D imaging for geometry and topology analysis [43,44] or
energy minimization problems [45]. Another option would be
to describe the boundaries between voxels with some curves,
e.g., splines. This way it would be possible to perform surface
CFs sampling by line intersection as described by Ma and
Torquato [38]. While an exact boundary can be obtained for
deterministic structures such as disk packings, splines would
provide only a very approximate solution for the boundaries of
arbitrary digitized structure due to the limit in resolution for
a given image [46]. In other words, contours extracted from
digital images will approach real boundaries between phases
only when the spatial resolution approaches infinity. But the
same is also true for digital pixelized/voxelized images. Thus,
the options to compute surface correlation functions include
“continuous” approach (such as implemented in [38]) and
“digital” approach (similar to computation of S2 from digital
images) as depicted in Fig. 1. Here we propose a modified
“digital” approach that lies in between the exact and pixelized
solutions for a number of reasons:

(1) For a binarized XCT or SEM image the interpolation
of the interface using “continuous” or “digital” in the limit
of ε → 0 would produce the same results. Thus, as it is not
possible to obtain the exact continuous interface from such an
image, using “digital” approach is natural as applied to digital
pixel/voxel images.

(2) “Continuous” approach is expensive numerically, as it
requires to find the intersections between a line and a curve.
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(3) Digital approach allows utilizing linear scan CFs com-
putation or the fast Fourier transform (FFT)—the latter is the
fastest way to evaluate full CF maps (not for all functions
thought) and is very efficient on modern GPUs.

In this paper we build upon foundational work of Ma and
Torquato [38] and develop a robust and efficient approach to
compute surface correlation functions from digital 2D and 3D
images. The rest of the manuscript is organized as follows:
in Sec. III we provide all methodological details for surface
CFs computation including analytical solutions to verify the
proposed methodology and describe an image library for ex-
tensive testing of our algorithms, Sec. IV presents all major
results of surface functions evaluations. Our algorithm is com-
pared against the original algorithm of Ma and Torquato in
Sec. V. Section VI applies the developed tools to evaluate
surface CFs for different real porous media images, including
real XCT and SEM data. We discuss obtained results, includ-
ing the effects of image scaling, and outline future uses of
surface functions within Sec. VII. The paper concludes with a
summary in Sec. VIII.

II. THEORETICAL BACKGROUND

A. Correlation functions and definitions

First, we introduce an indicator function I (i)(x) which
marks pixels of 2D and voxels of 3D digitized images as
belonging to the phase i or not. It can be defined as

I (i)(x) =
{

1 x ∈ Vi,

0 otherwise,

where Vi ⊂ Rn is the region occupied by phase i. For sta-
tistically homogeneous media the ensemble average of I (i)

equals volume fraction of a given phase. For binary media the
following equality holds:

φvoid + φsolid = 1, φi = 〈I (i)(x)〉.
In a similar fashion we can define an interface indicator func-
tion M(x) which provides interface area s if averaged over the
whole image:

M(x) = |∇I (solid)(x)| = |∇I (void)(x)|, (1)

〈M(x)〉 = s. (2)

The simplest, yet foundational correlation function is the two-
point probability function S2 which is defined as a probability
that the ends of a random line segment belong to the same
phase:

S(i)
2 (x1, x2) = 〈I (i)(x1)I (i)(x2)〉. (3)

This equation can be further simplified for statistically ho-
mogeneous media, as S2 will dependent only on the relative
displacement r:

S(i)
2 (x1, x2) = S(i)

2 (r).

The value of S(i)
2 (r) at r = 0 is a fraction of phase i in a

medium:

S(i)
2 (0) = φi.

FIG. 2. Interpretation of FSS as a self-intersection of the interface.

For isotropic media a vector displacement r can be replaced
with its length r = |r| and S2(r) with S2(r) = S2(|r|). Now,
analogously to S2 we can define surface-surface and surface-
void correlation functions (for homogeneous and isotropic
media straight away):

Fss(r) = 〈M(x)M(x + r)〉, (4)

Fsv (r) = 〈M(x)I (void)(x + r)〉. (5)

The interface indicator function M(x) is basically defined
as infinity on the interface and zero elsewhere. Therefore, it
is hard to directly compute 〈M(x), M(x + r)〉. We can replace
the line of zero width and infinite value with a strip of width ε

and value 1
ε
: M(x; ε). Then FSS (x; ε) = 〈M(x; ε), M(x + r; ε)〉

is simply an intersection area of two strips—original and
shifted—multiplied by ( 1

ε
)2. And with ε → 0 ⇒ FSS (r; ε) →

FSS (r). Area between two black dashed circles on Fig. 2
represents M(x; ε), red is for M(x + r; ε); blue color marks
the intersection area. The treatment of the interface in the case
of FSV is similar, but this function is not autocorrelation, but
rather cross-correlation of the interface with the void phase.
More detailed information on two-point probability and sur-
face correlation functions can be found in the comprehensive
Torquato’s book [47].

B. Analytical solutions

For Poisson disks and balls one can derive exact analytical
surface-surface and surface-void functions. For overlapping
disks with radius R and centers generated by Poisson point
process with parameter λ we have (see the derivation of these
formulas in Appendix A):

FSV (r) = S2(r)

{
2(π − B)Rλ r < 2R,

2πRλ otherwise,
(6)

FSS (r) = S2(r)

{
(2(B−π )Rλ)2Ar+4

√
AR2λ

Ar r < 2R,

(2πRλ)2 otherwise,
(7)

where S2 is the regular two-point correlation function and

A = 4R2 − r2,

B = arccos

(
r

2R

)
.
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FIG. 3. Schematic example of the algorithm for surface functions computation (2D case is considered for visibility).

For 3D balls the relationships are readily available in the
literature [38,47]:

Fsv (r) = S2(r)

{
4πR2λ

(
1
2 + r

4R

)
r < 2R,

4πR2λ otherwise,

Fss(r) = S2(r)

{[
4πR2λ

(
1
2 + r

4R

)]2 + 2πR2λ
r r < 2R,

(4πR2λ)2 otherwise.

These analytical solutions will be used to verify the accu-
racy of our evaluation of surface CFs for such systems.

III. METHODOLOGICAL DETAILS

By looking at (3)–(5) one can observe some significant
similarities between two-point probability and two-point sur-
face functions (see Fig. 1). The S2 can be viewed as a
autocorrelation of the image, i.e., computing correlations be-
tween shifted realization of the image [47]—something that
can be used to effectively compute S2 with the help of the
FFT on modern hardware, especially GPUs. If we apply the
same analogy to FSS , Eq. (4) can be considered as an inter-
section of the interface with itself for all possible shifts [48].
Recall that for the correlation length of zero this intersection
is technically infinity (Sec. II A). While surface-void function
Fsv is well-defined at r = 0, it has some notable features. It can
be calculated as cross-correlation between the interface and
the void phase. Because cross-correlation is not commutative
there is a complementary function, void-surface function Fvs,
which is defined as cross-correlation between the void phase
and the interface. Because these two functions are dependent,
namely Fsv (x) = Fvs(−x), in this paper we will only speak of
Fsv function.

A. The general algorithm

While we present and compare a bunch of slightly different
methods to evaluate surface CFs, they are all based on a sin-
gle general algorithm for each surface function as described
below (A refers to the input 2D or 3D digital image, M is the

interface between two phases, and V is the image of the void
phase only):

FSS algorithm:

1: procedure SURFSURF (A, i)
2: A′ ← I (i)(A) � Apply indicator function to A.
3: M ← M(A′) � Extract interface from A′.
4: return �(M, M ) � Autocorrelation of M.
5: end Procedure

FSV algorithm:
1: procedure SURFVOID (A, i)
2: A′ ← I (i)(A) � Apply indicator function to A.
3: M ← M(A′) � Extract interface from A′.
4: V ← I (void)(A′) � Extract void phase from A′.
5: return �(M,V ) � Cross-correlation of M and V .
6: end Procedure

The algorithm is very general and allows utilizing different
techniques for interface extraction or computation of the cor-
relations, as detailed below. The cross-correlation function is
introduced in Sec. III C. Consecutive stages of our method are
shown in Fig. 3. The programming implementation details are
provided in the Appendix B.

B. Interface extraction

We shall consider two methods for the interface
extraction—the first is a naïve approach, while the second
is the one we propose to routinely apply for XCT and SEM
images analysis.

1. Distance map

One solution to extract an interface between phases from
an image is to use the distance map (also called the distance
transform). Distance transform is a mapping from a binary
image to a scalar field using one of the following functions:

Do(x) =
{

0 x ∈ Vvoid,

min ρ(x, y) ∀y ∈ Vvoid otherwise,
(8)

Di(x) =
{

0 x �∈ Vvoid,

min ρ(x, y) ∀y �∈ Vvoid otherwise,
(9)
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where Vvoid is a set containing elements belonging to the void
phase and ρ(x, y) is the Euclidean distance between points x
and y. Now M(x) in Eq. (1) may be written as follows:

M(x) =
{

1 0 < D(x) �
√

d,

0 otherwise,

where d is dimensionality of the image (d = 2 for 2D image,
d = 3 for 3D image) and D(x) is evaluated using either Eq. (8)
or Eq. (9). When D = Di we call the resulting interface “the
inner interface” and when D = Do we call it “the outer inter-
face.” Hence, the inner interface consists of elements in the
void phase which lie on the interface with the solid phase,
and the outer interface is the other way around—it consists of
elements in the solid phase which lie on the interface with the
void phase.

2. Image filtering

This method creates a grayscale image of the interface
with the help of the edge-detecting filter. The filter works by
convolving the input image with signals Eq. (10) for the 2D
case, or Eqs. (11)–(13) for the 3D case:

F =
√

2

9

⎡
⎣1 1 1

1 −8 1
1 1 1

⎤
⎦, (10)

Fi j0 =
√

2

27

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦, (11)

Fi j1 =
√

2

27

⎡
⎣1 1 1

1 −26 1
1 1 1

⎤
⎦, (12)

Fi j2 = Fi j0. (13)

These signals are so called high-pass finite impulse response
filters. Coefficients in tensors Eq. (10) and Eqs. (11)–(13) sum
to zero, hence a result of application of an edge-detecting
filter to a constant input is also zero; this also means there
is no “interface” in a constant image. However, when an input
image varies a lot, application of this filter gives a big response
in place of variation, effectively detecting an edge. Scaling
coefficients in front of the tensors are found empirically to
achieve good correspondence with the theory.

An application of abovementioned filters (i.e., convolution)
can be easily parallelized on GPU, and we do this by writ-
ing native Cuda code. After the convolution step is finished
we take absolute values of the result as an approximation
for M(A′) [recalling that A′ = I (void)(A) where A is the in-
put image]. In physical sense the result of this procedure is
proportional to the probability that a pixel/voxel under con-
sideration belongs to the interface. From now on we shall call
the filter F simply “edge-detecting filter” when no other filter
is explicitly mentioned.

C. Computing correlations

Let us now describe the approach for the computation of
cross-correlation function between two images f and g. In the
case of autocorrelation function we assume f = g. Algorithm
is straightforward when boundary conditions are periodic. For
nonperiodic boundary conditions it is slightly more involved.

Periodic boundary condition

1: procedure � ( f , g)
2: f̂ = F ( f )
3: ĝ = F (g) � Compute FFT of the input.
4: ĉc ← f̂ · ĝ � Multiply element-wise.
5: cc ← F−1(ĉc) � Compute IFFT of ĉc.
6: return cc divided by the number of pixels/voxels

in the input.
7: end Procedure

Nonperiodic boundary condition

1: procedure � ( f , g)
2: Pad f and g with zeros in each dimension to the

size 2n − 1 where n is the size of the image in that
dimension.

3: f̂ = F ( f )
4: ĝ = F (g) � Compute FFT of the input.
5: ĉc ← f̂ · ĝ � Multiply element-wise.
6: cc ← F−1(ĉc) � Compute IFFT of ĉc.
7: circle shift cc by n − 1 in each direction, so index

range becomes from −(n − 1) to n − 1.
8: cci j ← cci j/qi j where qi j = (n − |i|)(m − | j|) �

Divide each element cci j by the number of pixels/voxels
whose coordinate difference is equal to (i, j).

9: return cc.
10: end Procedure

The results of the computations are a full correlation map.
To obtain the ensemble averaged surface correlation functions
one just needs to convert the map to CF versus r relationship.
This is also possible to compute directional surface CFs in this
manner in case the structure at hand is anisotropic. Without
loss of generality, �( f , g) can be also computed by scanning
with the line segment of length r, but this approach is more
efficient on CPU as compared to GPU implementation here.
If not stated otherwise, then we report the ensemble averaged
functions computed from the full map (assuming the isotropy
of the input image). One can easily compute directional CFs
[12,13] using both segment scanning or from the correlation
maps.

IV. APPLICATION TO SYNTHETIC IMAGES,
VERIFICATION, AND BETTERMENT OF THE

METHODOLOGY

A. Comparisons against analytical solutions

To evaluate the accuracy of surface CFs computations the
most straightforward way is to compare them against an-
alytical solutions. We use classical analytical solutions for
overlapping disks and balls with fixed radius R and centers
generated by Poisson point process with parameter λ. Starting
with an image with resolution of 4096 × 4096 pixels, we then
downscale it by 4, 16, and 64 times with the help of bicubic
interpolation [3] (see Fig. 4). We show that calculated correla-
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FIG. 4. 2D images of overlapping disks (a–d) and value noise (e–h) with different resolution (Sec. IV).

tion functions approach theoretical values when the resolution
is high enough.

It is easy to show that for a > 0,

a2FSS (ax, a(x + r)) = FSS (x, x + r), (14)

aFSV (ax, a(x + r)) = FSV (x, x + r). (15)

Assuming that our images represent homogeneous and
isotropic media, we calculate FSS (ar) and FSV (ar) for each
original and rescaled image and multiply it by coefficient
a2 = (Lscaled/Lorig)2 and a = Lscaled/Lorig, respectively, where
Lscaled is the side of the rescaled image and Lorig is the side
of the original image. The resulting scaled surface CFs are
shown in Fig. 5.

We observe two effects when downscaling the original
image. The first effect is that FSS (ar) and FSV (ar) for down-
scaled images lack in detail (i.e., they are less “noisy”).
This can be easily explained by the interface between phases
becoming “simpler” when resolution decreases. The second
and much more important effect is that both correlation
functions become largely underestimated with the decline in
resolution. This latter effect is in general connected to the
fact that the interface in digital images has nonnegligible
thickness—i.e., the difference between real “continuous” in-
terface versus “digital” interface (Fig. 1). It is logical to
assume that with increasing spatial resolution the influence
of this thickness will diminish. This is exactly what we ob-
serve on Fig. 5 where increasing disk discretization leads
to convergence with analytical solution; the accuracy of the
computed CFs is almost perfect for discretization of about
62 pixels for each disk’s diameter. A natural question arises:

“Is there a criterion of image quality (resolution) that allows
to predict the quality of surface CFs evaluation from digital
images?” Turns out there is a possibility to establish such an
empirical criterion based on spectral analysis of input images
and Sec. IV D will provide all necessary details.

B. Convergence of correlation functions
with increase of resolution

Now consider a situation when an image is obtained by
taking samples of a function f : Rn → {0, 1}. The samples
are taken from a regularly spaced lattice which covers the
range [0, L]n with interval � between samples. The resulting
image has then L/� + 1 pixels in each dimension. We will
show empirically that for any sequence �k so that �k+1 < �k

and �k → 0 sequences F�k
SS (r) and F�k

SV (r) computed for im-
ages with lattice interval �k converge to some limit functions
FSS (r) and FSV (r).

An example of f is a thresholded value noise function.
A value noise is a procedurally generated noise which in
one-dimensional case works as follows. First, define a fam-
ily of regularly spaced lattices Uk with points in coordinates
2−kn, n ∈ Z. Each point of a lattice is assigned a random
value in the range [0, 1]. Then for each Uk we define a func-
tion gk (x) : R → R which interpolates random values in Uk

linearly. This value noise function is defined as follows:

g(x; n) =
∑n−1

k=0 2−kgk (x)∑n−1
k=0 2−k

= 2n

2n+1 − 2

n−1∑
k=0

2−kgk (x).
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FIG. 5. Surface-surface and surface-void correlation functions for images of overlapping disks and thresholded value noise obtained with
different resolution. Theoretical results are also shown for overlapping disks. Image filtering was used for interface extraction (10).

Here n is a parameter called the number of octaves. A thresh-
olded noise is then

f (x; n) = 	(g(x; n) − 1/2),

where 	(x) is the Heaviside step function. A generalization
for higher dimensionality is constructed using the same princi-
ple. An example of thresholded value noise with three octaves
is depicted on Fig. 4. Correlation functions calculated for
the noise with n = 3 at different resolutions are on Fig. 5.
If we calculate surface-surface and surface-void correlation
functions for these images and scale them as described above,
we again converge to some “true” correlation functions for
continuous function f .

C. Effects of image magnification

As we have just observed for analytical Poisson disks and
arbitrary structures based on thresholded value noise, with

increasing resolution (or, in other words, decreasing coarse-
ness) of the image, surface correlation functions converge
to “infinite resolution” values that can be seen as a target
of CFs computations. However, if the image at hand is of
limited resolution, then it would be very practical to know
if rescaling this image with increased resolution can lead to
acceptable surface-surface functions evaluation. To explore
such a possibility we tried different methods to magnify the
image: bilinear, bicubic, and nearest-neighbor interpolation.

To have true CFs for a comparison, we again utilize analyti-
cal Poisson disks: a low-resolution and high-resolution images
were produced by discretization of disks at known positions,
and then the low-resolution image was magnified. Because
the resized image becomes grayscale, we use the following
function as an indicator for the void phase provided the void
phase is marked as 0 in the input image:

I (void)(x) = (1 − x)1.5.
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FIG. 6. An example of images with almost identical correlation functions obtained using different methods: direct digitalization from
known disk positions and magnification using bilinear interpolation. Image filtering was used for interface extraction (10).

We found that all interpolation methods are good for resiz-
ing purposes with exception of the nearest-neighbor approach.
As an example, Fig. 6 shows the images of overlapping
disks with almost the same surface-surface and surface-void
functions. The values of CFs are almost identical for high-
resolution and magnified images; the only flaw being the
difference in FSS for resized and digitized images due to pix-
elization of the interface (the absence of “noise” on FSS for the
rescaled image).

D. Criterion for accurate evaluation of surface CFs from
discrete images

Let us define one-dimensional forward (F ) and inverse
(F−1) Fourier transforms as

f̂ (z) = F [ f ](z) = 1√
2π

∫ ∞

−∞
f (x)e−iπxzdx, (16)

f (x) = F−1[ f̂ ](z) = 1√
2π

∫ ∞

−∞
f̂ (z)eiπxzdz. (17)

Here f (x) and f̂ (z) can be thought of as representations of
a signal in the time domain and the frequency domain, respec-
tively. Equations (16) and (17) preserve norm on L2: ( f , f ) =
( f̂ , f̂ ). It is said that Fourier transform preserves “energy”
of the signal. According to Riemann-Lebesgue lemma [49]

energy of any signal “concentrates” around low frequencies.
A measure of how much energy concentrated in low frequen-
cies (for some definition of low frequencies) is a key to the
understanding of the problem of correctness of our approach.
The Shannon sampling theorem [49] states that it is possible
to reconstruct a band-limited signal f (x) whose frequencies
lie in the range [0, f ] from a sequence of samples { fn} if the
sampling rate is no less than 2 f . We introduce a parameter Ca:

f0(x) = f (x) − 〈 f (x)〉,

Ca =
∫ aω

−aω
| f̂0(z)|2dz∫ ω

−ω
| f̂0(z)|2dz

,

where ω = 2π f and 〈 f (x)〉 is the mean value of f (x) over its
domain. The criterion for correctness is then

Ca > 1 − ξ

for some a and ξ . This criterion tells us exactly how much en-
ergy in f0(x) is concentrated in a low frequency range [0, a f ]
compared to the whole range [0, f ]. Here we propose a = 0.5
and ξ = 0.07 as a strict criterion which is based on results
of Sec. IV A. For overlapping disks we immediately observe
that the image with resolution 4096 × 4096 has surface CFs
very close to analytical solution [Figs. 5(a) and 5(b)] and
perfectly satisfy our C0.5 criterion. The other three downscaled
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FIG. 7. Decay of criterion C0.5 as a function of the image resolu-
tion for the downscaled image (shown as a resize ratio). The image
used for the study is shown as an inset.

images fail to do so. The first two images of value noise (with
resolution 4096 × 4096 and 1024 × 1024) pass the criterion
and the other two do not, which is in agreement with Figs. 5(c)
and 5(d) (correlation functions converge at resolution about
1024 × 1024).

Thus, we conclude after inspecting Fig. 4 and Fig. 5 that
the criterion correctly selects images which are suitable for
calculation of surface correlation functions. The criterion C0.5

decays fast with a decline in the image resolution as demon-
strated in Fig. 7.

E. The choice of method to extract the interface

Finally, we explore all major edge-detecting filters, includ-
ing “naive” distance map approach. Surface-surface functions
for overlapping Poisson disks (R = 10, λ = 2 × 10−3 on im-
age with dimensions of 1000 × 1000 pixels) computed with
different methods of interface extraction are shown on Fig. 8.
These methods include image filtering with filter Eqs. (10)–
(13) and interface extraction with distance map. When using
distance map both outer [Eq. 8] and inner [Eq. 9] interfaces are
used to compute the correlation function. An average over the
last two functions is also shown. Edge-detecting filter clearly
outperforms the distance map approach. However, the result
on Fig. 8 could be related to the resolution of studied image.
If we now increase the discretization of the disks and, thus,
the image resolution (R = 70, λ = 3 × 10−6 on image with
dimensions of 5000 × 5000 pixels), then we get the result as
presented on Fig. 9. In this case the image filtering method
again collapses to an analytical solution whilst the distance
map method failed to do so. This subsection’s results clearly
advocate in favor of the edge-detecting filter in case of surface
CFs evolution based on digital images.

To demonstrate the possibilities to compute directional sur-
face correlation functions, on Fig. 10 we show a comparison
of the ensemble FSS computed by averaging the full correla-
tion map against the CF computed along a single direction
(the input image is isotropic Poisson disks from Fig. 8). As
expected, less sampling results in more noise but in gen-

FIG. 8. Surface-surface correlation function calculated with dif-
ferent interface extraction methods (Edge-detection filter to the left,
and distance map to the right on the insets). Discretization of each
disk is 20 pixels per diameter, the size is 1000 × 1000 pixels.

eral coincide with analytical and ensemble average computed
CFs.

In addition to edge-detecting filter of our choice, there
are plenty of other kernels for gradient evaluation [50–52].
In total, we investigated Sobel, Ando, Sharr, Bickley, and
Prewitt filters. Their performance is almost the same (Fig. 11).
The errors against the analytical solution are very similar
and the overall performance depends on the particular image.
Therefore, it is difficult to recommend specific kernel; so, the
choice of filter Eqs. (10)–(12) is purely due to the fact that it is
computationally more efficient than gradient searching filters.

FIG. 9. Comparison of edge-detecting filter and distance map
approach on high-resolution image with 140 pixels per disk diameter,
the size is 5000 × 5000 pixels.
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FIG. 10. The comparison of directional and ensemble averaged
over the full map FSS .

V. COMPARISON AGAINST AN EARLIER ALGORITHM
OF MA AND TORQUATO

To establish a novel methodology, one needs to prove that it
is somehow more advantageous against existing approaches.
In this section, we compare our method with earlier algorithm
of Ma and Torquato [38]. The method as proposed in this
paper has some distinct advantages:

(1) It has better complexity than the earlier approach.
There are two steps in our algorithm: edge detection and the
autocorrelation computation. The first step has O(n) com-
plexity and the second step has O(n log n) complexity where
n is a number of pixels (or voxels) in the input image. Ma
and Torquato’s algorithm has O(n) complexity for finding
intersections with probe rays and O(m2) for computation of
correlation functions where m is a number of intersections
found. Therefore, performance of their algorithm depends on

FIG. 11. Comparison of different edge-detecting filters in their
ability to highlight the interface for surface-surface CFs computation
(only the case of FSS is shown due to similarity of the results for FSV ).

FIG. 12. Our algorithm compared against Ma-Torquato algo-
rithm. The input image is the one of 10 000 overlapping disks,
image dimensions are 5000 × 5000, ratio of solid phase φ = 0.675,
C0.5 = 0.934. The value of b = 0.025D was used in Ma-Torquato
algorithm—exactly what was used in their work to obtain the most
accurate results.

the input (more specifically, on the number of intersections of
the interface and probe rays) and may be unsatisfying when
n ∼ m.

(2) Our approach produces less noise on computed surface
function curves. In case of Ma-Torquato method, the noise
persists even on high resolution image (Fig. 12).

(3) In the case of overlapping disks, our algorithm pro-
duces results which are closer to the theory than earlier
method (Fig. 12). Note that here we refer to “digital” approach
only (as the algorithm by Ma and Torquato can be used to
obtain the exact continuum representation of the overlapping
disk problem).

(4) Our algorithm has less inner parameters that are hard
to justify. Ma-Torquato algorithm is very sensitive to selection
of standard deviation b for Gauss filter (Fig. 13), unless tuned
to known specific surface and porosity values. Moreover, it
implements single thresholding segmentation (see more dis-
cussion below).

(5) Due to the chosen filter and autocorrelation compu-
tation algorithms our method is easily parallelizable on both
CPU and GPU architectures.

In their original paper, Ma and Torquato claim that their
algorithm can be applied to grayscale images directly. In au-
thors’ implementation a single thresholding segmentation is
applied with a parameter T tuned to known specific surface
and porosity, and is defined as follows:

I (solid)(x) = 	(A(x) − T ),

where A(x) is an intensity of a pixel in the image at the coordi-
nate x. Tuning T gives accurate results in case specific surface
and porosity are known a priori, but is highly sensitive to a
choice of T (Fig. 14). For experimental images these param-
eters are not known, and even if obtained experimentally (for
example, using porosimetry methods) would lead to wrong
computations due to numerous imaging resolution effects dis-
cussed in Sec. I. This highlights the necessity of advanced
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FIG. 13. Illustration of how a choice of b affects the results of Ma-Torquato algorithm. Two cases of images of overlapping disks are
considered.

XCT or SEM images segmentation techniques [42,53]—it is a
well-established fact in porous media research area that single
thresholding techniques produce vastly inaccurate segmenta-
tions for such experimental images [54,55].

Implementation of Ma-Torquato algorithm in Julia lan-
guage is available [56] for future applications and bench-
marks.

VI. APPLICATION TO BINARY XCT AND SEM IMAGES
OF POROUS MEDIA

After the verification of our computational approach based
on analytical solution and establishing the criterion C0.5 we
now have enough tools to evaluate surface CFs for different
porous media images, including real XCT and SEM data.

A. Porous media images collection

To test our surface CFs computational framework we col-
lected a variety of 3D XCT and 2D SEM images of two types

of natural porous media: sandstones and carbonate rocks. The
former are expected to have most of their porosity visible on
XCT scans, expect for nano-porosity associated with the clay
that can clog the pore space. Carbonate rocks are monomin-
eral samples, but usually exhibiting hierarchical structure,
i.e., XCT scanning can reveal only pore sizes with the range
within the imaging resolution, whilst imaging with higher
resolution (e.g., SEM or FIB-SEM techniques) usually reveals
submicron (under-resolution porosity for XCT) porosity. The
relevant details on the samples are provided in table I.

B. Surface correlation functions for the studied collection

In Figs. 15 and 16 we report computed FSS and FSV cor-
relation functions for a variety of XCT and SEM images,
respectively. Almost all these cases satisfy our C0.5 criterion
and, thus, provide a possibility to interpret resulting CFs.

Images on Fig. 17 fail to satisfy our C0.5 criterion. It
is possible to apply the magnification technique to improve

FIG. 14. A two-dimensional slice of coarse-grained sandstone (a) and surface-surface correlation functions computed with different
threshold parameter T (b).
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TABLE I. Summary of samples used for calculation of surface correlation functions.

Sample name Image type Dimensions (pixels) Image resolution (μm)

Sandstone 1 XCT 500 × 500 × 500 3.02
Sandstone 2 XCT 500 × 500 × 500 3.02
Sandstone 3 XCT 500 × 500 × 500 3.02
Carbonate 1 XCT 500 × 500 × 500 3.02
Carbonate 2 XCT 500 × 500 × 500 3.02
Carbonate 3 XCT 500 × 500 × 500 3.02
Sandstone 4 SEM 1280 × 869 0.10
Sandstone 5 SEM 1280 × 869 0.05
Carbonate 4 SEM 1024 × 691 0.06
Carbonate 5 SEM 1024 × 691 0.29
Carbonate B1 SEM 1024 × 691 0.57
Carbonate B2 SEM 1024 × 691 1.09
Carbonate B3 XCT 500 × 500 × 500 1.07
Carbonate B4 XCT 500 × 500 × 500 1.07

C0.5, but this lacks physical meaning—from our experience
we can immediately tell that these rocks possess signifi-
cant under-resolution porosity that would reveal itself on
higher-resolution images. We discuss the strategies for correct
evaluation of surface correlation functions for such porous
media in Sec. VII.

In the general case, the correlation functions of the bound-
ary of a binary set have at least two characteristic properties:
the limit of Fss at large distances is related to the square of
the surface area (in voxels), and the rate of decrease of the
correlation function near zero characterizes the “memory” of
the random process describing the boundary. The last property
can be described by introducing the concept of correlation
radius—the characteristic attenuation distance of the corre-
lation function. Figure 15 shows examples of XCT images
of sandstones and carbonates along with surface correlation
functions calculated using developed methodology. One can
see from the graphs presented that the right limit for all
sandstones is significantly higher than for carbonate materials,
which corresponds to a larger surface area for these cubes (in
voxels). However, the correlation boundary radius for carbon-
ate samples is larger than for sandstones, which indicates a
greater surface smoothness.

We consider it important to mention one more surface pa-
rameter, which can be easily calculated based on the presented
methodology. One of the key topological properties of rough
surfaces for physics and applications is the fractal dimension.
Let us divide the micromodel into cubes with edge length ε

(in voxel). The topological measure of the surface is defined
as

Md (ε) = N (ε)εd ,

where N (ε) is the number of cubes covering at least one
point of the surface. The fractal dimension is defined as the
value of d for which Md (ε) → const �= 0 for ε → 0. In the
case of piecewise smooth line or surface, the fractal dimen-
sion is an integer equal to 1 or 2, respectively (coincides
with the topological dimension). For an arbitrary surfaces,
the fractal dimension is not an integer (see, for example,
Ref. [57], where fractal dimensions of real rock pore surfaces
are calculated and analysed). The fractal dimension can be

effectively calculated using the box covering algorithm. For
each ε, the number N (ε) of cubes covering the pore surface
is calculated; fractal dimension d is estimated from the slope
of the curve describing ln N (ε) as a function of ln 1

ε
. Thus,

calculating the correlation functions Fss of the surface for
different spatial sampling scales ε (see Fig. 5 with our results
of surface-surface and surface-void correlation functions for
images obtained with different resolution) and analyzing the
asymptotic at large distances gives us the value of N2(ε). This
makes the further calculation of the fractal dimension an easy
technical procedure.

It has been shown in many works (see, for example,
Refs. [58–60]) that the fractal dimension of a surface as a
measure of roughness can make a significant contribution
to such physical phenomena as the thermodynamics of ad-
sorption and materials storage properties, the formation of
thin films, surface diffusion, and adhesion. However, further
development of this issue is not the subject of this article and
requires a separate study, so we only briefly discuss it in this
article as a further possibility.

C. Computational efficiency

We measured the execution times of functions from our
CorrelationFunctions.jl package to compute FSS and
FSV . The hardware we used is Intel Xeon Gold 6248R CPU
with DDR4 2400 MHz RAM and Nvidia GeForce RTX 3090
GPU running under Linux. Input data consists of 2D and 3D
square bit arrays with side varying from 1000 to 10000 with
step 1000 (2D case) or from 100 to 1000 with step 100 (3D
case). The obtained wall times are presented on Fig. 18. As
our video RAM is limited, the GPU can process three dimen-
sional arrays with dimensions no more than 700 × 700 × 700
voxels. A observed speedup from the use of GPU is about 30
times as compared to CPU computations.

VII. DISCUSSION AND OUTLINE

The “digital” approach for applications to real XCT and
SEM images as developed in this paper has some important
limitations. Namely, the magnification-based correction of
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FIG. 15. Examples of XCT images along with surface correlation functions calculated using developed methodology.

coarse images (Sec. IV C) or the C0.5 criterion (Sec. IV D)
provide accurate surface correlation functions only in case
the under-resolution porosity is absent in the image. This
means that accurate CFs can be sampled only for the case
that with increasing resolution no new details appear on the
image. The ideal imaging resolution is not known a priory
and, thus, cannot be assessed with C0.5. For sandstones, we
expect accurate surface CFs evaluation, but for carbonates on
Fig. 17 the presence of unresolved porosity is expected. For
other carbonates such as Carbonates 1–3 the presence of such
porosity is likely, and for Carbonates 4–5 the resolution is
probably optimal—however, both of these hypotheses needs
to be tested by imaging with a higher resolution. Another
way would be to compare “digital” CFs with those obtained

experimentally using small angle scattering (note that current
generation synchrotrons are operating in the limit �1 µm reso-
lution). However, the surface CFs we obtain are correct under
the assumption of no subresolution details. This is an impor-
tant achievement, as the problem of under-resolution porosity
can be then solved by multiscale image analysis [15,61].

Considering the accuracy of the magnification procedure,
it is also closely connected to the under-resolution porosity
problem. On Fig. 6 it was clear that magnification can result
in correct values of surface CFs, but for FSS some important
(subresolution) information is simply not available. We argue
that this unfortunate downside can be potentially mitigated
by higher-resolution imaging of the interface in question with
subsequent correction of the magnified surface-surface func-
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FIG. 16. Examples of surface correlation functions evaluated for SEM images of real porous media.

tion. Another interesting approach would be to relate the
FSS to some roughness coefficient that could change with
time due to, for example, reactive transport within the pores
[62–64] or due to mechanical load. Thus, in conjunction with
high-resolution imaging FSS and FSV could serve as excellent
descriptors of surface change dynamics [65].

We described two ways to extract the interface to com-
pute surface CFs—“naive” approach based on distance map
transform, and using edge-detecting filter. While we showed
that the latter approach is much more accurate (e.g., Fig. 9),
the naive one is still useful. In case we want to utilize FSS

and FSV for stochastic reconstructions [23,26,30] we advocate
the usage of distance map transform; moreover, the choice of
inner or outer interface (Fig. 8) is not important. The reason
is the procedure of CFs update during the simulated annealing
process. The optimization of the filter-based approach is more
involved and requires updates of the filter within some area
first, and then local CFs recalculations. However, the naive
approach allows to utilize the classical straightforward and
extremely efficient technique [66]. Considering that the exact
values of the CFs are not important, the usage of distance
maps introduces no inconsistencies, but improves the results
of the reconstruction.

In addition to fundamental XCT and SEM images acquisi-
tion problems (such as inhomogeneous chemical composition
and density of the solid phase, and partial volume effects), as
discussed in Sec. I, the “digital” approach to evaluate surface
correlation functions enjoys some additional advantages. As
Sec. IV C demonstrated, digital computations can be fast—

this can be achieved by FFT on modern GPU hardware, or
by vectorized linear segment scanning [13]. In addition to
efficient computations, digital methods allow efficient com-
putations of higher order statistics, such as n-point correlation
functions [67]. Such efficiency and flexibility in computations
is not available for “continuous” approach. This statement is
by no means a critique of such an approach, as it allows to
compute the exact surface CFs in cases when the structure
can be described by some continuous function, e.g., Gaussian
random field [38]. Aforementioned computational efficiency
opens numerous ways to apply surface correlation functions
in description of real surfaces, surface structural dynamics and
establishes them as universal interface descriptors. As such,
FSS and FSV can serve as metrics in deep learning application
for stochastic reconstructions and especially super-resolution,
e.g., Refs. [68–70], or can be, likely, even incorporated into
the cost function during training on modern GPUs.

VIII. SUMMARY

In this contribution we proposed a computationally effi-
cient and very flexible “digital” framework to evaluate surface
correlation functions for XCT and SEM images of real porous
media and materials. The methodology not only allows to
compute the full correlation maps in addition to directional
or ensemble average CFs, but also does this on both CPU
and GPU architectures. The code to perform all computations
is fully available as a Jupiter notebook (see Supplemental
Material [71]); moreover, the full functionality is now a part

065306-14



ROBUST SURFACE-CORRELATION-FUNCTION … PHYSICAL REVIEW E 107, 065306 (2023)

FIG. 17. Examples of SEM and XCT images which do not sat-
isfy our C0.5 criterion.

of the freely available CorrelationFunctions.jl package.
Based on the computed FSS and FSV functions for a variety of
artificial and real XCT/SEM digital images we were able to
conclude:

(1) On digital images edge-detecting filters can be utilized
to effectively extract the interface for surface CFs computa-
tions.

(2) It is possible to use digital images as a foundation for
robust surface correlation functions evaluation in case their
spatial resolution is adequate.

(3) It is possible to establish C0.5 criterion to evaluate if the
quality of the image at hand is adequate; for artificial images
passing this criterion the analytically known and computed
CFs are similar.

FIG. 18. Execution times for 2D and 3D input images for CPU
and GPU implementations.

(4) In case the C0.5 criterion is below the desired value, one
can utilize image magnification (e.g., in the form of bicubic
interpolation) to increase the image resolution and achieve the
necessary C0.5 criterion—in this latter case the surface CFs
computed from the magnified image reach high accuracy.

The developed methodology allows applying surface CFs
to describe the structure of porous materials based on their
experimental images and enhance stochastic reconstructions
or super-resolution procedures, or serve as an efficient metrics
in machine learning applications.
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APPENDIX A: DERIVATION OF ANALYTICAL
SOLUTIONS FOR 2D POISSON DISKS

Analytic representation of surface-surface and surface-void
correlation functions for overlapping n-dimensional balls with
centers generated by Poisson point process is well known
[47]:

FSV (r) = − lim
a1→R

∂

∂a1
e−λStot (r,a1,R), (A1)

FSS (r) = lim
a1,a2→R

∂

∂a1

∂

∂a2
e−λStot (r,a1,a2 ). (A2)

Here Stot(r, a1, a2) refers to a union volume of two n-
dimensional balls of radii a1 and a2 with a distance r between
their centers and λ is a parameter of Poisson process. For
two-dimensional disks we have the following expression for
Stot(r, a1, a2):

Stot(r, a1, a2) = πa2
1 + πa2

2 − Sint(r, a1, a2), (A3)

where Sint (r, a1, a2) is an intersection area of two disks, being
equal to

Sint (r, a1, a2) = a2
1 arccos

(
r2 + a2

1 − a2
2

2a1r

)

+ a2
2 arccos

(
r2 + a2

2 − a2
1

2a2r

)
−

√
Y

2
,

Y = (−r + a1 + a2)(r + a2 − a1)

× (r + a1 − a2)(r + a1 + a2),

when r < 2R and zero otherwise.
Substituting Sint(r, a1, a2) into Eq. (A3) and applying

Eq. (A2) for n = 2 we obtain Eq. (7) for FSS (r). Similarly
applying Eq. (A1) for n = 2 we obtain Eq. (6) for FSV (r).

APPENDIX B: IMPLEMENTATION OF SURFACE
FUNCTION COMPUTATIONS

The code used to compute surface correlation func-
tions in this manuscript was written in Julia language and
available as a Jupyter notebook in the Supplemental Material
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[71]. It uses CorrelationFunctions.jl package devel-
oped by our group (paper describing all aspects of different
CFs computation in addition to surface functions is cur-
rently in preparation) that allows efficient computation of

surface and other correlation functions using both CPU and
GPU architectures. The package allows to compute all clas-
sical CFs described in Torquato’s book [47] from digital
images.
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