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Snake net with a neural network for detecting multiple phases in the phase diagram
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Unsupervised machine learning applied to the study of phase transitions is an ongoing and interesting research
direction. The active contour model, also called the snake model, was initially proposed for target contour
extraction in two-dimensional images. In order to obtain a physical phase diagram, the snake model with an
artificial neural network is applied in an unsupervised learning way by the authors of [Phys. Rev. Lett. 120,
176401 (2018)]. It guesses the phase boundary as an initial snake and then drives the snake to convergence with
forces estimated by the artificial neural network. In this work we extend this unsupervised learning method with
one contour to a snake net with multiple contours for the purpose of obtaining several phase boundaries in a
phase diagram. For the classical Blume-Capel model, the phase diagram containing three and four phases is
obtained. Moreover, a balloon force is introduced, which helps the snake to leave a wrong initial position and
thus may allow for greater freedom in the initialization of the snake. Our method is helpful in determining the
phase diagram with multiple phases using just snapshots of configurations from cold atoms or other experiments
without knowledge of the phases.
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I. INTRODUCTION

Exploring the phases and phase diagrams of the matter
is a long-standing task in physics [1]. Commonly found in
life, such as water, there are three phases: solid-liquid-gas.
In addition, states of matter exist at very low temperatures
such as superconductors [2], superfluids [3], and, at very high
temperatures, plasma states [4]. The study of the distribution
of these phases in the phase diagram and the phase transition
boundaries between them is very helpful for one to understand
the natural world.

With the development of machine learning methods and
their integration into various disciplines, machine learning
methods are used to study the phases of matter [1,5]. Unsu-
pervised machine learning does not require real labels for the
data and is therefore more appreciated by researchers when
studying unknown questions. Commonly used unsupervised
machine learning methods are principal component analysis
[6–8], t-distributed stochastic neighbor embedding [9,10], and
diffusion maps [11–14]. Recent work also proposed a quan-
tum algorithm to achieve a quantum computational speedup
of diffusion maps [15].

In 2018 a simple snake model with a neural network was
proposed to search for the phase boundaries between the
two phases in the two-dimensional parameter space [16]. The
snake model, also known as the active contour model, was
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originally proposed by Kass et al. in the 1980s for target
contour extraction in two-dimensional images in the field of
computer vision [17]. The method is useful because it replaces
image processing with the active contour energy minimization
problem. The movement of the active contour is driven by the
well-defined image force Fimg.

For detecting phase transitions rather than images process-
ing, the authors of Ref. [16] proposed the neural network
discriminative cooperative network (DCN), which consists of
a learner network N and a guesser network G, and the two net-
works work in cooperation with each other. The DCN replaces
the image force Fimg of the snake model for images with
the derivative of the cross-entropy cost function S between
the outputs of G and N with respect to the position λg of
snakes, i.e., − ∂S

∂λg
. Using the method developed, the boundary

between the superfluid and insulating phases can be obtained
[16]. However, the simple snake model, i.e., only one contour
with a DCN, still encounters challenges in the study of phase
diagrams, especially for more than two distinct phases [16].

Here we propose to combine the snake net (SN) and the
DCN together to find multiple boundaries between phases.
The topology-preserving SN was developed by Butenuth et al.
in 2012 for image contour extraction [18,19]. The SN has
multiple snakes connected by common nodes. By updating the
positions of the snakes, the SN model can realize the contours
of images containing multiple colors, and the images can be
cells, roads, and so on. In our SN-DCN method, the snakes in
the SN are expected to converge to the real phase boundaries.
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FIG. 1. The basic idea of using the SN-DCN to locate the phase boundaries. (a) The typical input configurations of the BC model. (b) The
DCN tool processes the data. The DCN contains a learner network N and a guesser network G. (c) The phase boundaries detected by the
SN-DCN. Blue circles mark the nodes of the snake model, and the red circle indicates a special kind of node where the three snakes intersect.
The unit width of the snake is indicated by σ (green diamond) and its value is dynamic. The line segments between nodes indicate the phase
boundaries to be detected.

On the other hand, if the initial position of the snake is
far from the true boundary, in such a case the initial snake
converges very slowly and does not even get to the correct po-
sition because the snake does not feel enough force. Therefore
we introduce the balloon force (BF) [20] to the snake model,
originally proposed by Cohen et al. to help locate contours
over image processing. The BF reduces the problematic re-
quirement that the initial snake must be set near the true phase
transition boundary. The BF can also speed up the movement
of the snake and help decrease the number of iterative steps.

The basic idea is shown in Fig. 1. One first obtains the
dataset of the system, such as the configuration of the spin
systems. Then one initializes the position of the SN according
to the necessary prior knowledge and applies a DCN contain-
ing G and N to drive the initial snakes. Eventually, the snakes
locate at the phase boundaries, as shown in Fig. 1(c).

This work builds an SN-DCN to obtain the phase bound-
aries of the physical systems of interest. Here there are two
versions of the SN-DCN. The simplest SN has only three
snakes with a common node to get three-phase boundaries.
The other extended version of the SN, with five snakes, yields
five phase boundaries between the phases. The additional BF
introduced here can also be selectively added to the snake
net. We also test the hyperparameters of simple snake mod-
els with the DCN and find that the BF acceleration is most
effective.

The outline of this paper is as follows. In Sec. II we present
the SN-DCN method. In Sec. III the method is applied to the
Blume-Capel (BC) model with three phases and four phases,
respectively. Different topologies of the SN are also discussed.
In Sec. IV the BF-SN with the DCN are presented and applied
to the phase diagram for the quantum Bose-Hubbard (BH)
model and the BC model. The conclusion and discussion are
presented in Sec. V. In Appendix A a detailed description of
the snake model and the iteration matrix of our models are
presented.

II. THE SN-DCN METHOD

A. Input data

The input data type depends on the specific model and
parameter range. For the BC model [21], the input data are
the spin configurations obtained from Metropolis Monte Carlo

simulations [22], as shown in Fig. 1(a). The symbols “+,”
“−,” and “0” correspond to the values taken by the spins. The
stripelike pattern corresponds to the states +−

+− or +0
+0. The uni-

form pattern corresponds to the states ++
++ and 00

00, respectively.
The data comes from a lattice with the size of 16 × 16. For the
Bose-Hubbard model [23], the input data are wave functions
in the mean-field framework and are expressed as the square
of the expansion coefficients.

In real simulations, the physical parameters can be tem-
perature or different types of interaction labeled by λ, which
usually has two components in the physical parameter space
(λx, λy).

As shown in Fig. 2, each snake in the net has 50
nodes marked by blue circles, i.e., λi

g, i = 1, 2, . . . , 50. They
also represent the position of the guessed phase transi-
tion points. The sampled parameters are denoted as λ j, j =
1, 2, . . . , 1500. For each node a line is drawn perpendicular to
the snake with the node as the center point, and 30 sampling
parameters are taken at uniform intervals on the line, whose
length is restricted to [−2σ, 2σ ] and 4σ is also the width of
the snakes. By simulating the BC model or the BH model with
parameter λ, one can get an (average) configuration or wave
function d (λ). The input to G is the value of λ, and the input
to N is d (λ), as shown in Fig. 1.

B. DCN

Figure 1(b) shows the structure of the DCN, which includes
a learner network N and a guesser network G. The learner

FIG. 2. The way DCN gets input parameters. The blue circles
represent the nodes λi

g, i = 1, . . . , 50. The orange pentagrams repre-
sent the sampled parameters collected.
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network N is a fully connected network that absorbs the
classical configurations of the BC model or wave functions
of the BH model, labeled by d (λ), and outputs their classi-
fications pN

A and pN
B , i.e., the probability that d (λ) belongs

to phases A and B, respectively. The neurons in the hidden
layer read yH = f (d (λ) · W1 + b1), and the neurons in the
output layer yield N (d (λ)) = (pN

A , pN
B ) = f (yH · W2 + b2).

Here W1 and W2 are the weight matrices and b1 and b2 are
the bias vectors. The activation function for the neurons in the
hidden and output layer is a sigmoid function.

As shown in Fig. 1(b), the guesser G absorbs λ and outputs
two labels through the sigmoid function to determine the
probability that λ belongs to phase A or B, defined as

GA,B(λ) = (
pGA , pGB

) = sigmoid[sA,B(λ − λg)/σ ], (1)

where sA,B = −,+. The cross-entropy cost function between
N and G is defined as

S (N ,G) = −G · logN − (1 − G) · log(1 − N ), (2)

and the smallest S indicates the best match between the
guessed boundary and the true boundary.

Similarly to the theory of generative adversarial networks
[24], the DCN simultaneously optimizes N and G to obtain
the minimum S . N gets better learning results by updating
the parameters WN (W1, W2, b1, and b2), and G gets better
guessing results by updating λg and σ . These parameters co-
operate to achieve the purpose of discriminating between the
two phases. The dynamics of both networks can be defined as

�WN = −αN ∂S/∂WN , (3a)

�λg = −αλg∂S/∂λg, (3b)

�σ = −ασ ∂S/∂σ, (3c)

where αN , αλg , and ασ are the learning rates. The partial
derivatives of the above equations are expressed as

∂S
∂G = − logN + log(1 − N ), (4a)

∂GA,B

∂λg
= − sA,B

4σ cosh2[(λ − λg)/2σ ]
, (4b)

∂G
∂σ

= λ − λg

σ

∂G
∂λg

. (4c)

Figure 3 gives the flowchart of the update of the position
of one node. Starting from an initial input λg, then one gets
the parameters labeled as λ1, . . . , λ30. For each λi, there is a
Si obtained by evaluation of cross entropy. By averaging the
30 cross entropies, �λg can be obtained and used to update λg

for the next round of iterations.
For detecting the phase boundaries of multiple phases,

many nodes are usually required. Our aim is to initialize the
nodes in the parameter plane and drive them all close to the
real phase transition boundary using an active contour method
or snake model introduced in the next section.

C. The SN model

1. The simple snake model

The snake model is defined as a parametric contour,

C(s, t ) = [x(s, t ), y(s, t )], (5)

FIG. 3. The process of updating the nodes (λg) in the DCN. The
orange arrow is at the beginning of the iterations.

where s ∈ [0, 1] is a parameter, and C(0, t ) = C(1, t ) for a
closed contour where the boundary is periodic. t is the number
of iterations. For the images, x(y) refers to the real position of
the nodes. For the physical phase diagram to be studied, x(y)
represents the value of physical parameters such as tempera-
ture, or the interactions.

The total energy E is composed of the internal energy Eint

and the external energy Eext or the image energy Eimg. The
snake in the image has total energy given by

E (C) =
∫ 1

0
[Eint(C(s)) + Eext(C(s))]ds, (6)

where the internal energy reads

Eint = 1
2 [α(s)|C′(s)|2 + β(s)|C′′(s)|2]. (7)

In the equation above, C′(s) and C′′(s) are the first derivative
and the second derivative of C(s) with respect to s. The param-
eters α(s) and β(s) are adjustable and control the continuity
and smoothness of the curve. Here the external energy is
restricted to the image energy:

Eimg(C(s)) = −|∂Gσ (C)[I (C)]|2, (8)

where I (C) is the value of pixels, ∂ is a gradient operator,
and Gσ is a two-dimensional Gaussian kernel. The process
of minimizing the total energy of the snake will allow the
position of the snake to coincide with the boundary of the
target object. The snake is driven by the image force:

Fx(y) = −∂Eimg

∂x(y)
. (9)

In the framework of the DCN, Eimg is replaced by S , and
the node coordinates (x, y) are replaced with the physical
parameter (λx

g, λ
y
g).

2. The snake net model

In Fig. 4 the five snakes are separated by red circles.
The snakes are denoted by C j

i , where j = A, B,C, D, E
means five snakes and i = 0, . . . , n − 1 denotes the nodes
of the snakes. In total, there are three kinds of nodes, char-
acterized by their degrees ρ(C). Specifically, ρ(C) = 1, 2
denote the outer endpoints and the inner nodes, respectively,
which can be driven by the force similar to those in simple
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FIG. 4. Topology of the extended SN model. The SN model
contain five snakes CA

i − CE
i . These five snakes have three different

nodes ρ = 1, ρ = 2, and ρ = 3, respectively.

snakes. ρ(C) = 3 denotes the common node of the different
snakes [18].

For a pure image, by the minimization of the energy
functional Eq. (6), the different kinds of nodes satisfy the
following differential equation:

−αC′′ + βC′′′′ + −∂|∂Gσ (C)[I (C)]|2
∂C

= 0, (10)

whose detailed description is given in Appendix A. The above
equation gives the best description of effects of internal forces
Fint = αC′′ − βC′′′′ and external forces Fext = −∇Eimg on
each node of a snake. Switching from the pure images to the
physical systems, the external forces have to be replaced by
�λg.

For a closed, i.e., periodic boundary condition, a finite
difference operation on the Eq. (10) yields

∂Eimg

∂Ci
+ α[(Ci − Ci−1) − (Ci+1 − Ci )]

+ β(Ci−2 − 2Ci−1 + Ci ) − 2β(Ci−1 − 2Ci + Ci+1)

+ β(Ci − 2Ci+1 + Ci+2) = 0. (11)

However, for the SN model, each snake has a common node
Cn−1 marked in red, which obeys

∂Eimg

∂Cn−1
+ ξ [(Cn−1 − Cn−2) − (Cn−2 − Cn−3)] = 0, (12)

where only the first term of Eq. (11) with β as a coefficient
is retained, and the other terms, for example, Cn and Cn+1, are
not present at the ending points. Here ξ is another parameter
to be controlled [18].

By combining the set of equations for all nodes together
(see Appendix A 2), the following iterative equation can be
obtained:

AC + η f (C) = 0, (13)

where A is a pentadiagonal band matrix, which only depends
on the parameters α, β, and ξ . η f (C) = ∂Eimg

∂C , where η is an
additional parameter to control the weight between internal
and external energy. The iteration steps for the snakes between
Cnext and Ccurrent are

Cnext = (A + γ I)−1[γCcurrent − η f (Ccurrent )], (14)

where I is the identity matrix, and γ is the step size of the
snakes.

Figure 4 only shows the extended SN. Sometimes a simple
SN can be used with three snakes. The difference between the
simple SN and the extended SN is the number of common
nodes. The former has only one common node and the latter
has more than one common node. Moreover, mathematically,
the iteration of Eq. (14) can be different. In Appendix A 2,
three types of matrices A are shown for (i) a closed snake, (ii)
a snake with a fixed node at one end and a common node at
the other end, and (iii) a snake with both endpoints as common
nodes.

For image segmentation [18], a big matrix A can contain
the elements for all snakes. The couplings between different
snakes are defined in A. For physical systems we separate the
big matrix into several small matrices for each snake, and the
coupling between them is realized by passing the positions of
the common nodes.

III. THE APPLICATION OF THE SN-DCN METHOD

A. The BC model

We choose the BC model [21] to test our method. The
BC model on the square lattice is defined by the following
Hamiltonian:

H = −Jx

∑
〈i, j〉x

SiS j − Jy

∑
〈i, j〉y

SiS j + D
∑

i

S2
i − h

∑
i

Si,

(15)

where Si = ±1, 0, i = 1, 2, . . . , N , N represents the total
number of sites, and Jx(y) is the exchange interaction between
sites along the two directions. D is a single-spin anisotropy
parameter, and h is an external magnetic field. Figure 5(a)
shows the ground-state phase diagram of the BC model.
The temperature parameter T/Jy is as low as 0.1. The color
characterizing different phases is obtained by the value of∑

Si/N + |S1 − S2|.
In the next sections we use different classical phases to

test our SN-DCN method for the h = 0 BC model and the
extended SN-DCN method with two common nodes for the
h �= 0 BC model, respectively.

B. The SN-DCN method

A simple SN contains three snakes, which have a common
node, as shown in Fig. 5(a). The initial snakes are represented
by dashed lines, and the final snakes are marked by solid
lines. Snakes A, B, and C are marked in red, green, and
purple, respectively. The topology of the SN model is consis-
tent with the boundaries between the three phases, which are
the ferromagnetic, super-antiferromagnetic, and paramagnetic
phases. The configurations in a four-site cell are ++

++, +−
+−, and

00
00, respectively. The parameters for the SN-DCN are listed in
Appendix B 1.

According to Eq. (3c), during the updating process the unit
width σ of the snake is obtained. The cross-entropy cost S , the
internal energy Eint, and the external energy Eext of the snakes
are also recorded separately to ensure that the snakes meet the
mechanical balance.
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FIG. 5. The results of applying the SN-DCN method. (a) The
phase diagram of the BC model with h = 0, initial snakes (dashed
lines), and finial snakes (solid lines). (b) The average σ vs iteration
steps. (c) Total S vs steps. (d, e) Eint and Eext over steps. These
quantities converge very well.

In Fig. 5(b) the unit widths σA, σB, σC of three snakes are
shown. The width for each node is updated independently, so
the average width of all nodes for each snake is given here,
and these values converge from a value of 0.05 to about 0.01.

In Fig. 5(c) the total cross-entropy cost S is convergent. S
is a function of the guessed boundary λg and the unit width
σ of the snake. The DCN is used to find the minimum S
and the corresponding λg and σ using the gradient descent
method. Meanwhile, the values of EA,B,C

int and EA,B,C
ext also

converge as shown in Figs. 5(d) and 5(e). The stability of
the Eint indicates that the shape of snakes no longer changes.
According to Eq. (8), the value of pixel I (C) is replaced by
order parameters, i.e., the colors shown in Fig. 5(a). The closer
the snake is to the real phase boundary, the smaller the external
energy. These results show that the SN-DCN can be applied
to a phase diagram with three phases.

C. The distinct initial topology of SN-DCN

In the previous section the topology of the initial SN is
consistent with the true phase boundaries. Here we discuss
the correct results that are obtained with the wrong initial
topology, i.e., the topology of the initial SN is different from
the topology of the real boundaries.

FIG. 6. (a) The SN-DCN containing four snakes is used to detect
three boundaries. The initial SN are dashed lines and the final are
solid lines. (b) The external energy of the two snakes overlaps finally.

In Fig. 6(a), initially, there are four snakes (dashed lines),
but there are only three boundaries. Snakes A, B, C, and D are
marked in purple, blue, green, and red, respectively. After up-
dating, eventually the two snakes (red and purple) overlap to a
single true phase boundary. This shows that even with an extra
snake, our SN-DCN can still find the true phase boundaries
correctly. To further check whether or not other properties
overlap when the two snakes’ positions converge, the energy
of snakeA and snakeD overlap, as shown in Fig. 6(b).

D. The extended SN-DCN method

To test the generality of the SN-DCN method, the two
movable common nodes are introduced. It can detect bound-
aries between four phases. Figure 7(a) shows the ground-state
phase diagram of the BC model with Jx/Jy = −1. It contains

four phases whose configurations are ++
++, +−

+−, +0
+0, and 00

00. The

color is obtained by
∑4

n=1 |Si − Sin|/4, where Sin are the spins
located at the neighboring lattice sites.

The initial snakes are illustrated by the dashed lines, and
then the phase boundaries are detected by the final snakes
marked by solid lines in different colors. During the updat-
ing process, the quantities σ , S , Eint, and Eext are shown in
Figs. 7(b)–7(e), and all of them can be convergent, which
means that the SN model is extendable. The parameters for
obtaining Fig. 7 are listed in the Appendix B 2.

IV. THE BALLOON FORCE AND ITS APPLICATION

A. The motivation for introducing the balloon force

The BF is inspired by the field of computer image process-
ing [20]. It is used to solve the problem that when the initial
snake is far from the target contour, the snake cannot feel the
image force and cannot move. For physical systems, the pixel
points in the image are replaced by physical configurations. It
is not clear whether BF can help detect the boundary of the
phase.

We use the phase diagram of the BH model to illustrate
the effect of the BF. The Hamiltonian of the BH model is
expressed as [23]

H = −J
∑
〈i, j〉

(b†
i b j + b†

jbi ) +
∑

i

(
Uni(ni − 1)

2
− μni

)
,

(16)

where μ is the chemical potential, and J and U are the boson
hopping energy and on-site interaction, respectively. b and
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FIG. 7. The results of applying the extended SN-DCN method.
(a) The ground-state phase diagram of the BC model in the plane D
for h for Jx/Jy = −1, initial snakes (dashed lines), and finial snakes
(solid lines). (b) The average σ vs iteration steps. (c) Total S vs steps.
(d, e) Eint and Eext over steps. These quantities converge very well.

b† are the boson creation and annihilation operators, respec-
tively. ni represents the particle number operator of site i.
Using the mean-field approximation [25], the order parameter
ψ = 〈b†

i 〉 = 〈bi〉 can be introduced to describe the superfluid
and insulated phases.

In Ref. [16] the initial snake first encloses the target contour
and then it gradually shrinks to the target contour. Here, as
shown in Fig. 8(a), the snake is initialized at a different loca-
tion marked by the red symbols, i.e., within the target contour.
The ending points of the initial snake are fixed at the ends of
the axis zJ/U = 0. The purple line represents the snake after
convergence.

However, in Fig. 8(b) the initial snake is fully immersed in
the insulating phase marked in blue, and the snake is finally
located near the initial position, only the shape made a small
change under the action of internal forces. The reason is that
the snake hardly feels the external force which is provided
by cross-entropy cost S . According to Eq. (2), the sampled
data d (λ) from the parameter marked with green symbols in
Fig. 1(c) is from the same phase, S is a constant because the
outputs pGA,B and pN

A,B of G and N do not change. According
to Eq. (3b), the nodes of the snake cannot move.

FIG. 8. (a) Without the balloon force, the DCN can help find the
correct phase boundary (purple) if the initial snake (red) is set at the
correct initial position. (b) The DCN fails to find the correct phase
boundary (purple) if the initial snake (red) is set at the wrong initial
position.

When the initial position of the snake is poorly chosen, the
snake can get stuck in a certain region of the parameter space
and fail to converge to the phase boundary. Therefore, an
additional force, the balloon force, is introduced and it pushes
the snake toward the phase boundary in such cases. The DCN
with the balloon force method is named the BF-DCN method.
Here a decaying BF is defined as

Fballoon = κn(C), (17)

where κ decays with the iteration steps κ = κ0a−steps, and
n(C) means the normal direction of the snake. The direction
n(C) of the Fballoon outward along the normal direction is
positive.

To visualize the iterative process more clearly, for the ith
node the distance di between its positions at time t and the
final time t −→ ∞ is defined as

di =
√∣∣xt

i − x∞
i

∣∣2 + ∣∣yt
i − y∞

i

∣∣2
, (18)

where (xt
i , yt

i ) and (x∞
i , y∞

i ) are the coordinates of the ith node
at two different steps. Then the average distance is obtained as

D =
∑N

i=1 di

N
, (19)

where N represents the number of nodes in each snake. For
convenience we follow the custom of Ref. [16] and normalize
the range of coordinates in the physical parameter space.

B. Force analysis of snake nodes

To understand how the BF works, a force analysis of the
snake is performed here. The total force Ftot is composed of
the internal force Fint and external force Fext, i.e.,

Ftot = Fint + Fext, Fext = Fcost + Fballoon, (20)

where Fcost is the force introduced by the gradient descent
method to find the minimum cross-entropy cost, and its di-
rection is the direction normal to the snake. Fint depends on
parameters such as α, β, etc., and only changes the appearance
characteristics such as whether the snake is smooth or not, but
not the overall position. Therefore the magnitude of Fint is not
analyzed here.

In Fig. 9(a1) the forces on four snakes are shown. The BF is
marked by white arrows and labeled as Fb, i.e., Fballoon. When
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FIG. 9. Force analysis of snakes with balloon force. (a1) The
initial snake (red) with only balloon force Fb, and the final snake
(purple). Two possible positions of snakes (white lines) with forces.
Fcost and Fballoon, simplified as Fc and Fb. (a2) D vs steps for (a1).
D is the average distance between the corresponding nodes of the
initial and final snakes, as shown in Eq. (19). (b1) The initial snake is
completely immersed in the insulated phase. (b2) D vs steps for (b1).

using the BF, the position of the real phase boundary relative
to the initial snake needs to be known. The sign of Fballoon

cannot be varied in our approach. Under the action of Fballoon,
the initial snake marked in red begins to expand gradually to
the right.

The snakes located at other possible locations are also
shown, where the snake marked with the white line on the left
side perceives Fballoon and Fcost in the same direction, while the
snake marked with the white line on the right side perceives
Fballoon and Fcost in the opposite direction. The combined
effect of the two forces confines the snake to the real phase
boundary. In Fig. 9(a2), between the two green lines the snake
is moving fast. This is because, in the early stages, the BF
has not decayed as much. In the final stages, D ≈ 0 means
the snakes converge to the true phase boundary. In Fig. 9(b1),
with the help of Fballoon, at an initial position with Fcost = 0 the
snake is still able to iterate to the target position. The quantity
D is shown in Fig. 9(b2).

Here we provide a short argument why the snake is guar-
anteed to converge in with a decaying force. As shown in
Eq. (20), the external force Fext includes Fcost and Fballoon.

FIG. 10. D vs steps with (κ �= 0) and without (κ = 0) balloon
force. D is the average distance between the corresponding nodes of
the initial and final snakes, as shown in Eq. (19). Clearly, the balloon
force helps accelerate the convergence.

The function of Fcost is similar to the restoring force of a
spring, dedicated to pulling the nodes of the snake back to
the equilibrium position, or the true phase boundary, where
Fcost = 0. The BF should also be close to 0 at the phase
boundary; otherwise, if the BF is a nonzero constant the snake
can go beyond the true phase boundary.

C. The superparameters and the improvement
by the balloon force

In Fig. 10 the data of D vs steps show that Fballoon reduces
number of training steps. For comparison purposes, the initial
positions corresponding to the different data lines are the
same. κ = 0, i.e., Fballoon = 0, results in a slow convergence
effect with convergence steps to over 600. Other parameters
are set to α = 0.001, β = 2, and γ = 0.15. These parameters
correspond to the fastest convergence with Fballoon = 0. So we
choose this set of data as a comparison for Fballoon �= 0.

We also show the effects of other parameters. We adjust
many values of α, β, and γ , and none of them are found
to accelerate the convergence of D more easily than the BF.
Without the BF, the distances D are shown vs iteration steps
with different values of α, β, and γ . In Fig. 11(a) α varies
from 0.1 to 0.0001. The fastest parameter is an intermediate
value of 0.001. The reason is that large α makes the snake
straight and hinders bending. Small α leads to the curve being
too easy to bend without being rigid. It has notorious difficulty
in determining the weights α, β, and γ associated with the
smoothness constraint, reported in a review reference [26].
Similarly, the results of modifying β and γ are shown in
Figs. 11(b) and 11(c).

D. The balloon force applied to multiple phases

For physical systems, the fluctuation of data near phase
boundaries is maximum. Especially, multiple phase bound-
aries meet and are more difficult to handle. Here we discuss
whether or not BF works in phase diagrams containing more
than two phases.

In Fig. 12(a) the BF is added to an initial snake that is
immersed in the 00

00 phase, and this snake eventually converges
to the phase boundary. Meanwhile, in Fig. 12(b) Eint and Eext

are also shown to verify the results.
In Fig. 13(a) the initial snakes are dashed lines and the

final snakes are solid lines. Snakes A, B, and C are marked
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FIG. 11. Without balloon force, D vs steps for various parame-
ters α, β, and γ . D is the average distance between the corresponding
nodes of the initial and final snakes, as shown in Eq. (19). (a) Adjust-
ing only α, (b) adjusting only β, and (c) adjusting only γ .

FIG. 12. The DCN with balloon force is applied to a phase di-
agram containing three phases. (a) The initial snake (red), the final
snake (pink line), and the balloon force (pink arrows). (b) Eint and
Eext vs steps.

FIG. 13. Introducing balloon force to the SN-DCN. (a) The ini-
tial snakes (dashed lines), the final snakes (solid lines), the arrows
represent the balloon force. (b) Eext vs steps.

in purple, blue, and green, respectively. By applying BF to
snakeB and snakeC , respectively, we still get the correct result.
In Fig. 13(b) the Eext converge to a minimum value, indicating
that the snakes stably stay at the true phase boundary. The
results represent that it is feasible to select one or two of the
snakes in the SN-DCN to add extra BF.

In short summary, the BF can somewhat reduce the re-
striction that the initial position of the snake model must be
close to the real boundary; moreover, the BF can accelerate
the movement of the snake with the DCN.

V. CONCLUSION AND DISCUSSION

In conclusion, we extend the DCN with a simple snake
model by altering the topology to a snake net. This poten-
tially allows one to map out two-dimensional phase diagrams
featuring more than two distinct phases, which is a limita-
tion of the original approach [16]. Moreover, we introduce
an additional external force (balloon force) which may help
the snake to leave its initial position more quickly or leave a
wrong initial position and thus may allow for greater freedom
in the initialization of the snake.

Our idea to introduce BF is from Ref. [16], which presents
the difficulty of initialization of the snake and gives an idea to
solve the problem: scale or move the snake. There are several
ways to change the position of the snake, including transla-
tion, rotation, and expansion. BF is a dynamic way to move or
expand the snake, which helps the snake to have overlapping
parts with real phase boundaries. BF can be applied to simple
snakes with open and periodic boundaries, as well as to snake
nets. BF gives the snake some flexibility.

In this paper the BF does not completely solve the problem
of limiting the initial position of the snake; it only makes
the snake more flexible to some extent. When applying BF, a
priori information about the relative position of the true phase
boundary with respect to the initial position of the snake is
useful. As shown in Fig. 9(b1), the snake expands from the left
side of the phase diagram to the right side. Considering that
the SN-DCN method is proposed in the framework of unsu-
pervised learning, perhaps we can initialize two independently
updated snakes, one moving in the direction to the left and
the other to the right, finally dropping the snake that overlaps
with the parameter axis. The direction in the expansion is
considered a hyperparameter.

It should be remembered that if the possible location
of the real phase boundary is known, it is simpler to ad-
just the position of the initial snake appropriately without
using BF. However, through testing, it is found that the
BF helps to make the initial snake position more flex-
ible and provides the possibility to find unknown phase
boundaries.

Although machine learning of phase transitions has been
proposed for many years [1,5], unsupervised machine learn-
ing for a phase transition is still very active, including the
interpretability of the machine learning [27,28], studying the
topological phase [29,30], as well as the experimental im-
plementation of the unsupervised learning method [31]. It is
also expected that machine learning methods, in the future,
will solve difficulties that are difficult to solve by traditional
methods.
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APPENDIX A: DETAILS ABOUT THE SNAKE MODEL

In this Appendix we give a slightly more detailed deriva-
tion of the snake model, as well as the iteration matrix for
different snakes.

1. Energy minimization condition

In order to get the best position of the snake, we need
to calculate the minimum energy. Our derivation is slightly

different from Ref. [18]. We call C(s) the true contour, the
one we are trying to find. We take some trial contour

Ctrial(s) = C(s) + εδ(s), (A1)

which differs from the true contour by εδ(s), where ε is a
small quantity and δ(s) is an arbitrary function. If we write
Eq. (6) as the following form,

F =
∫ 1

0
L[C(s),C′(s),C′′(s)]ds, (A2)

where L(C,C′,C′′) = Eint + Eext is the energy per ds, where
[C(s),C′(s),C′′(s)] are considered to be independent vari-
ables, then we get

dF (ε)

dε

∣∣∣∣
ε=0

= 0. (A3)

Since we’ve already chosen the true contour, this makes the
total energy minimum according to the principle of calculus
of variations.

Putting Eq. (A2) in Eq. (A3), one gets

dF (ε)

dε

∣∣∣∣
ε=0

=
∫ 1

0

[
∂L

∂ (C + εδ)

d (C + εδ)

dε
+ ∂L

∂ (C′ + εδ′)
d (C′ + εδ′)

dε
+ ∂L

∂ (C′′ + εδ′′)
d (C′′ + εδ′′)

dε

]
ds

=
∫ 1

0

[
∂L
∂C

δ + ∂L
∂C′ δ

′ + ∂L
∂C′′ δ

′′
]

ds

=
∫ 1

0

∂L
∂C

δ(s)ds + ∂L
∂C′ dδ(s) + ∂L

∂C′′ dδ′(s)

= ∂L
∂C′ δ(s)

∣∣∣∣
1

0

+ ∂L
∂C′′ δ

′(s)

∣∣∣∣
1

0

+
∫ 1

0

[
∂L
∂C

δ(s) −
(

∂L
∂C′

)′
δ(s) −

(
∂L
∂C′′

)′
δ′(s)

]
ds

=
∫ 1

0

[
∂L
∂C

δ(s) −
(

∂L
∂C′

)′
δ(s) −

(
∂L
∂C′′

)′
δ′(s)

]
ds

=
∫ 1

0

[
∂L
∂C

−
(

∂L
∂C′

)′
+

(
∂L
∂C′′

)′′]
δ(s)ds = 0.

For the arbitrary function δ(s), the generalized Euler-
Lagrange equation can be obtained as

∂L
∂C

−
(

∂L
∂C′

)′
+

(
∂L
∂C′′

)′′
= 0, (A4)

for solving the minimum value of the energy functional. Equa-
tion (A4) is formally a second-order Euler-Lagrange equation,
i.e., a Jacobi-Ostrogradsky formulation, which has a number
of applications in fundamental physics (e.g., Refs. [32–34]).

2. Iteration matrix A

By putting the product function Eq. (6) into Eq. (A4), we
get the differential equation

−αC′′ + βC′′′′ + ∂Eimg

∂C
= 0. (A5)

Here we can consider αC′′ − βC′′′′ and -∇Eimg as internal
forces Fint and external forces Fext on the snake, respectively.

The snake satisfies the mechanical balance Fint + Fext = 0.
For simplicity, Eimg = Eext is assumed here, i.e., there is no
other external force except the image force. Since Eimg is not
available as an expression of C for general images, Eq. (A5)
has no analytical solution. Moreover, analytical solutions of
higher-order differential equations are known to generate spu-
rious or unstable solutions as evidenced by the Ostrogradsky
instability. However, this equation can be reliably solved by
the finite difference numerical method and reads

∂Eimg

∂C
+ α[(Ci − Ci−1) − (Ci+1 − Ci )]

+ β(Ci−2 − 2Ci−1 + Ci ) − 2β(Ci−1 − 2Ci + Ci+1)

+ β(Ci − 2Ci+1 + Ci+2) = 0. (A6)

Equation (A6) is the mechanical equation satisfied by node i
and its neighborhood nodes. By combining the set of equa-
tions for all nodes together, the following equation can be
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FIG. 14. The results of applying the SN without the DCN to
detect contour in the image with three different colors. (a) The gray
image, the initial snakes are in pink, and the final snakes are in green.
The red dot represents the common node where the three snakes
intersect. (b) EA

int - EC
int vs steps. (c) EA

ext - EC
ext vs steps.

obtained,

AC + ∂Eimg

∂C
= 0, (A7)

where A is a pentadiagonal banded matrix, which
only depends on the parameters α and β, and C =
[C0,C1, . . . ,CN−1]Transpose.

For a snake with periodic boundary conditions, the matrix
is defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 b1 a2 aN−2 bN−1

b0 c1 b2 a3 aN−1

a0 b1 c2 b3 a4

a1 b2 c3 b4 a5

...

aN−5 bN−4 cN−3 bN−2 aN−1

a0 aN−4 bN−3 cN−2 bN−1

b0 a1 aN−3 bN−2 cN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A8)

where the values of ai, bi, ci are as follows:

ai = β, (A9a)

bi = −α − 4β, (A9b)

ci = 2α + 6β. (A9c)

Pentadiagonal matrices are sparse band matrices and therefore
useful for numerical analysis.

For the simple SN model, such as CA with one fixed node
at the end and one common node at the other end, as shown in

FIG. 15. The results of applying the SN without the DCN to
detect contour in the image with four different colors. (a) The gray
image, initial snakes (pink), final snakes (green), and the common
nodes (red dots). (b) EA

int - EE
int vs steps. (c) EA

ext - EE
ext vs steps.

Fig. 14(a), the matrix A is modified as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 e1 b2 a3 aN−1

a0 b1 c2 b3 a4

a1 b2 c3 b4 a5

...

aN−5 bN−4 cN−3 bN−2 aN−1

a0 aN−4 bN−3 eN−2 dN−1

fN−3 gN−2 fN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A10)

where the elements of the first row are 0 due to the first node
being fixed. Unlike the periodic boundary snake, there are
many boundary-related elements that have been revised and
the values of ai, bi, ci, di, ei, fi, gi are as follows:

ai = β, (A11a)

bi = −α − 4β, (A11b)

ci = 2α + 6β, (A11c)

di = −α − 2β, (A11d)

ei = 2α + 5β, (A11e)

fi = ξ, (A11f)

gi = −2ξ . (A11g)

065303-10



SNAKE NET WITH A NEURAL NETWORK FOR DETECTING … PHYSICAL REVIEW E 107, 065303 (2023)

Similarly, for the snake which has two movable endpoints
such as CC as shown in Fig. 15(a), the matrix is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 g1 f2

d0 e1 b2 a3 aN−1

a0 b1 c2 b3 a4

a1 b2 c3 b4 a5

...

aN−5 bN−4 cN−3 bN−2 aN−1

a0 aN−4 bN−3 eN−2 dN−1

fN−3 gN−2 fN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A12)

Reference [18] defines a total matrix A which contains the
elements for all snakes. Here the matrix A we defined is for
each snake. The coupling between each snake can be achieved
by passing the coordinates of common nodes from one snake
to other snakes.

3. The iteration equation

Equation (A7) is a static mechanical equilibrium equa-
tion without considering the damping force of the deformed
contour. To describe a dynamic contour, the time parameter
t and the damping force Fdump(Ct ) = −γ ∂Ct

∂t and the inertia

term μ∂2Ct
∂t2 are introduced, and then the equation

μ
∂2Ct

∂t2
= Fdump(Ct ) + Fint (Ct ) + Fimg(Ct ) (A13)

is obtained, where

−Fint = −αC′′
t + βC′′′′

t = AC, (A14a)

−Fimg = ∂Eimg

∂C
= η f (Ct ), (A14b)

and where η is an additional parameter in order to control
the weight between internal and image energy. The inertia
term μ∂2Ct

∂t2 is set to zero because the inertia term can cause
the snake to cross the target boundary. This dynamic process
becomes a quasistatic process as

γ
∂Ct

∂t
= Fint + Fimg. (A15)

The equation of the discrete snake becomes

−γ (Ct+1 − Ct )

�t
= ACt+1 + η f (Ct ). (A16)

Taking the time step as �t = 1, one gets

−γ (Ct+1 − Ct ) = ACt+1 + η f (Ct ). (A17)

Finally, the iteration equation of the snake is obtained as

Ct+1 = (A + γ I)−1[γCt − η f (Ct )], (A18)

where I is the identity matrix.

4. Segmentation of images

In Fig. 14(a) a gray image with three different values of the
pixels are shown as white, gray, and black. The dashed lines
are the initial snakes, and the solid lines are final snakes. It
is clear that, for the pure image, the SN model can reach the
boundaries between the different color blocks.

In Figs. 14(b) and 14(c) the internal and external energies
of each snake have been given with the number of iterative
steps. All the quantities converge very well. The internal
energy converges, and this means the shapes of the snakes
are no longer changing and the external energy converges
to a minimum value, implying that the snakes move to the
boundary to be found. The stabilization of both internal and
external energies indicates that the snake stays steadily at the
boundary to be sought. In Figs. 15(a)–15(c) similar results for
a more general SN are shown. Although this task of contour
extraction belongs to the field of computer vision and image
processing, it is helpful to understand the SN-DCN.

APPENDIX B: PARAMETERS OF THE NEURAL
NETWORKS

1. The parameters for obtaining Fig. 5

The parameters of the neural network N are set as follows:
minibatch size Nb = 1500, initial learning rate αN = 0.01,
learning rate decay = 0.999, input layer 256, hidden layer
160, output layer 2, and optimizer = ‘ADAM’. Here the
“ADAM” optimizer is implemented with the TENSOR FLOW

library [35]. The parameters α, β, γ of snakeA − snakeC are
set to α = 0.05, 0.2, 0.2, β = 10, 5, 5, and γ = 0.6, 0.1, 0.1,
respectively. ξ = 0.1. The dynamic unit width σ of each node
is initialized to 0.05 and is limited in the range from 0.07 to
0.01.

2. The parameters for obtaining Fig. 7

The parameters of the neural network N are set as follows:
minibatch size Nb = 1500, initial learning rate αN = 0.01,
learning rate decay = 0.998, input layer 256, hidden layer 160,
output layer 2, and optimizer = ‘ADAM’. The parameters α,
β, γ of snakeA are set to α = 3, β = 5, and γ = 0.2. The
parameters of snakeB − snakeE are set to α = 2, β = 0.4,
and γ = 0.22. ξ = 0.2. The dynamic unit width σ of each
node is initialized to 0.06 and is limited in the range from
0.08 to 0.02.
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