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Lattice sum for a hexagonal close-packed structure and its dependence on the c/a ratio of the
hexagonal cell parameters
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We continue the work by Lennard-Jones and Ingham, and later by Kane and Goeppert-Mayer, and present a
general lattice sum formula for the hexagonal close packed (hcp) structure with different c/a ratios for the two
lattice parameters a and c of the hexagonal unit cell. The lattice sum is expressed in terms of fast converging
series of Bessel functions. This allows us to analytically examine the behavior of a Lennard-Jones potential as
a function of the c/a ratio. In contrast to the hard-sphere model, where we have the ideal ratio of c/a = √

8/3
with 12 kissing spheres around a central atom, we observe the occurrence of a slight symmetry-breaking effect
and the appearance of a second metastable minimum for the (12,6) Lennard-Jones potential around the ratio
c/a = 2/3. We also show that the analytical continuation of the (n, m) Lennard-Jones potential to the domain
n, m < 3 such as the Kratzer potential (n = 2, m = 1) gives unphysical results.

DOI: 10.1103/PhysRevE.107.065302

I. INTRODUCTION

The hexagonal close packed structure (hcp) shown in Fig. 1
with a packing sequence of (AB)∞ is made up of hexagonal
layers stacked in three dimensions. When the lattice param-
eters are in the ratio of c/a = √

8/3 the hcp structure has
the same packing density (ρ = π/3

√
2) as the face-centered

cubic structure (fcc) with a stacking sequence of (ABC)∞. It
has only recently been proven by Hales that the fcc packing
density cannot be surpassed (Kepler’s original conjecture [1])
and therefore is optimal [2]. Of course, any Barlow packing,
which can be seen as mixtures of hcp and fcc stacking se-
quences, such as (ABCBCACAB)∞, is also optimal, and there
are infinitely many [3–6].

In 1924 Lennard-Jones and Ingham used an inverse power-
law potential of the form

VLJ(r) = εnm

n − m

[
1

n

( re

r

)n
− 1

m

( re

r

)m
]
, (1)

for n > m (n, m ∈ R and n, m > 3) and lattice sums Ln in or-
der to obtain estimates for the cohesive energies for the simple
cubic (sc), body-centered cubic (bcc), and face-centered cubic
(fcc) lattices [7,8],

E coh
LJ (R) = εnm

2(n − m)

[
Ln

n

( re

R

)n
− Lm

m

( re

R

)m
]
. (2)

In the above, re is the equilibrium distance for the LJ
potential of two interacting atoms, that is, ∂

∂r VLJ(r)|r=re = 0,
and ε its dissociation energy, and R is a distance parame-
ter dependent on the specific lattice. In the case of the sc,
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bcc, or fcc lattice, R is simply the nearest-neighbor distance
rNN = min(di j ), where di j is the distance between two lattice
points i and j. In our case, as we shall see, R represents the hcp
lattice constant a in the solid. The potential form in (1) would
later come to be commonly known as the Lennard-Jones (LJ)
potential (albeit introduced earlier by Grüneisen [9]) and is
one of the most widely used two-body potentials in phase
simulations.

The lattice sums for the cubic lattices are infinite sums
in terms of quadratic forms involving the (3 × 3) Gram
matrix G,

Ln = λ
∑

�i∈Z3\�0
(�i�G�i)−n/2. (3)

The components of G are defined by the scalar products of
three lattice vectors �bi defining the Bravais lattice in question,
(Gi j ) = (�b�

i
�b j ), and the role of the parameter λ ∈ R+ will

become clear later. For example, in the simple cubic lattice,
G becomes simply the identity matrix, Gsc = I . Such lattice
sum expressions can easily be extended to higher dimensions
(N > 3) and in principle to other types of potentials, although
expressions for Ln can become rather more complicated func-
tions of the underlying lattice [10–12]. A nice example here is
the Madelung constant for dimensions up to N = 4 and even
dimensions N = 6 and 8 [12,13] and more recently for any
dimension N [14]. The series (3) converges for n > 3 and
diverges otherwise.

There are many different methods to convert the usually
slow convergent lattice sums for inverse power potentials into
fast converging series for which a detailed account is given by
Borwein et al. [12] Such expressions contain standard func-
tions which allow for analytical continuation into the region
(n < 3 for the cubic lattices) where such a series as shown in
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FIG. 1. The hcp structure with ABABAB. . . sequence (layers A
in red and B in blue) of hexagonal close-packed layers and corre-
sponding cell parameters a and c. The ratio c/a = √

8/3 leads to the
optimal hcp lattice with maximum packing density and 12 kissing
spheres around a central atom.

(3) diverges. Some of these methods have recently been used
to produce fast converging series [15] very much in the spirit
of Lennard-Jones’ early work on lattice sums [7,8].

In 1940 Kane and Goeppert-Mayer evaluated the lattice
sum for the ideal hcp structure [16]. Although they did not
provide an explicit expression for the lattice sum in their
paper (which was given later by Bell and Zucker [17]), their
values obtained from direct summation plus estimate of the
remainder for Ln where n = 6, 8, 10, and 12 were accurate
to four decimal places. They stated that “for the hexagonal
crystal, the method used by Lennard-Jones could not easily
be adopted, so we have used a more tedious and less elegant
method” [16], which was by direct summation [18]. Borwein
et al. decomposed the hcp lattice in terms of four different
lattice sums containing quadratic functions but did not provide
an efficient method for evaluating them [12].

Lattice sums using direct summation and their phase
diagram implications for the LJ model applied to the close-
packed fcc and hcp lattices have been studied by Stillinger
[19]. In a recent paper [20] we introduced lattice sums for
cubic lattices and the hcp structure followed by various ex-
pansion methods using Bessel functions leading to very fast
convergent series thus avoiding computer time expensive and
slowly converging direct summation techniques. The derived
expansions for the hcp lattice were all restricted to the ideal
ratio of c/a = √

8/3 and were in some cases rather cum-
bersome. Here we introduce new and more efficient fast
converging expressions for the lattice sum of the hcp struc-
ture with an arbitrary c/a ratio. We analyze the lattice in
detail for the LJ potential defined in (1) and look for possible
symmetry-breaking effects where the kissing number (number
of touching spheres around a central atom in a lattice) of
the 12 equidistant atoms from the central atom is lowered.
Here we mention that recently a second metastable minimum
was found in solid-state calculations using an extended LJ
potential and direct lattice summations [21], and we will show
that an analytical treatment using exact lattice summations,
not only leads to the same metastable minimum but gives
insight into why such a minimum exists. Moreover, we discuss
the relationship with the fcc lattice in terms of lattice sums
and analyze if analytical continuation gives physical relevant
results or not.

II. THE LATTICE SUM FOR THE HEXAGONAL CLOSED
PACKED STRUCTURE

A. The hexagonal Bravais lattice

Consider an inverse power potential of the form

V (r) = kr−n. (4)

If all atoms in a Bravais lattice interact through such a poten-
tial then the cohesive energy becomes

E coh = k lim
N→∞

1

N

N∑
i< j

r−n
i j = k

2
lim

N→∞
1

N

N∑
i �= j

r−n
i j = k

2

∑
i∈N

r−n
0i ,

(5)

where ri j is the distance between atom i and j. For the last
sum we used translational symmetry for a Bravais lattice with
an arbitrarily chosen origin at the position of one of the atoms
in the lattice.

For a hexagonal Bravais lattice we choose the basis vectors
in the following form:

�b�
1 = a(1, 0, 0), �b�

2 = a

(
1

2
,

√
3

2
, 0

)
, �b�

3 = c(0, 0, 1).

(6)

This leads to the positive definite and symmetric Gram matrix

(Gi j ) = (�b�
i
�b j ) = a2

⎛
⎝1 1

2 0
1
2 1 0
0 0 c2

a2

⎞
⎠, (7)

with det(G) = 3
4 a4c2 > 0. From our arbitrarily chosen atom

at the origin, all points in the hexagonal lattice can be reached
through the distance vectors

�ri jk = i�b1 + j�b2 + k�b3. (8)

Their distances to the origin are given by the following
quadratic form:

ri jk (a, c) = |�ri jk| = (�v�G�v)
1
2 = a

(
i2 + i j + j2 + c2

a2
k2

) 1
2

,

(9)

with �v� = (i, j, k) ∈ Z3 and i, j, k ∈ Z (i = j = k = 0 ex-
cluded). The volume of the unit cell is determined through
the Gram matrix

V (a, c) =
√

detG =
√

3

2
a2c. (10)

The nearest-neighbor distance is then given by

rNN(a, c) = min{ri jk} = min{a, c}. (11)

For the following we define the parameter γ = c/a > 0,
that is, we move from the original (a, c) parameter space to
(a, γ ). This is convenient as the lattice constant a becomes
just a multiplicative constant. In other words, we do not have
to carry it through in the evaluation of our lattice sum L,
which then becomes dependent only on the single parameter
γ . This leads to the following expression for our inverse power
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potential ∼r−n:

LA(s, γ ) = an
∑

�i∈Z3\�0
(�v�G�v)−n/2

=
∑

i, j,k∈Z

′
(i2 + i j + j2 + γ 2k2)−s (12)

with s = n/2. The λ parameter in (3) is set to λ = an so that
LA(s, γ ) is dependent only on s and γ . The prime on the sum
indicates that the summation is over all integers except for
the term corresponding to i = j = k = 0. We note here that
these lattice sums can be seen as special cases of the Epstein
zeta function [22]. A peculiarity of this lattice sum is that
lims→∞ LA(s, γ ) = ∞ for γ < 1, and one has to take special
care of large s values in this small γ region.

B. The hcp multilattice

The hcp structure is a multilattice [23] characterized by two
nested hexagonal Bravais lattices with one layer shifted by a
vector of �v�

s = a( 1
2 , 1

2
√

3
, c

2a ) with respect to the lattice vectors
given in (6), such that the position of any atom in the B layers
is given by

�rAB
i jk (a, c) = i�b1 + j�b2 + k�b3 + �vs, (13)

with �b1, �b2, and �b3 as in (6). The shift vector can easily be
derived from the fact that an atom in the B layer sits above
the centroid of a triangle of neighboring lattice points in the
A layer. Once can also describe the hcp structure as a base
hexagonal lattice introducing the middle B layer in the right
(Wyckoff) positions [24] inside the Bravais lattice as shown in
Fig. 1.

The corresponding lattice sum for the distances from the
origin in the A layer to all points in the B layers can now
easily be obtained and is given by [20]

LB(s, γ ) =
∑

i, j,k∈Z

[(
i + 1

3

)2

+
(

j + 1

3

)2

+
(

i + 1

3

)(
j + 1

3

)
+ γ 2

(
k + 1

2

)2]−s

, (14)

where we also multiplied through by the parameter λ = an.
The lattice sums (12) and (14) are exactly those given by Bell
and Zucker [17]. The lattice sum LB(s, γ ) is not a quadratic
form but a quadratic function instead, which is therefore more
difficult to evaluate through techniques such as the Terras de-
composition [25] used in Ref. [20]. One way is to decompose
LB(s, γ ) into a sum of four lattice sums that involve quadratic
forms; see Appendix D. Another way is to work with (14)
directly and employ the theory of cubic theta functions, as we
will see in Sec. III, where two different formulas are obtained.
Again, one has to take special care of large s values for small

values of γ as we have lims→∞ LB(s, γ ) = ∞ for γ <

√
8
3 .

Taking both AB layers into account the lattice sum for the
hexagonal close packed structure is given by

Lhcp(s, γ ) = LA(s, γ ) + LB(s, γ ). (15)

For the nearest-neighbor distance rNN in an hcp lattice we
have to also consider the neighboring distance between points
in the A and B layers, and so

rNN(a, γ ) = min

{
a, c,

√
a2

3
+ c2

4

}

= a min

{
1, γ ,

√
1

3
+ 1

4
γ 2

}

= a

⎧⎪⎪⎨
⎪⎪⎩

γ if 0 < γ � 2
3√

1
3 + γ 2

4 if 2
3 < γ <

√
8
3

1 if γ �
√

8
3 .

(16)

To compute the density, we have from (10) that the volume of
a cell in the hexagonal lattice is

V =
√

3

2
a2c =

√
3

2
a3γ . (17)

Insertion of the B layer means that each cell contains two
atoms and therefore halves the occupied volume, and hence
for cells in the hcp lattice we have

Vcell = 1

2
×

√
3

2
a2c =

√
3

4
a3γ . (18)

The volume of a sphere is given by

Vsphere = 4

3
π

(
rNN(a, γ )

2

)3

, (19)

and therefore the density of the lattice is given by

ρ(γ ) = Vsphere

Vcell
= 2π

3
√

3
× 1

γ
×
(

rNN(a, γ )

a

)3

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π

3
√

3
γ 2 if 0 < γ � 2

3 ,

2π

3
√

3
× 1

γ

(
1
3 + γ 2

4

)3/2
if 2

3 < γ <

√
8
3 ,

2π

3
√

3
× 1

γ
if γ �

√
8
3 .

(20)

Graphs of the density ρ(γ ) and the normalized nearest-
neighboring distance a−1rNN(a, γ ) as functions of γ are
shown in Fig. 2. For hard unit spheres there is also a re-
quirement that rNN(1, γ ) � 1, and this gives the condition that
γ � √

8/3, corresponding to the region labeled III in Fig. 2.

The optimal packing density occurs when γ =
√

8
3 and is

given by

ρ

(√
8

3

)
= π

3
√

2
= 0.74048048969 . . . , (21)

identical to that of the fcc lattice [1,2]. The value γ =
√

8
3

corresponds to the hexagonal close packing structure. The
kissing number is κ = 12.
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FIG. 2. Normalized nearest-neighbor distance rNN(a, γ )/a ac-
cording to Eq. (16) and the optimal packing density ρ(γ ) according
to Eq. (21). The kissing number κ for the three regions and at the two

boundaries are shown. The vertical dashed lines are at γ = 2
3 and

√
8
3

where we have increased kissing numbers.

III. BESSEL FUNCTION EXPANSIONS
OF THE HCP LATTICE SUM

In the following we analyze LA(s) and LB(s) one at a
time (we omit the argument γ for better clarity). We obtain
two different Bessel function expansions which have poles at
different s values (except for s = 3/2) and thus can be used
to check against each other. In the proofs we will frequently
refer to formulas for special functions given by (A1)–(A25) in
Appendix A.

A. The lattice sum LA(s)

We break the sum for LA(s) into two, according to whether
k = 0 or k �= 0. This gives

LA(s) = f (s) + 2F (s), (22)

where

f (s) =
∑

i, j∈Z

′
(i2 + i j + j2)−s (23)

and

F (s) =
∑
k∈N

∑
i, j∈Z

(i2 + i j + j2 + γ 2k2)−s, (24)

with N defined as the set of positive integers, and N0 in-
cludes the zero. The function f (s) has been evaluated before
[12,26],

f (s) = 6ζ (s) L−3(s) = 31−s2ζ (s)
[
ζ
(
s, 1

3

)− ζ
(
s, 2

3

)]
, (25)

where ζ (s, x) is the Hurwitz zeta function

ζ (s, x) =
∑
i∈N0

(i + x)−s, (26)

where ζ (s) = ζ (s, 1) is the Riemann zeta function, and L−3 is
the L function defined by

L−3(s) =
∑
k∈N

sin(2kπ/3)

sin(2π/3)

1

ks
= 1

1s
− 1

2s
+ 1

4s
− 1

5s
+ · · · .

(27)

It remains to calculate F (s). Applying the gamma function
integral shown in (A2),

1

ws
= 1


(s)

∫
[0,∞)

xs−1 e−wx dx, (28)

followed by the cubic analog of the theta function transforma-
tion formula, (A12), we obtain

(2π )−s
(s)F (s)

=
∫

[0,∞)
xs−1

∑
k∈N

e−2πγ 2k2x
∑

i, j∈Z
e−2π (i2+i j+ j2 )x dx

= 1√
3

∫
[0,∞)

xs−2
∑
k∈N

e−2πγ 2k2x
∑

i, j∈Z
e−2π (i2+i j+ j2 )/3x dx.

(29)

Now separating out the i = j = 0 term and evaluate the result-
ing integrals using the following expression for the modified
Bessel functions of the second kind shown in (A3)∫

[0,∞)
xs−1e−ax−b/x dx = 2

(
b

a

)s/2

Ks(2
√

ab), (30)

we get

(2π )−s
(s)F (s) = 1√
3

∑
k∈N

∫
[0,∞)

xs−2e−2πγ 2k2x dx + 1√
3

∑
k∈N

∑
i, j∈Z

′ ∫
[0,∞)

xs−2e−2πγ 2k2x−2π (i2+i j+ j2 )/3x dx

= (2πγ 2)1−s

√
3


(s − 1)ζ (2s − 2) + 2√
3

∑
k∈N

∑
i, j∈Z

′
(

i2 + i j + j2

3γ 2k2

)(s−1)/2

Ks−1

(
4π√

3
γ k
√

i2 + i j + j2

)
. (31)

It follows that

LA(s) = 6ζ (s) L−3(s) + 4π√
3(s −1)

γ 2−2sζ (2s − 2) + 4√
3

(2π )s


(s)

∑
k∈N

∑
i, j∈Z

′
(

i2 + i j + j2

3γ 2k2

)(s−1)/2

Ks−1

(
4π√

3
γ k
√

(i2 + i j + j2)

)

= 6ζ (s) L−3(s) + 4π√
3(s − 1)

γ 2−2sζ (2s − 2) + 4√
3

(2π )s


(s)

∑
k∈N

∑
N∈N

u2(N )

(
N

3γ 2k2

)(s−1)/2

Ks−1

(
4π√

3
γ k

√
N

)
, (32)

where u2(N ) is the number of representations of N by the form i2 + i j + j2.
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B. A second formula for the lattice sum LA(s)

A different formula for LA(s) can be obtained by separating the terms in the series (12) according to whether i = j = 0 or i
and j are not both zero. This gives

LA(s) = 2γ −2sζ (2s) + G(s), (33)

where

G(s) =
∑

i, j∈Z

′ ∑
k∈Z

(i2 + i j + j2 + γ 2k2)−s. (34)

Applying the gamma function integral (A2) followed by the theta function transformation formula (A8) for the k summation, we
obtain

π−s
(s)G(s) =
∫

[0,∞)
xs−1

∑
i, j∈Z

′
e−π (i2+i j+ j2 )x

∑
k∈Z

e−πγ 2k2x dx

= γ −1
∫

[0,∞)
xs− 3

2

∑
i, j∈Z

′
e−π (i2+i j+ j2 )x

∑
k∈Z

e−πk2/(γ 2x) dx. (35)

Now separate out the k = 0 term and evaluate the resulting integrals. The result is

π−s
(s)G(s) = γ −1
∫

[0,∞)
xs− 3

2

∑
i, j∈Z

′
e−π (i2+i j+ j2 )x dx + 2γ −1

∫
[0,∞)

xs− 3
2

∑
i, j∈Z

′
e−π (i2+i j+ j2 )x

∑
k∈N

e−πk2/(γ 2x) dx

= γ −1 π−(s− 1
2 ) 


(
s − 1

2

)∑
i, j∈Z

′
(i2 + i j + j2)−s+ 1

2 + 4γ −(2s+1)/2
∑

i, j∈Z

′ ∑
k∈N

(
k2

i2 + i j + j2

)(2s−1)/4

× Ks− 1
2

(
2πk

γ

√
i2 + i j + j2

)
. (36)

The first sum can be evaluated in terms of the Riemann zeta function and the L−3 function by (A24). In the second sum, we again
use the notation u2(N ) for the number of representations of N by the form i2 + i j + j2. The result is

π−s
(s)G(s) = 6 π−(s− 1
2 ) γ −1


(
s − 1

2

)
ζ

(
s − 1

2

)
L−3

(
s − 1

2

)

+ 4γ −(2s+1)/2
∑
N∈N

∑
k∈N

u2(N )

(
k2

N

)(2s−1)/4

Ks− 1
2

(
2πk

γ

√
N

)
. (37)

It follows that

LA(s) = 2γ −2sζ (2s) + 6
√

πγ −1 

(
s − 1

2

)

(s)

ζ

(
s − 1

2

)
L−3

(
s − 1

2

)

+ 4π s


(s)
γ −(2s+1)/2

∑
N∈N

∑
k∈N

u2(N )

(
k2

N

)(2s−1)/4

Ks− 1
2

(
2πk

γ

√
N

)
. (38)

C. The lattice sum LB(s)

We apply the gamma function integral (A2) for (14) to write

LB(s) = (2π )s


(s)

∫
[0,∞)

xs−1
∑
k∈Z

e−2πγ 2(k+ 1
2 )2x

∑
i, j∈Z

e−2π[(i+ 1
3 )2+(i+ 1

3 )( j+ 1
3 )+( j+ 1

3 )2]x dx. (39)

Now make use of the transformation formula (A13) to deduce

LB(s) = (2π )s


(s)

∫
[0,∞)

xs−1

⎛
⎝2

∑
k∈N0

e−2πγ 2(k+ 1
2 )2x

⎞
⎠
⎛
⎝ 1

x
√

3

∑
i, j∈Z

ωi− je−2π (i2+i j+ j2 )/3x

⎞
⎠ dx, (40)
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where ω = exp(2π i/3) is a primitive cube root of 1. Now separate the term i = j = 0 to deduce

LB(s) = (2π )s


(s)

2√
3

∫
[0,∞)

xs−2
∑
k∈N0

e−2πγ 2(k+ 1
2 )2x dx

+ (2π )s


(s)

2√
3

∫
[0,∞)

xs−2
∑
k∈N0

e−2πγ 2(k+ 1
2 )2x

∑
N∈N

cos

(
2πN

3

)
u2(N ) e−2πN/3x dx, (41)

where u2(N ) is the number of representations of N by the form i2 + i j + j2, as before. Here we used Euler’s formula, eiθ =
cos θ + isin θ and retain only the real part as LB(s) is real. On evaluating the integrals using (A2) and (A3) we obtain

LB(s) = 4π√
3(s − 1)

γ −2s+2
∑
k∈N0

1(
k + 1

2

)2s−2 + 4√
3

(2π )s


(s)

∑
k∈N0

∑
N∈N

cos

(
2πN

3

)

× u2(N )

(
N

3γ 2
(
k + 1

2

)2

)(s−1)/2

Ks−1

(
4π√

3
γ

(
k + 1

2

)√
N

)
. (42)

The first sum can be evaluated in terms of the Riemann zeta function by using (A23) to give

LB(s) = 4π√
3(s − 1)

γ −2s+2(22s−2 − 1)ζ (2s − 2) + 4√
3

(2π )s


(s)

∑
k∈N0

∑
N∈N

cos

(
2πN

3

)

× u2(N )

(
N

3γ 2(k + 1
2 )2

)(s−1)/2

Ks−1

(
4π√

3
γ

(
k + 1

2

)√
N

)
. (43)

D. A second formula for the sum LB(s)

We introduce the abbreviation

Yi j = (
i + 1

3

)2 + (
i + 1

3

)(
j + 1

3

)+ (
j + 1

3

)2
(44)

to write (39) in the form

LB(s) = (2π )s


(s)

∫
[0,∞)

xs−1
∑

i, j∈Z
e−2πYi j x

∑
k∈Z

e−2πγ 2(k+ 1
2 )2x dx. (45)

This time we apply the transformation formula (A9) to the sum over k to obtain

LB(s) = (2π )s

√
2
(s)

γ −1
∫

[0,∞)
xs−3/2

∑
i, j∈Z

e−2πYi j x
∑
k∈Z

(−1)k e−πk2/(2γ 2x) dx. (46)

Now separate the terms according to whether k = 0 or k �= 0 and evaluate the resulting integrals by (A2) and (A3). The result is

LB(s) =
√

π 

(
s − 1

2

)
γ 
(s)

∑
i, j∈Z

Y 1/2−s
i j + 4π s


(s)
γ −(2s+1)/2

∑
k∈N

(−1)k
∑

i, j∈Z

(
k√
Yi j

)s− 1
2

Ks− 1
2

(
2π

k

γ

√
Yi j

)
. (47)

The first sum can be handled by (A25) to give

∑
i, j∈Z

Y 1/2−s
i j = 3(3s−1/2 − 1)ζ

(
s − 1

2

)
L−3

(
s − 1

2

)
. (48)

For the other sum, observe that 3Yi j = 3i2 + 3i j + 3 j2 + 3i + 3 j + 1, that is to say 3Yi j is a positive integer and 3Yi j ≡ 1
(mod 3). Therefore we set 3Yi j = 3N + 1 and use (A16) to deduce that the number of solutions of 3i2 + 3i j + 3 j2 + 3i + 3 j +
1 = 3N + 1 is equal to 1

2 u2(3N + 1), and we get

LB(s) = 3
√

π 

(
s − 1

2

)
γ 
(s)

(3s−1/2 − 1) ζ

(
s − 1

2

)
L−3

(
s − 1

2

)

+ 2π s


(s)
γ −(2s+1)/2

∑
k∈N

(−1)k
∑

N∈N0

u2(3N + 1)

⎛
⎜⎝ k√

N + 1
3

⎞
⎟⎠

s− 1
2

Ks− 1
2

(
2π

k

γ

√
N + 1

3

)
. (49)
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E. Adding LA(s) and LB(s)

On adding the results for LA(s) and LB(s) in (32) and (43) we obtain

Lhcp(s, γ ) = 6ζ (s) L−3(s) + 4π√
3(s − 1)

(γ

2

)2−2s
ζ (2s − 2) + 4√

3

(2π )s


(s)

∑
k∈N

∑
N∈N

u2(N )

(
N

3γ 2k2

)(s−1)/2

Ks−1

(
4π√

3
γ k

√
N

)

+ 4√
3

(2π )s


(s)

∑
k∈N0

∑
N∈N

cos

(
2πN

3

)
u2(N )

(
N

3γ 2
(
k + 1

2

)2

)(s−1)/2

Ks−1

(
4π√

3
γ

(
k + 1

2

)√
N

)
. (50)

On the other hand, if we add the results of (38) and (49) we obtain

Lhcp(s, γ ) = 2γ −2sζ (2s) + 3
√

π 

(
s − 1

2

)
γ 
(s)

(3s−1/2 + 1) ζ

(
s − 1

2

)
L−3

(
s − 1

2

)

+ 4π s


(s)
γ −(2s+1)/2

∑
N∈N

∑
k∈N

u2(N )

(
k√
N

)(2s−1)/2

Ks− 1
2

(
2πk

γ

√
N

)

+ 2π s


(s)
γ −(2s+1)/2

∑
k∈N

(−1)k
∑

N∈N0

u2(3N + 1)

(
k√

N + 1
3

)s− 1
2

Ks− 1
2

(
2π

k

γ

√
N + 1

3

)
. (51)

Equation (51) is numerically more stable for small values of γ as the argument in the Bessel function Ks− 1
2
(x) becomes larger

and therefore further away from the singularity at x = 0, while (50) is better suited for larger values of γ . The lattice sums as a
function of γ for different s values are shown in Fig. 3, and the corresponding values of Lhcp(s, γ ) (including the first and second

derivatives) for the ideal ratio of γhcp =
√

8
3 and selected s values are collected in Table I.

We obtain the following limits for all values of s > 3
2 :

lim
γ→∞ Lhcp(s, γ ) = 6ζ (s) L−3(s) and lim

γ→0
Lhcp(s, γ ) = ∞. (52)

The first limit reflects the fact that the limiting case γ → ∞
corresponds to a single 2D hexagonal lattice with Lhex

2 (s) =
6ζ (s) L−3(s) being the corresponding lattice sum [see Eq. (47)

FIG. 3. Lattice sums Lhcp(s, γ ) as a function of γ for vari-

ous s values. The vertical dashed lines are at γ = 2
3 and

√
8
3

as in Fig. 2, and the horizontal dashed line represents the
two limits at large γ values, lims→∞(limγ→∞ Lhcp(s, γ )) = 6 and
lims→3/2(limγ→∞ Lhcp(s)) = 11.03417573491 . . .. The curve for s =
50 is close to the hard-sphere limit of s = ∞.

in Ref. [27]]. From this we get lims→∞ Lhex
2 (s) = 6 and at the

pole Lhex
2 (s = 3

2 ) = 11.03417573491 . . .. Moreover, as men-

tioned before we have lims→∞ Lhcp(s, γ ) = ∞ for γ <

√
8
3 ,

and for larger values of s direct summation using the orig-
inal lattice sum (15) is to be preferred, e.g., for s = 50

and γ = γhcp =
√

8
3 we obtain Lhcp(s, γ ) = Lhcp(50,

√
8
3 ) =

12.000000000000, corresponding to the kissing number for
an ideal hcp lattice. We note that the curve for s = 2 in Fig. 3
very slowly approaches the limit γ → ∞ of 6ζ (2) L−3(2) =
7.7111457329049 …as expected for a soft and long-range
potential of the form V (r) = r−4.

TABLE I. Values for Lhcp(s, γ ) at the ideal ratio of c/a = γhcp =√
8
3 for selected s = n/2. The first and second derivatives with re-

spect to γ are reported as well (see Appendix C for details).

s Lhcp(s, γ ) ∂Lhcp(s, γ )/∂γ ∂2Lhcp(s, γ )/∂γ 2

2 25.339082338055 −20.695008216087 34.645562350540
3 14.454897277842 −17.711026910386 45.197828381987
4 12.802821852810 −20.913971214589 71.283006314719
5 12.311896233819 −25.136976828849 106.83160316772
6 12.132293769099 −29.721546123728 151.03829753868
7 12.059228255068 −34.464287703815 203.59375072251
8 12.027479419304 −39.282788797012 264.34146680290
9 12.013060023177 −44.139430042060 333.19696813736
10 12.006309158115 −49.015864608041 410.11367485711
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FIG. 4. The lattice parameter a∗
min(n, m, γ ) for the LJ potential

for selected values of n and m.

IV. THE LENNARD-JONES COHESIVE ENERGY FOR THE
HCP STRUCTURE WITH VARYING c/a RATIO

A. Independent (a, γ ) parameter space

The cohesive energy for the hcp structure for a general
(n, m) LJ potential expressed in terms of lattice sums is given
by

E coh
LJ (n, m, a, γ ) = εnm

2(n − m)

[
Lhcp

(
n
2 , γ

)
n

( re

a

)n

− Lhcp
(

m
2 , γ

)
m

( re

a

)m
]
. (53)

In the following we regard the two parameters (a, γ ) as in-
dependent freely variable parameters with a > 0 and γ > 0.
This is an approximation as we also have to consider the a
dependence of γ = c/a. As we shall see, we obtain simple
equations for the cohesive energy dependence on γ . A more
detailed analysis and justification for this approximation will
follow in the next section.

The definitions for the lattice sums Lhcp(s, γ ) are taken
from Eqs. (50) and (51). In order to discuss the behavior for
the LJ potential with varying γ we calculate the minimum
cohesive energy with respect to the lattice parameter a for a
fixed γ value. For this we follow the procedure in Ref. [28]
and get from ∂E coh

LJ /∂a = 0 the minimum lattice parameter,

a∗
min(n, m, γ ) = amin(γ )

re
=
(

Lhcp
(

n
2 , γ

)
Lhcp

(
m
2 , γ

)
) 1

n−m

, (54)

and the asterisk indicates reduced (or dimensionless) units
are used. Figure 4 shows the a∗

min(n, m, γ ) curve for selected
values of n and m. We clearly see the steep increase in
a∗

min(n, m, γ ) for small values of γ . However, it might be
interesting to compare to the nearest-neighbor distance (16),
which is shown in Fig. 5. Only for very soft values we get
rNN  1. For the (100,6)-LJ potential, which is close to the
hard-sphere limit, the nearest-neighbor distance stays close to

FIG. 5. The nearest-neighbor distance rNN(a∗
min, γ ) for the LJ

potential for selected values of n and m.

1.0 for all γ values. Moreover, at the critical point γ =
√

8
3

and γ = 2
3 we have a nonsmooth behavior in rNN as already

shown in Fig. 2. We also note the minimum in rNN at values
γ < 2

3 indicating some extra stability of this lattice, which will
be discussed in the following.

The cohesive energy at a∗
min is given by

E∗
nm(γ ) = E coh

LJ (n, m, a∗
min(γ ), γ )/ε

= −1

2

[
Lhcp

(
m
2 , γ

)n

Lhcp
(

n
2 , γ

)m

] 1
n−m

. (55)

The function E∗
nm(γ ) is shown in Fig. 6 for various

(n, m) combinations of the LJ potential. For the (12,6) LJ
potential we see a metastable minimum around γ = 2/3

FIG. 6. E∗
nm(γ ) as a function of γ = c

a at a∗
min for a number of

(n, m) combinations for the LJ potential. The vertical dashed lines

are at γ = 2
3 and

√
8
3 as in Fig. 2. Note that the exponents n, m are

multiplied by 2 compared to the s exponent used in the previous
sections.
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TABLE II. γ meta
min for the metastable minimum and corresponding

energy difference E∗
nm to the global minimum (around γhcp =

√
8
3

and γmax between the two minima and corresponding energy differ-
ence E∗

nm
# to the metastable minimum for three selected (n, m)

combinations of the LJ potential. Note that the exponents n, m are
multiplied by 2 compared to the s exponent used in the previous
sections.

n m γ meta
min γmax E∗

nm E∗
nm

#

12 6 0.710188 0.848360 2.691402 0.08449406
20 6 0.683350 0.883096 2.519636 0.29600569
20 12 0.668678 0.935797 2.073051 0.70435894

(γ = 0.710188 for the (12,6) LJ potential with an energy
difference to the global minimum of E∗ = 2.691401. The
metastable minimum becomes more pronounced for harder
potentials and disappears for very soft potentials. Concern-
ing the maximum, for the (12,6) LJ potential it sits at γ =
0.848360 with an activation barrier of E∗ = 0.084494 from
the metastable minimum to the more stable minimum around
γhcp =

√
8
3 . Data for the metastable minimum for some other

(n, m) combinations of the LJ potential are collected in
Table II.

The question why a second minimum appears around γ =
2
3 needs to be addressed. This is at the boundary between
regions I and II shown in Fig. 2 where the kissing number
is increased to κ = 8 due to the fact that beside the six sur-
rounding atoms from the A layer of an atom in the B layer, we
have two more touching spheres above and below from other
C layers with an underlying elongated triangular bipyramid
(or dipyramid). In region I, the nearest-neighbor distance is
determined by the lattice constant c. In this case the atoms in
the two A layers shown in Fig. 1 come in direct neighborhood
and start to interact more strongly. In order to avoid strong
repulsive forces we have to make space for the C layer in
the middle position by increasing the lattice constant a. As
an atom in layer C sits exactly in the centroid of a triangle
spanned by neighboring atoms in the A layer, we consider
a trigonal pyramid of unit spheres with edge length e = 1
and height h = c = 1

2 . This gives for the nearest-neighbor
distances in the A layer a = 3

2 , and therefore a ratio of γ =
c/a = 2

3 . Such a lattice is best described by linear chains along
the c axis with atoms from the A layers and shifted by c/a
atoms from the C layers (notice that in the region γ < 2

3 we
have κ = 2). As the kissing number is κ = 8 at the boundary
(see Fig. 2), we expect that the minimum occurs at higher

energies compared to the one around γhcp =
√

8
3 .

For very soft potentials (low values of m) the mini-
mum disappears. This happens exactly at the point when
the minimum becomes a turning point at the critical expo-
nents of (nc, mc), (nc > mc) where we have the conditions
∂γ E∗

nm(γ ) = 0 and ∂2
γ E∗

nm(γ ) = 0. This is shown in Fig. 7.
We derived the curve by searching numerically for the turning
point close to γ = 2/3. When m = n, the cohesive energy is
interpreted via its limit. Let

E∗
m(γ ) = lim

n→m
E∗

nm(γ ). (56)

FIG. 7. Critical (n, m) values ((nc, mc ), nc > mc) where the
metastable minimum becomes a turning point.

Then from (55) we have

log[−2E∗
m(γ )] = lim

n→m
log

(
Lhcp

(
m
2 , γ

)n

Lhcp
(

n
2 , γ

)m

) 1
n−m

= lim
n→m

n log Lhcp
(

m
2 , γ

)− m log Lhcp
(

n
2 , γ

)
n − m

.

(57)

By l’Hôpital’s rule this becomes

log[−2E∗
m(γ )]

= lim
n→m

∂

∂n

[
n log Lhcp

(
m

2
, γ

)
− m log Lhcp

(
n

2
, γ

)]

= log L
(m

2
, γ
)

− mL′(m
2 , γ

)
2L
(

m
2 , γ

) , (58)

where in the last line we have written L( m
2 , γ ) for Lhcp( m

2 , γ ),
and the prime denotes differentiation with respect to the first
variable:

L′(s, γ ) = ∂

∂s
Lhcp(s, γ ). (59)

On exponentiating it follows that

E∗
m(γ ) = lim

n→m
E∗

nm(γ ) = −1

2
L

(
m

2
, γ

)
exp

[
−mL′(m

2 , γ
)

2L
(

m
2 , γ

)
]
.

(60)

This function was used to numerically determine the bound
7.44760 < nc = mc < 7.44761 which is depicted in Fig. 7 as
nc = mc = 7.4476. For, when nc = mc = 7.44761, the func-
tion E∗

m(γ ) in (60) has a minimum at γ = 0.77580 followed
closely by a maximum at γ = 0.77598. Between the mini-
mum and maximum is an inflection point at γ = 0.775887
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FIG. 8. Dividing (n, m) areas (n > m) of regions where γmin >

γhcp and γmin < γhcp. Note that the dividing line intersects with the
n = m line at n = 5.84361 and approaches m = 3 for n → ∞.

where we have

∂E∗
m=7.44761(γ )

∂γ

∣∣∣∣
γ=0.775887

= 1.373

and
∂2E∗

m=7.44761(γ )

∂γ 2

∣∣∣∣
γ=0.775887

= 0. (61)

For smaller values of nc = mc (e.g., by reducing the digit in
the fifth decimal place by 1) the metastable minimum and
maximum merge together and hence collapse, leaving just the
inflection point. Thus, when nc = mc = 7.44760 we have

∂E∗
m=7.44760(γ )

∂γ

∣∣∣∣
γ=0.775887

= −9.137

and
∂2E∗

m=7.44760(γ )

∂γ 2

∣∣∣∣
γ=0.775887

= 0. (62)

We also note the singularity at m = 3.
In regard to the global minimum, there is no reason for

the LJ potential to have the minimum exactly at γhcp =
√

8
3

as the first derivatives ∂γ E∗
nm(γhcp) in Table I show for various

(n, m) combinations. Indeed, it was already shown by Howard
[29] by direct lattice summations over 450 shells around a
central atom that the minimum occurs at 99.986% of the ideal
hcp value for the (12,6) LJ potential. To obtain more detailed
information if γmin is greater or lower than γhcp we used a

Newton-Raphson procedure as described in Appendix C. The

dividing line between the two regions of γ <

√
8
3 and γ >√

8
3 is shown in Fig. 8. Only for very soft potentials (low n and

m values) does the minimum come at values γmin > γhcp. For
the common (12,6) LJ potential, γmin = 1.6327633 < γhcp.

However, the deviations δnm defined by γmin =
√

8
3 + δnm are

very small, and so are the energy differences between the
minimum and the ideal hcp structure; see Table III. To give
a real example we take argon with a dissociation energy of
ε = 1191 J/mol for the dimer [30]. The change due to the de-
viation from the ideal c/a ratio is therefore Enm = E∗

nmε =
−8.661 × 10−4 J/mol. This value is far smaller than the accu-
racy which can be achieved in any solid-state calculation [31].
Accordingly, for the deviation δnm = 7.701 × 10−4 we use the
equilibrium distance of 3.3502 Å of Azis [30] and obtain a
slight difference in the atomic distance between the pair of six
neighboring atoms. Such a small deviation is perhaps within
experimental reach.

When considering the hard-sphere limit with an attractive
a−n potential in (64), we present the (100,6) LJ potential (s =
50 and 3, respectively, in our earlier definition) in Fig. 8 as
best candidate, as it is still numerically manageable despite
the large exponent of m = 100. Here the deviation δnm listed in
Fig. 8 is indeed very small. The curve shows a rather peculiar

behavior around γ =
√

8
3 going steeply towards infinity for

γhcp �
√

8
3 . For an infinite repulsive wall the minimum sits at

exactly γhcp =
√

8
3 as one expects. For values of γ <

√
8
3 and

m < ∞ we enter a steep repulsive wall where the atoms in
the hexagonal closed packed sheets need to give space for the
next layer.

B. The (a, c) parameter space

Here we include the derivatives of the lattice sum expres-
sions with respect to a. Using reduced units for a, c, and E in
(64) and omitting the asterisk in our notation (or setting re = 1
and ε = 1) we have

E coh
LJ (n, m, a, c)

= nm

2(n − m)

[
Lhcp

(
n
2 , c

a

)
n

a−n − Lhcp
(

m
2 , c

a

)
m

a−m

]
. (63)

At fixed c value we need the minimum of the cohesive en-
ergy with respect to a, ∂E coh

LJ (n, m, a, c)/∂a. This leads to the

TABLE III. ∂γ E∗
nm(γhcp), δnm = γmin −

√
8
3 , and E∗

nm = E∗
nm(γmin) − E∗

nm(γhcp) for various (n, m) LJ potentials. Note that the exponents

n, m are multiplied by 2 compared to the s exponent used in the previous sections.

n m E∗
nm(γmin) δnm E∗

nm ∂γ E∗
nm(γhcp)

12 6 −8.611070 −2.298569 × 10−4 −7.272348 × 10−7 6.327613 × 10−3

6 4 −38.932531 3.077860 × 10−4 −2.121345 × 10−6 −1.378463 × 10−2

12 4 −18.309854 −8.758790 × 10−5 −1.526585 × 10−7 3.485817 × 10−3

20 6 −7.825827 −1.404378 × 10−4 −3.993197 × 10−7 5.686712 × 10−3

20 12 −6.161877 −6.980408 × 10−5 −1.518888 × 10−7 4.351831 × 10−3

100 6 −7.313826 −2.186397 × 10−5 −2.082085 × 10−7 4.013898 × 10−3
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FIG. 9. The lattice parameter a∗
min(γ ) for the (12,6) LJ potential.

Results from both parameter spaces (a, γ ) and (a, c) are shown.

condition

nmamLhcp

(
n

2
,

c

a

)
− nmanLhcp

(
m

2
,

c

a

)

− mam+1 ∂Lhcp
(

n
2 , c

a

)
∂a

+ nan+1 ∂Lhcp
(

m
2 , c

a

)
∂a

= 0. (64)

This again requires derivatives of Bessel functions and we get
a more complicated expression compared to (54). The first and
second derivatives required for the Newton-Raphson method
to determine amin at fixed c are given in Appendix D.

Figure 9 shows the dependence of the lattice parameter amin

with respect to γ which minimizes the cohesive energy for
the (12,6) LJ potential. A comparison with the corresponding
curve in Fig. 4 shows a clear difference between the two opti-
mized lattice parameters a for the two different parameter sets
used. However, we get a very similar picture for the cohesive
energies as shown in Fig. 10, which justifies the approxima-

0.5 1 1.5 2 2.5 3 3.5 4
−9

−8

−7

−6

−5

−4

−3

−2

=c/a

E c
oh

(
)

(a,c)
(a, )

*

FIG. 10. The cohesive energy E∗
coh(γ ) for the (12,6) LJ potential.

Results from both parameter spaces (a, γ ) and (a, c) are shown.

tion used in the previous section. Moreover, the metastable
minimum around γ = 2/3 is apparent in both curves.

V. ANALYTIC CONTINUATION OF THE LATTICE
SUM Lhcp(s)

We show that the lattice sum Lhcp(s) can be continued an-
alytically to the whole s plane and that the resulting functions
have a single simple pole at s = 3/2 and no other singularities.
We start by determining the residue of Lhcp(s) at s = 3/2.
In the formula (50), all of the terms are analytic at s = 3/2
except for the term involving ζ (2s − 2), which has a simple
pole there. Therefore, the Laurent series for Lhcp(γ , s) around
the pole at s = 3/2 is of the form

Lhcp(s, γ ) = d−1

s − 3/2
+ d0 +

∑
n∈N

dn(s − 3/2)n, (65)

where

d−1 = Res(Lhcp(s), 3/2) = 8π

γ
√

3
(66)

and

d0(γ ) = 6ζ (3/2) L−3(3/2) + 16π

γ
√

3
[γ0 + ln(2/γ ) − 1] + 4√

3

(2π )3/2


(3/2)

∑
k∈N

∑
N∈N

u2(N )

(
N

3γ 2k2

)1/4

K1/2

(
4π√

3
γ k

√
N

)

+ 4√
3

(2π )3/2


(3/2)

∑
k∈N0

∑
N∈N

cos

(
2πN

3

)
u2(N )

(
N

3γ 2
(
k + 1

2

)2

)1/4

K1/2

(
4π√

3
γ

(
k + 1

2

)√
N

)
. (67)

γ0 = 0.57721566490153286 . . . is the Euler-Mascheroni constant. The derivation of the residue and the second term in Eq. (67)
is given in Appendix B. Using well-known relations for the Bessel function K1/2(x) = √

π/2x e−x we obtain

d0(γ ) = 6ζ (3/2) L−3(3/2) + 16π

γ
√

3
[γ0 + ln(2/γ ) − 1] + 8π

γ
√

3

∑
k∈N

∑
N∈N

1

k
u2(N ) exp

(
− 4π√

3
γ k

√
N

)

+ 8π

γ
√

3

∑
k∈N0

∑
N∈N

cos
(

2πN
3

)
(
k + 1

2

) u2(N ) exp

(
− 4π√

3
γ

(
k + 1

2

)√
N

)

065302-11



BURROWS, COOPER, AND SCHWERDTFEGER PHYSICAL REVIEW E 107, 065302 (2023)

= 6ζ (3/2) L−3(3/2) + 16π

γ
√

3
[γ0 + ln(2/γ ) − 1] − 8π

γ
√

3

∞∑
N=1

u2(N ) ln(1 − e− 4π√
3
γ k

√
N )

+ 8π

γ
√

3

∑
N∈N

cos

(
2πN

3

)
u2(N ) ln

(
1 + e− 2π√

3
γ k

√
N

1 − e− 2π√
3
γ k

√
N

)
. (68)

Here we use the series expansion for the logarithm

ln(1 + x) =
∑
k∈N

(−1)k+1

k
xk or ln(1 − x) = −

∑
k∈N

1

k
xk, (69)

substituting x → e−x. For the special value of γhcp = √
8/3 we have

d0(
√

8/3) = 6.98462374143841661307 . . . . (70)

Concerning the analytical continuation to the left of the simple pole, s < 3/2, by (A6) the double series of Bessel functions
in (50) converges absolutely and uniformly on compact subsets of the s plane and therefore represents an entire function of s. It
follows that Lhcp has an analytic continuation to a meromorphic function. Moreover, the Laurent expansion (65) converges for all
s �= 3/2. Further inspection reveals that the only problematic case in (50) is for s = 1 because of the two terms having canceling
singularities. Therefore we take s = 1 in the second formula (51) instead to obtain

Lhcp(1) = π2

3γ 2
+ 3π

γ
(
√

3 + 1) ζ (1/2) L−3(1/2) + 2π

γ

∑
N∈N

u2(N )√
N

[
exp

(
2π

√
N

γ

)
− 1

]−1

− π

γ

∑
N∈N0

u2(3N + 1)√
N + 1

3

[
exp

(
2π

√
N + 1

3

γ

)
− 1

]−1

, (71)

where we have used (A5) for the modified Bessel function of the second kind, and used the geometric series to evaluated the
sum over k. For the special value of γhcp = √

8/3 we have

Lhcp(1, γ =
√

8/3) = −11.43265300149528563572 . . . . (72)

We also record the result

Lhcp(1/2) = 6ζ (1/2)L−3(1/2) + πγ

3
√

3
+ 2

∑
N∈N

u2(N )√
N

[
exp

(
4π√

3
γ
√

N

)
− 1

]−1

+ 2
∑
N∈N

cos

(
2πN

3

)
u2(N )√

N

[
exp

(
2π√

3
γ
√

N

)
− exp

(
− 2π√

3
γ
√

N

)]−1

,

which is obtained in the same way, starting from (50) and using the symmetry for the Bessel function, K−s(x) = Ks(x). We obtain
using γ = √

8/3,

Lhcp(1/2, γ =
√

8/3) = −3.24185861507573286473 . . . . (73)

Finally, using (51) we observe that Lhcp(0) = 2ζ (0) = −1 for
all γ > 0.

A graph of the function Lhcp(s) is shown in Fig. 11 for
the case γhcp = √

8/3. We see that the curve has zeros at
s = −1,−2,−3, . . . as we have 
(s) → ∞ for s ∈ −N0, and
the Bessel terms vanish in both Eqs. (50) and (51). Taking
(51), the only remaining term for n ∈ N is 2γ −2sζ (2s), and
ζ (s) has zeros exactly at s = −2,−4,−6, . . . .

VI. CAN ANALYTICAL CONTINUATION BE USED FOR
THE KRATZER POTENTIAL?

It is well known that for the Madelung constant analytical
continuation can be used where the underlying series is only
conditionally convergent [32]. The (2,1) LJ potential is known

as the Kratzer potential. Introduced in 1920 for vibrational
levels in diatomic molecules,[33] it has the form

VKratzer(r)/ε =
[( re

r

)2
− 2

( re

r

)]
(74)

and is analogous to the LJ potential shown in (1) with n =
2 and m = 1. The Kratzer potential has a Coulomb-like be-
havior in the long range and a harmonic repulsive behavior
in the short range. It is a very soft potential compared to the
usual (12,6) LJ potential and could in principle be useful for
example for metallic interaction. The question arises if we
can use Eq. (2), which requires lattice sums to the left of the
singularity at s = 3

2 where Lhcp
3 (s = 1) < 0 for s ∈ (0, 3

2 ). It is
sufficient to consider the ideal hcp lattice only (γhcp = √

8/3).
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FIG. 11. Graph of Lhcp(s) for −10 < s < 10 (inlet shows the region −7 < s < 0).

By taking n = 2 and m = 1 in (64), the Kratzer potential de-
pendent on the lattice constant a then becomes

E coh
Kratzer(a, γ )

/
ε = r2

e

2a2
Lhcp(1, γ ) − re

a
Lhcp

(
1

2
, γ

)
, (75)

for which the required lattice sums are given in Eqs. (50) and
(51).

The Kratzer potential together with the cohesive energy is
shown in Fig. 12. The cohesive energy has a maximum and

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

R*

E/

V/
Ecoh/

FIG. 12. Kratzer potential for VKratzer(R∗)/ε with R∗ = r/re and
for the cohesive energy E coh

Kratzer(R
∗)/ε with R∗ = a/re where a is the

hcp lattice constant and c/a = γ = √
8/3.

not a minimum as it should. The distance and energy can be
obtained from (54) and (55):

a∗
min =

L
(
1,

√
8
3

)
L
(

1
2 ,

√
8
3

) = −11.432653001495

−3.241858615076

= 3.526573598346, (76)

E∗(a∗
min) = E coh

Kratzer(a
∗
min)/ε = −

L
(

1
2 ,

√
8
3

)2

2L
(
1,

√
8
3

)
= +0.459632916295. (77)

Even if only positive lattice sums are taken to obtain a proper
cohesive energy curve with a minimum instead of a maxi-
mum, the nearest-neighbor distance increases from the dimer
to the solid state contrary to the (12,6) LJ potential. This
clearly demonstrates that the Kratzer potential gives nonphys-
ical results for the hcp lattice as the exponents lie left to the
pole at s = 3

2 producing negative lattice sums in the required
region. Even if absolute values of Lhcp(s) are used instead
to invert the shape and produce a minimum, it would lack
physical justification. The situation does not change if we
choose n < 3 and m > 3 for a (n, m) LJ potential. As there is
no alternative to an analytic continuation, the Kratzer potential
cannot be used for the hcp lattice Moreover, this result does
not change for any Bravais lattice with its associated positive
definite Gram matrix as the underlying Epstein zeta function
for lattice sums converges absolutely only for s > N/2 [34],
where N is the dimension of the lattice. This is in stark
contrast to the Madelung constant described by an alternating
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series. The main difference here is that the Madelung constant
is a smooth function over the whole range of real exponents
containing no singularities [14,35].

VII. RELATION BETWEEN THE HCP STRUCTURE AND
THE CUBOIDAL LATTICES

We recently introduced lattice sums for cubic lattices by
introducing the following basis vectors [15]:

b�
1 (A) = (1, 0, 0), b�

2 (A) =
(

A

A + 1
,

√
2A + 1

A + 1
, 0

)
,

b�
3 (A) =

⎛
⎝ 1

A + 1
,

1

(A + 1)
√

2A + 1
,

√
4A

(A + 1)(2A + 1)

⎞
⎠,

(78)

where A = 1/2 defines the body-centered cubic (bcc) lattice
and A = 1 the face-centered cubic (fcc) lattice. The packing
density has been obtained as [15]

ρ(A) = π

12

√
(A + 1)3

A
. (79)

We can compare this to the hcp lattice with γ � √
8/3 derived

from the volume (10),

ρ(γ ) = 2π

3γ
√

3
. (80)

As the validity range for hard-sphere packing is γ ∈
[
√

8/3,∞) we see that the largest packing density is achieved
by the ideal value of γ = √

8/3. Comparing both densities,
hcp has the same packing density as the cuboidal lattices for

γ =
√

8

3
f (A) with f (A) =

√
8A

(A + 1)3
. (81)

Again, for A = 1 (fcc) we see that the packing density is
identical to the ideal hcp structure. For A = 1/2 (bcc) f (A) =
1.08866 . . . , that is, the hcp structure has the same packing
density compared to bcc if we increase the c/a ratio by ap-
proximately 8.9%.

The corresponding lattice sum for the cuboidal lattice was
already given in Ref. [15]:

Lcub(s, A) = 4

(
A + 1

2

)s

ζ (s)L−4(s) + πA

s − 1

(
1 + 1

A

)s

ζ (2s − 2) + 2π s
√

A


(s)

(√
A + 1√

A

)s ∞∑
i=1

∞∑
N=1

r2(N )

(
N

i2

)(s−1)/2

× Ks−1(2π i
√

AN ) + 2π s
√

A


(s)

(√
A + 1√

A

)s ∞∑
i=1

∞∑
N=0

(−1)ir2(4N + 1)

(
2N + 1

2

i2

)(s−1)/2

Ks−1

⎛
⎝2π i

√
A

(
2N + 1

2

)⎞⎠,

(82)

where the L−4 function is defined in Appendix A. Lcub(A; s)
has a simple pole at s = 3/2, and the residue is given by

Res(Lcub(A; s), 3/2) = π√
A

(A + 1)3/2. (83)

It follows that the difference between the two lattice sums,
cuboidal and hcp, the singularity is removed if

Res(Lcub(s, A), 3/2) − Res(Lhcp(s, γ ), 3/2) = dcub
−1 − dhcp

−1

= π√
A

(A + 1)3/2 − 8π

γ
√

3
= 0. (84)

This gives the condition in (81). Hence we follow that the
singularity at s = 3/2 is removed for the difference between
the cuboidal lattices and the hcp structure if they have the
same packing density. Notice, that in removing the singularity
we do not just have to consider hard spheres and only need the
condition in (81) that γ > 0.

Evaluating the coefficient for dcub
0 given in Ref. [15] and

using (70) we obtain

lim
s→ 3

2

{Lcub(s, A = 1) − Lhcp(s, γ =
√

8/3)}

= −0.00057119111616867901 . . . . (85)

The difference Lhcp(s, γ = √
8/3) − Lcub(s, A = 1) is shown

in Fig. 13. What is evident is that the difference in lattice sums
between fcc and hcp is very small which is reflected in the fact
that both phases often coexist for real compounds. The graph
also appears to suggest the following for the relation between

FIG. 13. Graph of Lhcp(s) − Lfcc(s).
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the ideal hcp and fcc structures:

Lhcp(s) > Lfcc(s) > 0 for s ∈ · · · ∪ (−6,−5) ∪ (−4,−3) ∪ (−2,−1) ∪ (3/2,∞),

Lhcp(s) < Lfcc(s) < 0 for s ∈ · · · ∪ (−5,−4) ∪ (−3,−2) ∪ (−1, 0),

−1 > Lhcp(s) > Lfcc(s) for s ∈ (0, 3/2).

VIII. CONCLUSIONS

We presented an efficient and fast convergent expansion
for the multilattice hcp with variable c/a ratio. We demon-
strated that the series can be analytically continued, albeit
while mathematically sound the physical relevance has to
be questioned at least for LJ type of potentials. We also
showed that a metastable minimum appears for the (12,6)
LJ potential at γ = 0.71, close to γ = 2

3 where the kissing
number is κ = 8, and showed its dependence on the choice
of exponents n and m. For the minimum close to the ideal c/a

ratio of γhcp =
√

8
3 we discussed the slight symmetry breaking

for (n.m) LJ potentials where the sign of δnm = γmin −
√

8
3

depends on the parameter range (n, m). It is clear that out
results will be dependent upon changing the pressure and
temperature [36,37], which is currently under investigation.
As a final remark, we mention that many-body forces in real
bulk systems can stabilize the minimum around γ = 2

3 as this
is well known, for example, for metallic systems [38]. The
program for calculating lattice sums is freely available from
our website [39].

APPENDIX A: FORMULAS FOR SPECIAL FUNCTIONS

Many results for special functions and analytic number
theory have been used in this work. For clarity and ease of
use, they are stated here along with references if not given in
the books by Andrews et al. [40] or Temme [41].

1. The gamma function

The gamma function may be defined for s > 0 by


(s) =
∫

[0,∞)
t s−1 e−t dt . (A1)

By the change of variable t = wx this can be rewritten in the
useful form

1

ws
= 1


(s)

∫
[0,∞)

xs−1 e−wx dx. (A2)

2. The modified Bessel function

The following integral may be evaluated in terms of the
modified Bessel function:∫

[0,∞)
xs−1e−ax−b/xdx = 2

(
b

a

)s/2

Ks(2
√

ab). (A3)

By the change of variable x = u−1 it can be shown that

Ks(z) = K−s(z). (A4)

When s = 1/2 the modified Bessel function reduces to an
elementary function:

K1/2(z) =
√

π

2z
e−z. (A5)

The asymptotic formula holds:

Ks(z) ∼
√

π

2z
e−z as z → ∞, ( |arg z| < 3π/2). (A6)

3. Theta functions

The transformation formula for theta functions is [40,42]

∑
n∈Z

e−πn2t+2π ina = 1√
t

∑
n∈Z

e−π (n+a)2/t , assuming Re(t ) > 0.

(A7)

We will need the special cases a = 0 and a = 1/2, which are

∑
n∈Z

e−πn2t = 1√
t

∑
n∈Z

e−πn2/t (A8)

and ∑
n∈Z

(−1)ne−πn2t = 1√
t

∑
n∈Z

e−π (n+ 1
2 )2/t , (A9)

respectively. The sum of two squares formula is [43]⎛
⎝∑

j∈Z
q j2

⎞
⎠

2

=
∑
j,k∈Z

q j2+k2 =
∑

N∈N0

r2(N )qN , (A10)

where

r2(N ) = #{ j2 + k2 = N} =
{

1 if N = 0,

4
∑

d|N χ−4(d ) if N � 1,

(A11)

χ−4(d ) = sin(πd/2) and the sum is over the positive divisors
d of N . For example,

r2(18) = 4[χ−4(1) + χ−4(2) + χ−4(3)

+ χ−4(6) + χ−4(9) + χ−4(18)]

= 4(1 + 0 − 1 + 0 + 1 + 0) = 4.

The cubic analogs of the transformation formula are
[42,44]

∑
j,k∈Z

e−2π ( j2+ jk+k2 )t = 1

t
√

3

∑
j,k∈Z

e−2π ( j2+ jk+k2 )/3t (A12)
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and ∑
j,k∈Z

e−2π[( j+ 1
3 )2+( j+ 1

3 )(k+ 1
3 )+(k+ 1

3 )2]t

= 1

t
√

3

∑
j,k∈Z

ω j−ke−2π ( j2+ jk+k2 )/3t , (A13)

where ω = exp(2π
√−1/3) is a primitive cube root of unity.

The analog of the sum of two squares result is [43]∑
j,k∈Z

q j2+ jk+k2 =
∑

N∈N0

u2(N )qN , (A14)

where

u2(N ) = #{ j2 + jk + k2 = N} =
{

1 if N = 0,

6
∑

d|N χ−3(d ) if N � 1,

(A15)

with χ−3(d ) = sin(2πd/3)

sin(2π/3)

and the sum is again over the positive divisors d of N . By
Ref. [43] we also have∑

j,k∈Z
q( j+ 1

3 )2+( j+ 1
3 )(k+ 1

3 )+(k+ 1
3 )2 = 1

2

∑
N∈N0

u2(3N + 1)qN+ 1
3 .

(A16)

4. The Riemann zeta function and L functions

The definitions are

ζ (s) =
∑
j∈N

1

js
, (A17)

L−3(s) =
∑
j∈N

χ−3( j)

js

= 1 − 1

2s
+ 1

4s
− 1

5s
+ 1

7s
− 1

8s
+ · · · .

L−4(s) =
∑
n∈N

n−ssin
(nπ

2

)
= 4−s

[
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

)]
(A18)

The function ζ (s) is the Riemann zeta function. It has a pole
of order 1 at s = 1, and in fact [40,41]

lim
s→1

(s − 1)ζ (s) = 1. (A19)

We will require the functional equations

π−s/2
(s/2)ζ (s) = π−(1−s)/2
((1 − s)/2)ζ (1 − s) (A20)

and the special values

ζ (2) = π2

6
, ζ (0) = −1

2
, ζ (−1) = − 1

12
,

ζ (−2n) = 0 for n ∈ N (A21)

and

L−3(1) = π
√

3

9
, L−3(0) = 1

3
,

L−3(−2n + 1) = 0 for n ∈ N. (A22)

For details see Refs. [26,45]. Other results used are

∑
j∈N0

1

( j + 1
2 )s

= (2s − 1)ζ (s), (A23)

∑
i, j∈Z

′ 1

(i2 + i j + j2)s
= 6ζ (s)L−3(s), (A24)

∑
i, j∈Z

1[(
i + 1

3

)2 + (
i + 1

3

)(
j + 1

3

)+ (
j + 1

3

)2]s

= 3(3s − 1)ζ (s)L−3(s). (A25)

The identity (A23) follows from the definition of ζ (s) by
series rearrangements. For (A24), see (1.4.16) of Ref. [12].
The identity (A25) can be obtained by the method of Mellin
transforms [12,40,43].

APPENDIX B: LAURENT EXPANSION

Laurent’s theorem implies there is an expansion of the form

Lhcp(s, γ ) = d−1

s − 3/2
+ d0 +

∞∑
n=1

dn(s − 3/2)n, (B1)

where we get for (50) the residue (66). This follows from

lim
s→3/2

(s − 3/2)Lhcp(s)

= lim
s→3/2

(s − 3/2)
4π√

3(s − 1)

(γ

2

)2−2s
ζ (2s − 2)

= 16π

γ
√

3
lim

s→3/2
(s − 3/2)ζ (2s − 2)

= 8π

γ
√

3
lim
u→1

(u − 1)ζ (u) = 8π

γ
√

3
, (B2)

where (A19) was used in the last step of the calculation. To
get the coefficient d0 in (50) we need to consider the following
limit:

w = lim
s→3/2

[
4π√

3(s − 1)

(γ

2

)2−2s
ζ (2s − 1) − 8π

γ
√

3
(
s − 3

2

)
]
.

(B3)
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Substituting s = (t + 3)/2 and using the Laurent expansion for the Riemann zeta function,

w = lim
t→0

{
8π√

3(t + 1)

(
2

γ

)t+1

[t−1 + γ0 − γ1t + · · · ] − 16π

γ t
√

3

}
(B4)

= lim
t→0

f (t ) − f (0)

t
+ 16π

γ
√

3
γ0 = f ′(t )|0 + 16π

γ
√

3
γ0,

where

f (t ) = 8π√
3

1

(t + 1)

(
2

γ

)t+1

(B5)

and γ0 = 0.57721566490153286060 . . . is Euler’s constant. It is easy to verify that

f ′(t ) = − 8π√
3(t + 1)2

(
2

γ

)t+1

+ 8π√
3(t + 1)

(
2

γ

)t+1

ln

(
2

γ

)
. (B6)

We finally obtain

w = 16π

γ
√

3

[
γ0 + ln

(
2

γ

)
− 1

]
. (B7)

APPENDIX C: MINIMUM OF LENNARD-JONES POTENTIALS NEAR γ =
√

8
3

The iterative Newton-Raphson algorithm [46] can be used to determine γmin to the required accuracy

γi+1 = γi − ∂γ E∗
nm(γi)

∂2
γ E∗

nm(γi)
, (C1)

starting with γ1 =
√

8
3 . Only a few iterations are required to achieve convergence to computer accuracy. The required derivatives

for E∗
nm(γ ) can be easily derived:

∂γ E∗
nm(γ ) = 1

2(n − m)

⎡
⎣m

(
L
(

m
2 , γ

)
L
(

n
2 , γ

)
) n

n−m

∂γ L

(
n

2
, γ

)
− n

(
L
(

m
2 , γ

)
L
(

n
2 , γ

)
) m

n−m

∂γ L

(
m

2
, γ

)⎤⎦,

∂2
γ E∗

nm(γ ) = nm

2(n − m)2

[
L

(
n

2
, γ

)
∂γ L

(
m

2
, γ

)
+ L

(
m

2
, γ

)
∂γ L

(
n

2
, γ

)]

×
⎡
⎣∂γ L

(
n
2 , γ

)
L2
(

n
2 , γ

)
(

L
(

m
2 , γ

)
L
(

n
2 , γ

)
) m

n−m

− ∂γ L
(

m
2 , γ

)
L2
(

m
2 , γ

)
(

L
(

m
2 , γ

)
L
(

n
2 , γ

)
) n

n−m

⎤
⎦

+ m

2(n − m)

(
L
(

m
2 , γ

)
L
(

n
2 , γ

)
) m

n−m

∂2
γ L

(
n

2
, γ

)
− n

2(n − m)

(
L
(

m
2 , γ

)
L
(

n
2 , γ

)
) m

n−m

∂2
γ L

(
m

2
, γ

)
, (C2)

leading to the simple condition for the minimum through the first derivative

nL

(
n

2
, γ

)
∂γ L

(
m

2
, γ

)
− mL

(
m

2
, γ

)
∂γ L

(
n

2
, γ

)
= 0. (C3)

Here we define ∂x f (x) = ∂ f (x)/∂x. For (C2) we require the derivatives ∂γ L(s, γ ) and ∂2
γ L(s, γ ). which involves derivatives of

the Bessel function Ks(aγ ). We need only the first derivative as we can use the two formulas

∂xKs−1(x) = −Ks(x) + (s − 1)

x
Ks−1(x),

∂xKs(x) = −Ks−1(x) − s

x
Ks(x). (C4)

We rewrite Eq. (50) in the following short-hand notation:

L(s, γ ) = As + Bsγ
2−2s + Csγ

1−s
∑

k,N∈N
[dskN Ks−1(wkNγ ) + fskN Ks−1(vkNγ )] (C5)
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with the coefficients

As = 6ζ (s) L−3(s), Bs = 4sπ√
3(s − 1)

ζ (2s − 2), Cs = 4√
3

(2π )s


(s)
,

dskN = u2(N )

(
N

3k2

)(s−1)/2

, fskN = cos

(
2πN

3

)
u2(N )

(
N

3
(
k − 1

2

)2

)(s−1)/2

, (C6)

wkN = 4π√
3

k
√

N, vkN = 4π√
3

(
k − 1

2

)√
N .

The lattice sum derivatives are derived as

∂γ L(s, γ ) = 2(1 − s)Bsγ
1−2s − Csγ

1−s
∑

k,N∈N
[dskNwkN Ks(wkNγ ) + fskNvkN Ks(vkNγ )] (C7)

and

∂2
γ L(s, γ ) = (2s − 1)(2s − 2)Bsγ

−2s + Csγ
1−s

∑
k,N∈N

[
dskNw2

kN Ks−1(wkNγ ) + fskNv2
kN Ks−1(vkNγ )

]

+ Cs(2s − 1)γ −s
∑

k,N∈N
[dskNwkN Ks(wkNγ ) + fskNvkN Ks(vkNγ )]. (C8)

We note that Eq. (D1) is converging very fast in our case and only few iterations are required. For example, starting with γ1 =
√

8
3

we get after the first iteration γ2 = 1.6327632935 very close to the converged result of γ2 = 1.6327633049.

Finally, calculating the (m, n) combination (n, m ∈ R) reaching the ideal γhcp =
√

8
3 value (see Fig. 8), we use again the

Newton-Raphson method in the following form:

mi+1 = mi − ∂γ E∗
nm(γhcp)

∂m∂γ E∗
nm(γhcp)

, (C9)

for a fixed n value where ∂γ E∗
nm(γhcp) is obtained from (C7) and the derivative with respect to m in the denominator is obtained

numerically through a two-point formula.

APPENDIX D: MINIMUM OF LENNARD-JONES POTENTIALS WITH RESPECT TO THE LATTICE PARAMETER a

We seek for the lattice constant a at fixed c which minimizes the cohesive energy E coh
LJ (n, m, a, c). For this we use again the

iterative Newton-Raphson algorithm,

ai+1 = ai − ∂aE coh
LJ (ai, c)

∂2
a E coh

LJ (ai, c)
, (D1)

to obtain the lattice constant a for a specific (n, m, c) combination. As we have γ = c/a, we can apply the chain rule for the
lattice sum, which yields the simple expressions

∂aL

(
n

2
, γ

)
= −ca−2∂γ L

(
n

2
, γ

)
and ∂2

a L

(
n

2
, γ

)
= c2a−4∂2

γ L

(
n

2
, γ

)
+ 2ca−3∂γ L

(
n

2
, γ

)
, (D2)

and we can use the expressions (C7) and (C7) in Appendix C. From this we get the derivatives for the cohesive energy,

∂aE coh
LJ (a, c) = − m

2(n − m)
a−n−1

[
nL

(
n

2
, γ

)
+ γ ∂γ L

(
n

2
, γ

)]

+ n

2(n − m)
a−m−1

[
mL

(
m

2
, γ

)
+ γ ∂γ L

(
m

2
, γ

)]
(D3)

and

∂2
a E coh

LJ (a, c) = m

2(n − m)
a−n−2

[
n(n + 1)L

(
n

2
, γ

)
+ (n + 2)γ ∂γ L

(
n

2
, γ

)
+ γ 2∂2

γ L

(
n

2
, γ

)]

− n

2(n − m)
a−m−2

[
m(m + 1)L

(
m

2
, γ

)
+ (m + 2)γ ∂γ L

(
m

2
, γ

)
+ γ 2∂2

γ L

(
m

2
, γ

)]
. (D4)
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APPENDIX E: THE HCP LATTICE SUM EXPRESSED IN QUADRATIC FORMS

In order to show that the lattice sum (14) can be decomposed into four sums containing pure quadratic forms, we start with
the double sum g1(s, a) defined by

g1(s, a) =
∑

i, j∈Z
((3i + 1)2 + (3i + 1)(3 j + 1) + (3 j + 1)2 + a2)−s, (E1)

where a and s are real numbers and s > 1. We will need the following alternative expression for g1(s, a).
Lemma E.1. The following identity holds:

g1(s, a) = 1

2

⎛
⎝∑

i, j∈Z

′
(3i2 + 9i j + 9 j2 + a2)−s −

∑
i, j∈Z

′
(9i2 + 9i j + 9 j2 + a2)−s

⎞
⎠, (E2)

where the primes indicate that the terms corresponding to (i, j) = (0, 0) are omitted from the summations if a = 0.
Proof. First, let us consider the case a �= 0. For r ∈ {0, 1, 2} let gr (s, a) be defined by

gr (s, a) =
∑

i, j∈Z
[(3i + r)2 + (3i + r)(3 j + r) + (3 j + r)2 + a2]−s (E3)

and observe that this definition is consistent with (E1) when r = 1. Then

g0(s, a) + g1(s, a) + g2(s, a) =
∑

i, j∈Z
i− j≡0 (mod3)

(i2 + i j + j2 + a2)−s,

where the sum is over all integers i and j satisfying the given congruence. Since i − j is a multiple of 3, put i = j + 3k to get

g0(s, a) + g1(s, a) + g2(s, a) =
∑
j,k∈Z

[( j + 3k)2 + ( j + 3k) j + j2 + a2]−s

=
∑
j,k∈Z

(3 j2 + 9 jk + 9k2 + a2)−s. (E4)

Next, by replacing the summation indices i and j in the definition (E1) with −i − 1 and − j − 1, respectively, we readily find
that g1(s; a) = g2(s; a). Hence, (E4) may be written as

g1(s, a) = 1

2

⎛
⎝∑

i, j∈Z
(3i2 + 9i j + 9 j2 + a2)−s − g0(s; a)

⎞
⎠

= 1

2

⎛
⎝∑

i, j∈Z
(3i2 + 9i j + 9 j2 + a2)−s −

∑
i, j∈Z

(9i2 + 9i j + 9 j2 + a2)−s

⎞
⎠. (E5)

This proves the result in the case a �= 0.
On separating out the terms corresponding to (i, j) = (0, 0) from each of the series in (E5), we obtain

g1(s, a) = 1

2

⎛
⎝ 1

a2s
+
∑

i, j∈Z

′
(3i2 + 9i j + 9 j2 + a2)−s

⎞
⎠− 1

2

⎛
⎝ 1

a2s
+
∑

i, j∈Z

′
(9i2 + 9i j + 9 j2 + a2)−s

⎞
⎠

= 1

2

∑
i, j∈Z

′
(3i2 + 9i j + 9 j2 + a2)−s − 1

2

∑
i, j∈Z

′
(9i2 + 9i j + 9 j2 + a2)−s.

This has been obtained under the assumption a �= 0. Now take the limit as a → 0 on each side to complete the proof. This
completes the proof of Lemma (E.1)

We will now show that the triple sum LB(s, γ ) in (14) can be evaluated in terms of the sums L(s, γ ) and M(s, γ ) defined by

L(s, γ ) = LA(s, γ ) =
∑

i, j,k∈Z

′
(i2 + i j + j2 + γ 2k2)−s (E6)

and

M(s, γ ) =
∑

i, j,k∈Z

′
(

i2

3
+ i j + j2 + γ 2k2

)−s

, (E7)

where the primes indicate that the terms corresponding to (i, j, k) = (0, 0, 0) are omitted from the summations.
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Theorem E.2. The following evaluation holds:

LB(s, γ ) = 1

2

[
M
(

s,
γ

2

)
− L

(
s,

γ

2

)
− M(s, γ ) + L(s, γ )

]
. (E8)

Proof. Let

LC (s, γ ) =
∑

i, j,k∈Z

[(
i + 1

3

)2

+
(

i + 1

3

)(
j + 1

3

)
+
(

j + 1

3

)2

+ γ 2k2

]−s

. (E9)

Clearly,

LB(s, γ ) + LC (s, γ ) =
∑

i, j,k∈Z

[(
i + 1

3

)2

+
(

i + 1

3

)(
j + 1

3

)
+
(

j + 1

3

)2

+ γ 2

(
k

2

)2]−s

= LC
(

s;
γ

2

)
,

and therefore

LB(s, γ ) = LC
(

s,
γ

2

)
− LC (s, γ ). (E10)

We now turn to the evaluation of LC (s, γ ). By definition (E9) we have

LC (s, γ ) =
∑
k∈Z

⎧⎨
⎩
∑

i, j∈Z

[(
i + 1

3

)2

+
(

i + 1

3

)(
j + 1

3

)
+
(

j + 1

3

)2

+ γ 2k2

]−s
⎫⎬
⎭

= 32s
∑
k∈Z

⎧⎨
⎩
∑

i, j∈Z
[(3i + 1)2 + (3i + 1)(3 j + 1) + (3 j + 1)2 + 9γ 2k2]−s

⎫⎬
⎭

= 32s
∑
k∈Z

g1(s; 3γ k),

where in the last step we used the definition of g1 from (E1). Now apply Lemma E.1 to get

LC (s, γ ) = 32s
∑
k∈Z

⎡
⎣1

2

∑
k∈Z

(3i2 + 9i j + 9 j2 + 9γ 2k2)−s − 1

2

∑
k∈Z

(9i2 + 9i j + 9 j2 + 9γ 2k2)−s

⎤
⎦

= 1

2
[M(s, γ ) − L(s; γ )]. (E11)

On using (E11) in (E10) we complete the proof of Theorem (E.2).
Adding both lattice sums (12) and (14) and using (E8) we get

Lhcp(s, γ ) = LA(s, γ ) + LB(s, γ ) = 1

2

[
M
(

s,
γ

2

)
− L

(
s,

γ

2

)
− M(s, γ ) + 3L(s, γ )

]
. (E12)

This can be simplified even further, as follows. On replacing the summation index i with i + j in (E6) we obtain

L(s, γ ) =
∑

i, j,k∈Z

′
(i2 + i j + j2 + γ 2k2)−s =

∑
i, j,k∈Z

′
[(i + j)2 + (i + j) j + j2 + γ 2k2]−s

=
∑

i, j,k∈Z

′
(i2 + 3i j + 3 j2 + γ 2k2)−s = 3−s

∑
i, j,k∈Z

′
(

i2

3
+ i j + j2 + γ 2k2

3

)−s

= 3−sM

(
s,

γ√
3

)
, (E13)

or equivalently M(s, γ ) = 3sL(s, γ
√

3). On using this in (E12) we deduce that the lattice sum for the hcp structure can be
expressed in terms of the sole function L(s, γ ) by

Lhcp(s, γ ) = 3s

2

[
L

(
s,

γ
√

3

2

)
− L(s, γ

√
3)

]
+ 1

2

[
3L(s, γ ) − L

(
s,

γ

2

)]
, (E14)

where L(s, γ ) is given by (E6). Equation (E14) is the generalized form of the quadratic equation for the ideal hcp lattice sum (γ =√
8
3 ) introduced in [20]. Table IV contains the lattice sums for a few selected values of s and γ . We note that the decomposition

into quadratic forms is numerically less stable at higher s and smaller γ values as large terms cancel out in the sum (E12).
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TABLE IV. Values for L(s, γ ), L(s, γ
√

3), L(s, γ
√

3/2), and L(s, γ /2) are calculated using (32) and checked using (38). The values for
LB(s, γ ) are calculated using (43) and checked using (49). Finally, the values of Lhcp(s, γ ) are calculated using (15) and checked using (E14);

that is, Lhcp(s, γ ) = LA(s, γ ) + LB(s, γ ) = 3s

2 [L(s, γ
√

3
2 ) − L(s, γ

√
3)] + 1

2 [3L(s, γ ) − L(s, γ

2 )]. All calculations have been confirmed to at
least 20 significant figures, and the results have been rounded to 15 significant figures.

Term s = 2 s = 3 s = 6

γ =
√

8
3

LA(s, γ ) = L(s, γ ) 12.1870358329088 6.92865992678971 6.02086135277707
LB(s, γ ) 13.1520465051463 7.52623735105191 6.11143241632185
L(s, γ

√
3) 9.20293595374102 6.43722899163756 6.00985825575242

L(s, γ
√

3/2) 13.6814750856921 7.36211367799812 6.05865169246628
L(s, γ /2) 26.1897950101762 16.8480717564210 29.3684118845362
Lhcp(s, γ ) 25.3390823380551 14.4548972778416 12.1322937690989
γ = 2

3
LA(s, γ ) = L(s, γ ) 36.9809850738719 35.1941483523189 266.925005360286
LB(s, γ ) 52.5108713421994 75.6309688124675 780.320419437853
L(s, γ

√
3) 16.6903918205456 8.63749904269048 6.44289177567726

L(s, γ
√

3/2) 49.5097759230495 68.7579632615801 1466.59547705827
L(s, γ /2) 227.333699312008 1507.18474463740 1063157.51883750
Lhcp(s, γ ) 89.4918564160713 110.825117164786 1047.24542479814
γ = 2
LA(s, γ ) = L(s, γ ) 10.6947526881655 6.62129785066350 6.01123767234242
LB(s, γ ) 8.89689023466853 3.56318127956155 1.11454282050704
L(s, γ

√
3) 8.70567252140502 6.40314706955824 6.00981976517265

L(s, γ
√

3/2) 11.6894842922333 6.81240163025634 6.01588343941374
L(s, γ /2) 19.7552781562826 10.5448084303891 8.20257055308643
Lhcp(s, γ ) 19.5916429228340 10.1844791302250 7.12578049284946
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