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Quantum targeted energy transfer through machine learning tools
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In quantum targeted energy transfer, bosons are transferred from a certain crystal site to an alternative
one, utilizing a nonlinear resonance configuration similar to the classical targeted energy transfer. We use
a computational method based on machine learning algorithms in order to investigate selectivity as well as
efficiency of the quantum transfer in the context of a dimer and a trimer system. We find that our method
identifies resonant quantum transfer paths that allow boson transfer in unison. The method is readily extensible
to larger lattice systems involving nonlinear resonances.
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I. INTRODUCTION

Nonlinear dynamical systems are notoriously difficult to
study analytically and in most cases one needs to resort to nu-
merical methods for their analysis [1]. In the classical realm,
they are typically described mathematically through coupled
nonlinear differential equations that scarcely admit exact solu-
tions. In this case, one resorts to direct numerical integration
of the equations of motion. In the quantum domain, on the
other hand, even though the equations are linear, one needs
to engage a very large part of the Hilbert space in order to
find good, yet approximate, solutions [2]. Direct numerical
methods, in either the classical or quantum domain, are rel-
atively straightforward, yet might fail in large or strongly
coupled systems. The recent widespread of machine learning
(ML) techniques and their implementation in the domain of
dynamical systems aim to both facilitate and also improve the
discovery process in these systems [3]. The aim of the present
work is to use techniques motivated by ML and obtain results
that would otherwise be very complex to derive. The specific
model we work with is that of targeted energy transfer (TET)
that was inspired by energy transfer processes in chlorophyll
[4]. We have two targets here: The first one is to show how
ML-motivated techniques may be superior to standard numer-
ical methods when applied in quantum complex systems and
the second is to find explicit results that would otherwise be
much more difficult to obtain.

In the semiclassical TET model, we focus on resonant
exciton transfer between nonidentical molecules [4]. In each
molecule a single energy state participates in the process; thus
we have nonidentical energy states coupled together via a
nonzero transfer matrix element. In the simplest case of two
molecules, we deal with a nondegenerate linear dimer system.
Due to the energy mismatch, the exciton transfer from the

*ph4783@edu.physics.uoc.gr
†garapan1@jh.edu

first site to the second is nonresonant and thus occurs only
partially. In order to make the transfer resonant, we need
to add local interaction with additional degrees of freedom,
such as phonons. In the antiadiabatic approximation, this pro-
cedure introduces effective qubic nonlinearities [5]. In TET,
complete resonant transfer is restored for specific nonlinearity
parameter configurations linking the local interaction with
antiadiabatic phonons and the actual energy mismatch. The
analysis is done within the context of the discrete nonlinear
Schrödinger (DNLS) equation, a ubiquitous model for a large
class of nonlinear phenomena [6,7]. A number of analytical
results known for DNLS dimers are particularly useful for ML
implementations in nonlinear systems [8–10].

While in the case of the semiclassical TET dimer system
the resonant transfer regime can be found analytically, similar
analysis in larger systems is an arduous task. In order to
bypass this difficulty, ML-based approaches have been intro-
duced that enable the discovery of nonlinear resonances in
a straightforward way [11,12]. The method was tested both
in the TET dimer and in other analytically known DNLS
equation results. Also, it was applied to the case of a TET
trimer model. This ML approach found readily the trimer
resonances that were very difficult to obtain differently. The
implementation of ML in this semiclassical regime shows that
its application can be very beneficial.

The next challenge is that of addressing the fully quantum
TET regime; this is the aim of the present article. When the
TET dimer is quantized with bosonic degrees of freedom a
more general resonant condition, which involves the number
of quanta, arises [13]. When at resonance, these bosons may
transfer collectively from the first site to the second in a
way similar to the semiclassical TET, although with rates
depending on the boson number and the energy difference.
As in the semiclassical case, in the fully quantum TET, the
resonant condition can be found analytically in the dimer
model [13], but any extension to larger systems is prohibitive
analytically and involves a high computational cost. We show
in the present work that the implementation of ML methods
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can help in overcoming these difficulties and be able to obtain
readily the required resonant transfer properties.

The structure of the present article is thus the following. In
Sec. II we introduce a general form of the DNLS equation that
upon quantization leads to fully quantum TET models. Once
we define clearly the problem in the quantum case, we discuss
in Sec. III the ML technique we use. More specifically, we
discuss the choice of the loss function (LF) that enables the
analysis of the resonant transfer both in the dimer and also
more generally to arbitrary chains. In Sec. IV we detail the
optimization method and how the quantum resonant paths are
found for different boson numbers. Section V is the central
section of the article: We not only recover the exact dimer
results but also apply the method to a trimer configuration.
This gives not only the result of the resonant paths but also
shows that the method is fully able to investigate in detail the
specifics of the resonant transfer. In Sec. VI we summarize the
findings of the work and comment on possible extensions.

II. FROM THE SEMICLASSICAL
TO THE FULLY QUANTUM TET

It is known that the semiclassical DNLS equation can
be derived from a classical Hamiltonian through the use of
Hamilton’s equations [5]. This classical DNLS Hamiltonian
is

H =
f∑

k=1

ωk|ψk|2 + 1

2
χk|ψk|4 − λ

f −1∑
k=1

(ψ∗
k ψk+1 + ψ∗

k+1ψk ),

(1)

where ωk and χk denote the frequency and nonlinearity pa-
rameter of the oscillator at site k, respectively. Also, (ψ∗

k , iψk )
is a pair of conjugate variables and the parameter λ is the
coupling among neighboring sites. For simplicity, we assume
that it is the same between every pair of adjacent oscillators.
In order to move to the quantum mechanical case we need to
focus on the Bose-Hubbard operator [14]. The DNLS model
for the quantum domain may be seen to arise also from the
Bose-Hubbard model by using the time-dependent variational
principle [15]. A simple way to quantize the Hamiltonian
of Eq. (1) is by replacing ψ∗

k and ψk with the creation and
annihilation operators a†

k and ak , respectively, as expressed in
the second quantization formalism [16]. These operators obey
the commutation relations [ak, a†

m] = δkm and [ak, am] = 0,
where δkm is the Kronecker delta. Therefore, the Hamiltonian
operator in the quantum case becomes

Ĥ =
f∑

k=1

ωkN̂k + 1

2
χkN̂2

k − λ

f −1∑
k=1

(â†
k âk+1 + â†

k+1âk ), (2)

where N̂k = â†
k âk is the boson number operator for the site k.

The dimension of the Hilbert space HN for this problem is
finite. Each state corresponds to an allowed configuration of
N indistinguishable bosons occupying f distinguishable sites,
nonlinear oscillators, with repetitions. Thus the dimension of
the Hilbert space is

D = (N + f − 1)!

N!( f − 1)!
.

A basis associated with that problem is the one composed
of the so-called Fock states |n〉 ≡ |n1, n2, . . . , n f 〉, where
n1, n2, . . . , n f is the number of bosons at each respective site
1, 2, . . . , f at the state indexed as n. We discuss the procedure
of labeling the Fock states in Sec. III. The occupation numbers
{ni} are restricted to

∑
i ni = N , while ni = 0, 1, . . . , N . Ad-

ditionally, the Fock states are orthonormal, meaning 〈n|m〉 =
δn1m1 · · · δn f m f . Continuing, the actions of the operators âk , â†

k ,
and N̂k on each component |n〉 of the basis are described by

âk|. . . , nk, . . .〉 = √
nk|. . . , nk − 1, . . .〉, (3a)

â†
k |. . . , nk, . . .〉 =

√
nk + 1|. . . , nk + 1, . . .〉, (3b)

N̂k|. . . , nk, . . .〉 = nk|. . . , nk, . . .〉. (3c)

III. DETERMINATION OF AN APPROPRIATE
LOSS FUNCTION

We now focus on the choice of an appropriate loss function.
We assume that the donor site has the lowest energy with
nonlinearity parameter χD, while the highest-energy site is
the acceptor site with nonlinearity parameter χA. We further
assume that all the bosons are placed initially (at time t =
0) at the donor and investigate the TET configurations that
allow the complete transfer of these bosons to the acceptor
site. To achieve this, we employ an algorithm relying on the
same principle as the ones presented in [11,17], where an
optimization algorithm is used to minimize a quantity that is
defined as the LF. The LF is usually associated with some
physical parameters and thus the problem becomes one where
the algorithm has to tune the parameters.

The first step towards defining the LF is to construct a
numerical scheme for calculating the matrix elements of the
Hamiltonian in Eq. (2). While this is usually a simple pro-
cess, there are special intricacies, with the main one being
the labeling of the Fock states. We manage to overcome this
obstacle by implementing a technique similar to that in [18],
where the authors rank the states in lexicographic order and
assign indices 1, 2, . . . ,D to each configuration of bosons
among the sites. For instance, assuming N = 2 and f = 3,
state 1 corresponds to |1〉 = |2, 0, 0〉, state 2 corresponds to
|2〉 = |1, 1, 0〉, and so on, assigning every state configuration
to a distinct index.

Under this indexing policy, it is now straightforward to
compute the elements Ĥi j similarly to [13], considering that

Ĥi j = 〈i|Ĥ | j〉 (2)= T1 + T2, (4a)

T1 ≡ 〈i|
f∑

k=1

[
ωkN̂k + 1

2
χk (N̂k )2

]
| j〉, (4b)

T2 ≡ −λ〈i|
f −1∑
k=1

(â†
k âk+1 + â†

k+1âk )| j〉. (4c)

Calculating T1 is simple since it involves the simple action of
the boson number operator on state | j〉, as shown in Eq. (3c).
Nevertheless, Eq. (4b) is equivalent to

T1 =
f∑

k=1

[
ωk jk + 1

2
χk ( jk )2

]
δi j,

065301-2



QUANTUM TARGETED ENERGY TRANSFER THROUGH … PHYSICAL REVIEW E 107, 065301 (2023)

where jk stands for the number of bosons on site k for the
state | j〉. Evaluating the second term is nontrivial because
it involves the action of the operators â†

k âk+1 and â†
k+1âk .

The consecutive action of these operators can be explored
by referring to Eqs. (3a) and (3b). The operators â†

k and âk

create and annihilate a boson at a given site k, respectively.
However, when a pair of operators like â†

k âk+1 (â†
k+1âk) acts

on a Fock state | j〉, it creates a boson at the site k (k + 1) but
also destroys a boson at the site k + 1 (k). Thus, their action
on a Fock state conserves the total number of bosons and the
resulting state is going to be, up to a constant, another state in
HN . Specifically,

〈i|â†
k+1âk| j〉 =

√
jk ( jk+1 + 1)δip ≡ C(p)

k δip,

〈i|a†
kak+1| j〉 =

√
jk+1( jk + 1)δim ≡ D(m)

k δim, (5)

where the two new states |p〉 and |m〉 are

|p〉 = | j1, . . . , jk − 1, jk+1 + 1 . . . , j f 〉,
|m〉 = | j1, . . . , jk + 1, jk+1 − 1 . . . , j f 〉. (6)

Substituting Eqs. (5) and (6) in Eq. (4c) yields

T2 = −λ

f −1∑
k=1

(
C(p)

k δip + D(m)
k δim

)
.

The matrix representation of the Hamiltonian can be pro-
duced and subsequently the eigenstates and eigenvalues can
be calculated. Everything is developed in PYTHON, using the
TENSORFLOW [19] library.

The initial distribution of bosons |�(0)〉 can be expanded
to the basis of the eigenstates |ψi〉,

|�(0)〉 =
D∑

i=1

Ci|ψi〉, Ci = 〈ψi|�(0)〉.

Also, these eigenstates can be expanded to the basis of the
Fock states

|ψi〉 =
D∑

j=1

b j,i| j〉, b j,i = 〈 j|ψi〉.

We can now express the time evolution of the initial distribu-
tion |�(0)〉 by applying the time-evolution operator Û (t ) =
e−iĤt ,

|�(t )〉 = e−iĤt |�(0)〉 =
D∑
i, j

Cib j,ie
−iEit | j〉, (7)

where Ei is the ith eigenvalue and i is the imaginary unit.
Similarly, the time evolution of the average number of bosons
at the site k is given by

〈N̂k (t )〉 = 〈�(t )|N̂k|�(t )〉. (8)

Combining Eqs. (7) and (8), 〈N̂k〉 can be assessed as

〈N̂k (t )〉 =
D∑

i, j,n

jkC
∗
nCib

∗
j,nb j,ie

i(En−Ei )t . (9)

We use Eq. (9) to compute the LF for the quantum TET
problem. Specifically, we time evolve Eq. (9) for the acceptor

FIG. 1. Time evolution of the expectation value of the num-
ber of bosons for the two sites of the dimer with the parameters
(χA, χD, ωA, ωD, λ, N, maxt ) = (−2, 2, 3, −3, 0.1, 3, 25). The blue
line denotes the donor’s expectation value and the red line the
acceptor’s.

energy level until a predefined time maxt . During this period,
the oscillator of the f th site (acceptor) has completed a few
oscillations. The next step in computing the LF is to extract
the maximum value from that time evolution. Concluding, the
LF is defined as

LF = N − max{〈N̂ f (t )〉} = N − max{〈N̂A(t )〉}. (10)

In Fig. 1 one can observe the characteristic oscillatory be-
havior, in the dimer system, when the complete transfer
occurs.

In the present work we fix the frequency of the oscil-
lators and optimize for the nonlinearity parameters of the
oscillators. While the LF might appear not to have any ex-
plicit connection to the nonlinearity parameters we want to
optimize for, we can use TENSORFLOW’s GradientTape to
compute the derivatives with respect to these parameters. In
that way, we keep track of gradient information in terms
of the trainable variables throughout the whole process de-
scribed in this section, from creating the Hamiltonian to
calculating 〈N̂k (t )〉. Using this information, an optimizer like
Adam [20] can now update the parameters accordingly so
that the LF is minimized, signifying complete transfer. It is
important to note that, while many other optimization algo-
rithms (simulated annealing [21], particle swarm [22], and
differential evolution [23,24]) were tried on this problem,
we were not able to produce adequate results with any of
them.

The parameter maxt is of major importance because of the
oscillation of the bosons between the sites. If it is not set large
enough, TET can be missed since the system would not have
time to complete an oscillation; it also has to be small enough
so that precious computational time is saved. Thus, it has to
be large enough to obtain at least one complete oscillation,
producing this way essential information. It is also observed
that the period of each oscillator is proportional to λ−1, so
as one would expect, changes to these parameters should be
made concurrently.
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FIG. 2. Schematic representation of the parameter optimization
procedure.

IV. OPTIMIZATION OF THE LOSS FUNCTION

Once we define the LF we may proceed with its minimiza-
tion through the procedure outlined in Fig. 2. We emphasize
the first step of this process graph, i.e., a proper update
method, which is essential for the present work. We noticed
by making several computational runs that optimizers did
not work very well when initialized with a random set of
parameters; this is due to the extreme selectivity of the TET
resonant condition. Specifically, the parameter space that the
LF maps to exhibits slowly varying gradients everywhere,
except for areas close to the optimal parameters for transfer,
where relatively large gradients are present.

Our approach for bypassing this problem relies on explor-
ing a wide range of the parameter space at the same time.
To be more specific, the optimization procedure is comprised
of two distinct phases. First, many test optimizers are as-
signed some initial guesses and left to run simultaneously,
as different processes, until a stopping condition is reached.
Then we gather the LF and the parameters that each test
optimizer yielded at the last iteration. For the second part of
the optimization procedure, a main optimizer is employed.
Its initial guesses are the parameters of the test optimizer
with the best performance (i.e., smallest LF). The purpose
of this additional step is to further minimize the LF, if
possible.

Two methods were developed for defining the initial
guesses of the test optimizers, given that we choose the range
of the parameter space they will investigate. In the first ap-
proach, which is represented by Fig. 3(a), we define a grid
of points in the parameter space and use the lattice points as
initial guesses for the test optimizers. In the second method,
shown in Fig. 3(b), we split the parameter space into a number
of regions and choose random initial combinations of parame-
ters from each region. On the one hand, the former method has
a high computational cost, since it requires a large number of
optimizers running at the same time, but has a greater potential
to derive the optimal parameters. On the other hand, the latter
is fast but less robust. It is useful in cases of stronger coupling,
as the gradients of the parameter space smooth out. If the
first run of any method does not produce favorable results
we have the option of redefining the limits of the parameter
space around the best parameters provided by the test optimiz-
ers. Nevertheless, choosing one of the above methodologies

FIG. 3. Defining the initial guesses of the test optimizers. (a) Ex-
ample using the grid method, where we define 400 different initial
guesses for the same number of test optimizers. (b) Representative
example of the second method, where splitting of the parameter
space into regions is employed. The black lines represent the bound-
aries among the four different regions from which 16 different
guesses are sampled. In both graphs, the test optimizers that were
able to derive a LF less than 1 are displayed with normal opacity
and their trajectories, while the rest are faded. Both figures refer
to a dimer system with (N, ωA, ωD, maxt ) = (3, 3, −3, 25). For the
purposes of explaining the difference between the two methods, the
system presented in (a) has a coupling parameter λ = 0.1, while for
the system in (b) λ = 1.

relies on the problem at hand. In our case, both of them
produce accurate results. Moreover, we need to disambiguate
that the main optimizer is an optional step, which aims to cor-
roborate TET, by producing a LF lower than the one deduced
from the test optimizers.

Regardless of whether we use the grid or the splitting into
regions method, the trainable parameters are updated in the
same way for both the test optimizers and the main opti-
mizer. Given the initial guesses of {χk}, k = 1, 2, . . . , f , the
nonlinearity parameters after the mth iteration are updated as
χ

(m+1)
j = χ

(m)
j − α �∇ j (LF), where the gradient is computed

with TENSORFLOW’s GradientTape, as discussed in Sec. III.
The learning rate α is a positive real number that defines the
rate of change at each iteration while moving towards the min-
imum of the LF. With the new set of nonlinearity parameters,
the optimization procedure moves to the next iteration and it
will be interrupted either due to slow convergence or because
of reaching maximum iterations.

The threshold parameter of Fig. 2 has a dual role. On the
one hand, it checks whether the nonlinearity parameters of
the current iteration yield a LF close to zero, signifying TET.
On the other hand, it determines the slow convergence of the
algorithm, and its role is to pause the optimization procedure
when there is no significant improvement in minimizing the
LF. Thus, its value should be small enough (close to zero) to
manifest TET but still nonzero because otherwise the stochas-
tic optimization procedure we introduce will lead to an infinite
loop. The latter problem is also resolved by terminating the
optimization procedure after reaching a predefined maximum
number of iterations.

The PYTHON code implementing this procedure is located
in our GitHub repository [25].
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FIG. 4. Optimization results. (a) Trajectories and initial guesses
of our algorithm, using the grid method, for N = 3 bosons. The
optimal parameters found by the main optimizer in this example are
(χA, χD ) = (−1.99, 2). Only the initial guesses of the test optimizers
that resulted in a LF smaller than 0.5 are displayed. (b) Parameters
for TET from the quantum limit to the semiclassical limit, as de-
duced from the grid method and the main optimizer, in the dimer
system. (c) Comparison of the predicted nonlinearity parameters
χD = −χA, illustrated by red circles, with the reference value derived
from Eq. (11) represented by a dashed line. The system’s constant
parameters are (ωA, ωD, λ, maxt ) = (3, −3, 0.1, 25).

V. RESULTS

A. TET quantum dimer

In the preceding section we described the optimization
technique, including the possible alternatives. We may now
apply this scheme to the dimer realm and test our method
from the semiclassical limit to the fully quantum one, using
the grid method described earlier. As we discussed in Sec. I,
the optimal parameters for this case are already known for
both the semiclassical [4] and the quantum regime [13]:

χD = −χA = ωA − ωD

N
. (11)

Our method is successful in obtaining the TET configurations.
We fix the frequencies of the donor and acceptor to ωD =
−3 and ωA = 3, respectively, and the coupling parameter to
λ = 0.1, while the time evolution of Eq. (9) for the acceptor
is performed until maxt = 25. Figure 4(a) displays the out-
come of the optimization procedure for N = 3 bosons, with
the optimal nonlinearity parameters (χD, χA) = (2,−1.99).
The illustrated test optimizers produce a LF lower than the
threshold mentioned in Fig. 2, which is set arbitrarily (in this
case 0.5). The results validate the sensitivity of each optimizer
to the initial guesses.

We keep the same values for ωA, ωD, and λ and apply the
grid method for various totals of bosons in the dimer system.
The outcome of the optimization scheme is shown in Fig. 4(b),
while we compare our results with Eq. (11) in Fig. 4(c). In
every case, the proposed method succeeds in identifying the
TET paths. It is worth mentioning that we can deduce the

FIG. 5. Trimer results. Absolute values of the nonlinearity pa-
rameter of the middle layer with respect to (a) different values of
the maximum number of bosons in the system and (b) the fre-
quency of the middle layer ωM . In both cases we use the grid
method while the system’s constant parameters for both figures are
(ωA, ωD, λ, maxt ) = (ωM − 1, −ωM + 1, 1, 40).

same results with the method of splitting the parameter space.
Moreover, our analysis proves that the fully quantum case

of N = 1 boson is of special interest since TET occurs for a
whole set of nonlinearity parameters χA and χD instead of a
single very limited configuration. Specifically, we identify this
set as

χD = χA + 2(ωA − ωD). (12)

This result is in agreement with previous analytical calcula-
tions. To be more specific, Maniadis et al. [13] proved that
the condition for having TET is for the detuning function to
vanish. The latter is defined as the variation of the energy of
the oscillators during a transfer

ε = [HD(N ) + HA(0)] − [HD(i) + HA(N − i)], (13)

where i = 0, 1, . . . , N and HD and HA are the donor and ac-
ceptor parts of the Hamiltonian in Eq. (2), respectively. In this
case, any nonzero λ can raise the degeneracy of the system
and complete TET occurs in the limiting of zero coupling.
We can easily prove that the detuning function of Eq. (13) for
one boson vanishes for the parameters of Eq. (12). For all the
cases where the detuning function vanishes, the Hamiltonian
becomes a quadratic of the bosons operators

Ĥ = ĤD(N ) − λ(a†
DaA + a†

AaD). (14)

B. TET quantum trimer

The trimer system has been investigated in [11,26] in the
context of a single electron or boson. We aim to expand this
investigation to the arbitrary case of N bosons. While the
method is able to optimize the nonlinearity parameters of all
three sites, it proved computationally consuming. To circum-
vent this, we set the acceptor and donor sites to their dimer
values and optimize the parameter of the middle layer (labeled
as M). Similarly to the dimer case, we can set an arbitrary
threshold for the LF (LF < 0.2) and begin the optimization
process.
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FIG. 6. Lowest value of the LF in a trimer system with the
parameters displayed in the legend. The other system parameters are
(ωA, ωD, λ, maxt ) = (ωM − 1, −ωM + 1, 1, 40).

We observe that for TET to occur in the quantum realm, the
middle layer has to exhibit extremely high nonlinearity. One
of the trimer systems examined in this section has the follow-
ing properties: It is strongly coupled, λ = 1, with frequencies
ωD = 3, ωM = −3, and ωA = −3, and a maximum number of
bosons N = 4 initially at the donor site.

The nonlinearity parameter required to have TET, in this
case, is χM ≈ 38.39, which is much higher than that of
Eq. (11) compared to the parameters of the donor and ac-
ceptor sites χD = −χA = 1.5. It is important to mention that
the opposite value χM ≈ −38.39 will produce a similar LF
value but still small enough to exceed the threshold and stop
the iterative process. We carry out the same procedure for a
variety of system parameters, as seen in Fig. 5.

We display the absolute value of χM as both positive and
negative values produce the desired result. We observe that
the relation between χM and the frequencies or the number
of bosons of the system seems to differ from the dimer case,
as there appears to be a greater correlation with the former
than the latter. In the graph some points seem to differ greatly
from others, a fact that is attributed to an optimization process
that is not able to minimize the loss function enough before
being terminated by the rules we defined earlier in Sec. IV.
We also have plotted the minimum value of the LF that we
observed in Fig. 6. The time evolution of the boson number
operators for this system is shown in Fig. 7. As we can
see in Fig. 7(a), the expectation value of the boson number
operator for the middle layer, in the optimal case, appears to
be zero for all time steps, which indicates that bosons do not
stay on this site for any significant amount of time, if at all.
However, this is not observed in cases where the nonlinearity
parameters are set to nonoptimal values, as seen in Fig. 7(b),
where the expectation value is nonzero. It is apparent that
the oscillation frequency of the number operator is larger in
the nonresonant system and that complete TET cannot be
achieved.

FIG. 7. Time evolution of the average number of bosons
for the three sites of the trimer system. (a) Time evolution
of the expectation values of the boson number operators for
nonlinearity parameters that produce nearly complete TET where
(χA, χM , χD, ωD, ωM , ωA, λ, N, maxt ) = (−1.5, −38.39, 1.5, −3,

−3, 3, 1, 4, 40). (b) Time evolution of the expectation values of the
boson number operators for a system with parameters that do not pro-
duce complete TET, where (χA, χM , χD, ωD, ωM , ωA, λ, N, maxt ) =
(−1.5, 1.5, 1.5, −3, −3, 3, 1, 4, 40). For both figures, the blue,
yellow, and red lines refer to the expectation value of the
boson number operator for the donor, middle site, and acceptor,
respectively.

VI. CONCLUSION

In this work we introduced a ML method in the context
of a quantum many-body system and showed that its effi-
cient implementation can produce results that are very hard
to obtain with more conventional methods. We focused on
the quantized version of the DNLS equation with arbitrary
local energies and nonlinearities and addressed the question
of optimal transfer in between different sites for the dimer
and trimer cases. Since the fully quantum transfer dimer case
is known analytically, we compared our method with these
results and showed perfect agreement. This successful com-
parison between analytics and ML methods showed that the
latter can be used confidently in more complex cases where
results are not known. Subsequently, we applied the method to
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the trimer case that cannot be solved analytically. Our method
enabled a detailed search showing the specifics of the resonant
transfer, the different parameter regimes, and the transfer ef-
ficiencies. In terms of physics, we found in the trimer system
that in the nonresonant transfer regime from donor to acceptor
sites the intermediate state retains some of the probability.
In the resonant case, on the other hand, the intermediate site
is essentially not populated. This shows that this site acts as
some form of a barrier between the donor and acceptor sites
that can be completely bypassed in the fully resonant regime.
It is noteworthy to point out that the bosons move in unison
over to the acceptor site, showing a very interesting collective
behavior in the transfer.

The collective boson transfer can be investigated also
in more general chains with a larger number of sites. The
computational challenge is now larger since the dimension-
ality of the system becomes large and the calculation of
the Hamiltonian and the evolution of 〈N̂A(t )〉 slows down.
In this regime, one needs to explore other loss functions
that could improve scalability and/or implementation of met-
alearning methods described in [27]. In this work we tested
also alternative optimizers such as ones with momentum.
We found that they were more efficient in finding the res-
onant transfer parameter regime but were highly dependent

on hyperparameters that needed to be also optimized.
Finally, it is possible that variants of the gradient descent
algorithm might help in reducing the computational cost
[28].

The phenomenon of the collective transfer of bosons in the
trimer case opens up very interesting new questions on the
interplay of nonlinearity and disorder in the fully quantum
regime for more extended systems. The ML method provided
in the present work can be readily generalized to this case
and be utilized to investigate this very exciting problem with
applications in condensed matter physics as well as quantum
optics.
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