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Fluctuation dynamos occur in most turbulent plasmas in astrophysics and are the prime candidates for
amplifying and maintaining cosmic magnetic fields. A few analytical models exist to describe their behavior,
but they are based on simplifying assumptions. For instance, the well-known Kazantsev model assumes an
incompressible flow that is δ-correlated in time. However, these assumptions can break down in the interstellar
medium as it is highly compressible and the velocity field has a finite correlation time. Using the renewing flow
method developed by Bhat and Subramanian (2014), we aim to extend Kazantsev’s results to a more general class
of turbulent flows. The cumulative effect of both compressibility and finite correlation time over the Kazantsev
spectrum is studied analytically. We derive an equation for the longitudinal two-point magnetic correlation
function in real space to first order in the correlation time τ and for an arbitrary degree of compressibility (DOC).
This generalized Kazantsev equation encapsulates the original Kazantsev equation. In the limit of small Strouhal
numbers St ∝ τ we use the Wentzel-Kramers-Brillouin approximation to derive the growth rate and scaling of
the magnetic power spectrum. We find the result that the Kazantsev spectrum is preserved, i.e., Mk (k) ∼ k3/2.
The growth rate is also negligibly affected by the finite correlation time; however, it is reduced by the finite
magnetic diffusivity and the DOC together.
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I. INTRODUCTION

The vast majority of the baryonic matter is in a plasma
state, and therefore a complete description of the universe
needs to include a proper treatment of the electromagnetic
force [1]. From observations it is known that the universe is
highly magnetized. Indeed, magnetic fields are observed in
almost all astrophysical bodies as, for instance, in asteroids
[2], planets [3], stars [4,5], galaxies [6,7], or the intergalactic
medium [8–10]. Due to the broad range of objects, the typical
strength and correlation length of these magnetic fields are
distributed over several orders of magnitude. As an example in
Milky Way-like galaxies, the observed magnetic fields are of
a few tens μG in strength and correlated on kiloparsec scales
[11].

The most popular mechanism to explain the observed mag-
netic fields is the dynamo process which converts the kinetic
energy of the flow to magnetic energy. In the absence of large-
scale motions, small-scale or fluctuation dynamos1 amplify
the initial magnetic field exponentially [12], a process which
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1The terms “small-scale dynamo” and “fluctuation dynamo” are

used interchangeably in the literature.

is most efficient on the smallest scales of the system. In the
kinematic stage of the dynamo, the magnetic field lines are
frozen into the plasma. Due to the turbulent motion of the flow,
the action of the small-scale dynamo is to randomly twist,
stretch, and fold these lines which makes the magnetic field
strength grow. However, activating the dynamo requires an
already existing seed field. Although unclear, it is generally
assumed that these seed fields were generated in the early
universe [13] or through astrophysical processes such as the
Biermann battery [14]. Schober et al. [15] also highlighted
that the small-scale dynamo can only amplify the magnetic
field for magnetic Reynolds numbers RM ∼ UL/η (U and L
are, respectively, the typical velocity and length scale of the
system) larger than a few hundred. In the nonlinear regime af-
ter saturation on the smallest scales, the peak of the magnetic
energy shifts from smaller to larger scales and the magnetic
energy increases following a power law [16]. The exact behav-
ior of the dynamo depends on the magnetic Prandtl number
PrM = ν/η and on the type of turbulence [16–18].

The small-scale dynamo is a key process in astrophysics.
Indeed, the strength of the magnetic fields predicted from the
early universe is not consistent with the observed typical value
of a few μG in the inter-cluster medium [[19], and references
therein] or in high redshift galaxies [20]. Small-scale dynamos
could then provide an explanation for the fast amplification of
magnetic fields in the radiation-dominated phase of the early
universe [21], in young galaxies [22], and galaxy clusters [12]
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as they can act on timescales much shorter than the age of
the system. In the context of supernova-driven turbulence, it
is expected to give rise to the far-infrared-radio correlation in
galaxies [23] and potentially even dwarf galaxies [24]. Small-
scale dynamos might also be involved in the formation of the
first stars [25–27] and black holes [28–30]; and thus could
affect the epoch of reionization.

Different approaches have been published along the years
to model the complex behavior of dynamos. For instance,
Adzhemyan et al. [31] discuss the turbulent dynamo in the
framework of a quantum-field formulation of stochastic mag-
netohydrodynamics, where it is described as a mechanism of
spontaneous symmetry breaking. An early theoretical descrip-
tion of the small-scale dynamo is given by Kazantsev [32]. His
equation describes the time evolution of the two-point mag-
netic correlation function under the assumption of a Gaussian
incompressible flow that is δ-correlated in time. Its derivation
indicates that the magnetic power spectrum scales as Mk (k) ∼
k3/2 for q � k � kη, where q is the forcing scale and kη

is the wave number above which diffusion of the magnetic
field dominates. Following Kazantsev’s work many authors
have tried to extend this model [see, e.g., Refs. [33–36]].
Although some astrophysical objects host plasma that is well
described by an incompressible flow (as, for instance, neutron
stars [37]); Kazantsev’s assumptions strongly simplify the
behavior of most astrophysical bodies. Indeed the majority of
the plasma in the universe is highly compressible as indicated
by observations of compressive interstellar turbulence [38].
Moreover, in realistic flows the correlation time τ should be
of the order of the smallest eddy turnover time. Thus the
assumptions involved in the Kazantsev [32] derivation do not
allow for an accurate description of all types of fluctuation
dynamos.

In this work we aim to study the small-scale dynamo for
the general case of a flow that is compressible and with finite
correlations in time. Zeldovich et al. [39] pointed out that
the so-called renovating flows represent a solvable analyt-
ical model to study the impact of the correlation time on
small-scale dynamos. In this context, Bhat and Subramanian
[36] developed a method to study the dynamo of incompress-
ible flows. They found that the Kazantsev spectrum was not
strongly affected by a finite correlation time, i.e., Mk (k) ∼
k3/2. However, the growth rate of the dynamo is reduced. On
the other hand, Schekochihin et al. [40] found that a com-
pressible flow that is δ-correlated in time also preserves the
Kazantsev spectrum where compressibility also reduces the
growth rate of the dynamo. As far as we know, although there
are clues that the Kazantsev spectrum should be preserved in
the interstellar medium (compressible and correlated in time
flow), there is no previous theoretical study that demonstrates
formally that the combined actions have no effect on the
Mk (k) ∼ k3/2 spectrum. Rogachevskii and Kleeorin [41] used
a path integral method to solve the induction equation and
show that a dynamo can be activated for compressible flows
that are correlated in time. Their results admit solutions con-
sistent with the Kazantsev spectrum.

The present work assumes a simplified random flow that
is compressible and correlated in time. We present here a
generalization of the previous work by Bhat and Subramanian
[36] by including the effect of compressibility. The paper is

organized as follows: in Sec. II we briefly review the original
Kazantsev theory. In Sec. III we present the renewing flow
method used by Bhat and Subramanian [36]. In Sec. IV we
give the derivation of the original Kazantsev equation (in-
compressible and δ-correlated in time flow) with the use of
the renovating flow method. In Sec. V we present our gener-
alization of the Kazantsev equation for a compressible flow
that is correlated in time and study the Wentzel-Kramers-
Brillouin (WKB) solutions in Sec. VI. Finally, we insert our
results in the current context and draw our conclusions in
Sec. VII.

II. KAZANTSEV THEORY

Dynamos in the context of an isotropic flow have been hy-
pothesized since the 1950s [see, e.g., Refs. [42,43]]; however,
the first one to give a complete theoretical framework was
Kazantsev [32]. In his work an isotropic and homogeneous
flow that is δ-correlated in time was proposed. In this sec-
tion we review the basics of the derivation of the Kazantsev
equation and its results, in particular we follow Subramanian
[34] for the formalism.

We rewrite the velocity field as

u = 〈u〉 + δu, (1)

where 〈u〉 is the mean and δu the fluctuations. If we assume
the fluctuations to be isotropic, homogeneous, Gaussian ran-
dom with zero mean and δ-correlated in time, then we can set
the correlation function to be

Ti j (r)δ(t1 − t2) = 〈δui(x, t1)δu j (y, t2)〉, (2)

with r = |x − y|. For a helical field, any two-point correlation
function can be expressed through longitudinal and transverse
components [44] as

Ti j (r) = r̂i jTL(r) + P̂i jTN(r), (3)

with r̂i j = rir j/r2 and P̂i j = δi j − r̂i j . For a divergence-free
vector field (in the case of velocity: an incompressible flow
∇ · u = 0) we can even show that the two components are
related by

TN = TL + r

2

d

dr
TL. (4)

A similar decomposition can be performed for the magnetic
field. Since B is divergence-free, the magnetic correlation
function can be expressed as

Mi j (r) = 〈δBi(x)δBj (y)〉,

= (r̂i j + P̂i j )ML + P̂i j
r

2

d

dr
ML. (5)

The time derivative of the two-point magnetic correlation
function is thus given by

∂Mi j

∂t
=

〈
∂Bi

∂t
B j

〉
+

〈
∂Bj

∂t
Bi

〉
− ∂〈BiBj〉

∂t
. (6)

Inserting this expression in the induction equation

∂B
∂t

= ∇ × (u × B − η∇ × B), (7)
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and using the averaged induction equation

∂〈B〉
∂t

= ∇ × (〈u〉 × 〈B〉 − [η + TL(0)]∇〈B〉), (8)

Subramanian [34] found an equation for the time evolution of
the longitudinal two-point magnetic correlation function

∂ML

∂t
= 2κdiffM

′′
L + 2

(
4κdiff

r
+ κ ′

diff

)
M ′

L

+ 4

r2

(
TN − TL − rT ′

N − rT ′
L

)
ML. (9)

In this expression κdiff ≡ η + TL(0) − TL(r) and a prime de-
notes a derivative with respect to r. If we further suppose that
the time and spatial dependencies are independent, then we
can use the ansatz

ML(r, t ) = 1

r2√κdiff
ψ (r)e2	t . (10)

This form is convenient as it highlights a formal similarity to
quantum mechanics. We insert the ansatz into Eq. (9) and find

−κdiff
d2ψ

dr2
+ U (r)ψ = −	ψ. (11)

This equation has the form of a Schrödinger equation and is
often referred to as the Kazantsev equation in the literature;
however, in this work we will refer to Eq. (9) as the Kazantsev
equation instead. The function U (r) is equivalent to a poten-
tial and is given by

U (r) ≡ κ ′′
diff

2
− (κdiff )′

4κdiff
+ 2κdiff

r2
+ 2T ′

N

r
+ 2(TL − TN)

r2
.

(12)

Note that in the derivation of this equation we did not assume
at any point that the flow is incompressible.

Schekochihin et al. [35] studied the Kazantsev equation in
Fourier space in the sub-diffusion limit such that k f � k �
kη, with k f being the forcing scale for a single scaled flow and
kη the Fourier conjugate of the magnetic diffusion length scale
(the scale at which the magnetic diffusion is important). If
incompressibility is assumed, then the Kazantsev equation can
be rewritten as [see, e.g., Refs. [33,45]]

∂Mk

∂t
= γ

5

(
k2 ∂2Mk

∂k2
− 2k

∂Mk

∂k
+ 6Mk

)
− 2ηk2Mk, (13)

where γ is a constant that characterizes the flow and Mk (k, t )
represents the magnetic power spectrum. Compared to ML(r)
it characterizes the magnetic correlation function in Fourier
space, formally we have the following relation:

〈B̂i(k, t )B̂∗
j (k

′, t ′)〉
= (2π )3M̂i j (k, t )δ3(k − k′)δ(t − t ′)

= (2π )3 Mk (k, t )

4πk2

(
δi j − kik j

k2

)
δ3(k − k′)δ(t − t ′), (14)

with Â∗ being the complex conjugate of the Fourier transform
Â. The solution of the Fourier space Kazantsev equation is

given by

Mk (k, t ) = M0eγ λt k3/2KMc(k/k0), Mc =
√

5

(
λ − 3

4

)
,

(15)

where KMc is the Macdonald function, λ the normalized
growth rate and k0 = (γ /10)1/2. The magnetic power spec-
trum thus scales mostly as Mk (k) ∼ k3/2 in the subdiffuse
limit, which we refer to as the Kazantsev spectrum. The mag-
netic spectrum grows exponentially in time, with a growth rate
given by 3γ /4 for an incompressible flow that is δ-correlated
in time.

III. THE RENEWING FLOW METHOD

The renewing or renovating flow method was first pro-
posed by Steenbeck and Krause [46]. Zeldovich et al. [39]
highlighted that it provides an alternative to the unphysical
assumption of velocities that are δ-correlated in time but
remains analytically solvable. Several authors have used the
method to obtain relevant results with finite correlation times
[e.g. [47–51]]. In this work we employ the operator splitting
method, used by Gilbert and Bayly [52] to recover the mean-
field dynamo equations. Following the approach of Bhat and
Subramanian [36], in a nonhelical flow, we impose a velocity
field of the form

u = a sin (q · x + ψ ). (16)

We split the time into intervals of length τ which is the cor-
relation time of the flow. In each of these τ -intervals we draw
randomly a, q and ψ such that the flow is overall isotropic,
homogeneous, and with a zero mean [53]. Note that the flow
is static only in intervals of the type [(n − 1)τ, nτ ] (n being
an integer) and renovates for each τ -interval.

To apply the operator splitting method we further divide the
τ -intervals into two subintervals of duration τ/2. In the first
one we consider that the diffusion of the magnetic field is zero
but the velocity is doubled, in the second one the velocity is
now set to zero and diffusion acts as twice its original value.
Using the induction equation [Eq. (7)] we need to solve the
following problem:

∂B
∂t

= ∇ × 2u × B, t ∈ [(n − 1)τ, (n − 1)τ + τ/2],

∂B
∂t

= −2η∇ × ∇ × B, t ∈ [(n − 1)τ + τ/2, nτ ]. (17)

The validity and convergence of the operator splitting method
is beyond the scope of this work, we refer interested readers
to Holden et al. [54].

A. First subinterval

We consider only the ideal induction equation. In this case,
due to the magnetic flux freezing, the magnetic field is given
by the standard Cauchy solution [see Sec. 3.3 of Ref. [55]]

Bi(x, t ) = Ji j (x0)

|Ji j | Bj (x0, t0), (18)

where we define x(x0, t0) to be the Lagrangian position at a
time t of a fluid element with an initial position x0 at time
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t0. The matrix Ji j is given by the coordinate transformation,
namely,

Ji j = ∂xi

∂x0, j
, (19)

and | · | denotes the determinant of the matrix.

B. Second subinterval

We consider only the diffusion of the magnetic field. It is
straightforward to solve the equation of diffusion in Fourier
space where we denote the Fourier transform of A by Â. We
find the solution

B̂i(k, t ) = e−ηk2τ B̂ j (k, t1), (20)

with t1 = t0 + τ/2.

C. Complete time-step

We express the total magnetic field evolution in Fourier
space, from Eqs. (18) and (20), as

B̂i(k, t ) = e−ηk2τ

∫
e−ik·x Ji j (x0)

|Ji j | Bj (x0, t0) d3x, (21)

which describes the successive evolution through the two
subintervals.

We are now ready to give an expression for the two-point
correlation function of the magnetic field in Fourier space

〈B̂i(k, t )B̂∗
h(p, t )〉 = e−ητ (k2+p2 )

〈 ∫
Ji j (x0)

|Ji j |
Jhl (y0)

|Jhl | Bj (x0, t0)

× Bl (y0, t0)e−i(k·x−p·y) d3xd3y
〉
, (22)

where 〈·〉 denotes an average over the parameter space of
the velocity flow and A∗ is the complex conjugate. We can
change the integration variables {x, y} → {x0, y0} such that
the determinants of the two Jacobian matrices cancel. We can
also argue that the initial magnetic field is no longer correlated
with the renewing flow in the next subinterval, which allows
us to split the averages. The final expression is then given by

〈B̂i(k, t )B̂∗
h(p, t )〉 = e−ητ (k2+p2 )

∫
〈Bj (x0, t0)Bl (y0, t0)〉

× 〈Ji j (x0)Jhl (y0)e−i(k·x−p·y)〉d3x0d3y0.

(23)

Note that in this expression x and y are functions of the initial
positions.

As the flow is overall isotropic and homogeneous we ex-
pect that for an initial state of the magnetic field, which is also
isotropic and homogeneous, these properties are conserved.
Under such assumptions the two-point magnetic correlation
function takes the following form:〈

Bi(x, t )Bj (y, t )
〉 = Mi j (r, t ), (24)

where r = |x − y|. We can further introduce a new set of in-
tegration variables {x0, y0} → {r0 ≡ x0 − y0, y0}. We rewrite
the exponential part inside the integral as

−i[k · (x − x0) − p · (y − y0) + k · r0 + (k − p) · y0]. (25)

For now we assume that the evolution tensor, that is given by

Ri jhl ≡ 〈
Ji j (x0)Jhl (y0)e−i[k·(x−x0 )−p·(y−y0 )]

〉
, (26)

is independent of y0; which is convenient as we can rewrite
Eq. (23) in the following form:

〈B̂i(k, t )B̂∗
h(p, t )〉 = (2π )3δ3(p − k)e−2ητ p2

×
∫

e−ip·r0 Ri jhl Mjl (r0, t0) d3r0, (27)

once the integration over d3y0 is performed. Note that the
Dirac-δ function appears from the integration over y0 since
the exponential is the only dependency on y0 and can be taken
out of the flow parameters average. We assumed that Ri jhl

only depends on r0 because this form of the equation is more
compact; we will show in further sections (see Sec. IV C) that
this assumption is valid, at least for the cases we consider.

IV. KAZANTSEV EQUATION FROM THE RENEWING
FLOW METHOD

In his initial work, Kazantsev considered a flow that is δ-
correlated in time and incompressible. This case is the easiest
to treat with equations that are more or less tractable. We use
this simplified treatment to present a detailed calculation in the
framework of the renewing flow method. With the renewing
flow method we consider the velocity field to be known, which
constitutes the main difference with previous works on the
topic.

A. Velocity flow parameters

The first step is to give a suitable parametrization of a, q
and ψ to ensure the statistical isotropy and homogeneity of
the flow. We further impose an incompressible flow, which
translates here to the requirement that a and q are orthogonal
to each other.

Homogeneity. we draw ψ in each τ -interval from a uniform
distribution in the range [0, 2π ].

Isotropy. we fix the value of q which is the norm of q. The
wave number q is randomly drawn from a sphere of radius
q. The velocity orientation a is randomly drawn in the plane
perpendicular to q such that 〈u〉 = 0.

To simplify the computations we change the average en-
semble. Instead of averaging over the direction of a we prefer
to use a new vector A which has a fixed norm and a direction
drawn randomly. Then A and q define a plane where we can
project the component of A that is orthogonal to q. This is
performed by

P̃i j ≡ δi j − q̂iq̂ j, ai = P̃i jA j, (28)

where q̂i ≡ qi/q is the normalized component of q. Note also
that we adopt the Einstein summation rule. Since A and q are
two independent vectors this parametrization ensures 〈u〉 = 0.
We directly see that a is not fixed in this context; however, we
can evaluate it from A as

〈a2〉 = 〈aiai〉 = 〈P̃il Al P̃ihAh〉,

=
average of A

A2

3
〈P̃il P̃ihδlh〉 =

average of q

2A2

3
, (29)
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where we used the fact that 〈AiAj〉 = δi j/3 for a random
vector.

B. Two-point velocity correlation functions

To reconstruct the original Kanzatsev equation (9) we only
need to compute the second-order velocity correlator. We use
the definition of Bhat and Subramanian [36]

Ti j = τ

2
〈ui(x)u j (y)〉 =

average of ψ

τ

4
〈aia j cos (q · r)〉. (30)

The factor τ/2 is required here as the flow is correlated in
time. It also ensures that in the limit τ → 0 we recover the
Kazantsev equation. The initialization of a and q allows us to
give an exact formula for this correlator. Using Eqs. (28) and
(29) we average over the directions of A to eliminate it, the
remaining average is thus only over the directions of q with

Ti j = τ

4
〈P̃il Al P̃jhAh cos (q · r)〉 = A2τ

12
〈P̃i j cos (q · r)〉

= a2τ

8

[
δi j + 1

q2
∂i∂ j

]
〈cos (q · r)〉, (31)

where we use the following notation: ∂i ≡ ∂/∂ri. If we recall
the proper definition of the average, then we can write

〈cos (q · r)〉 ≡ 1

4π

∫ 2π

0

∫ π

0
sin (θ ) cos (q · r) dθdφ

= 1

2

∫ π

0
sin (θ ) cos (qr cos (θ )) dθ

= j0(qr), (32)

where j0(x) is the spherical Bessel function.

C. Computation of the evolution tensor

To evaluate Ri jhl we first need to have an expression for Ji j .
As we required that a and q are orthogonal we have

d (q · x + ψ )

dt
≡ dφ

dt
= 2q · u = 0, (33)

such that φ is constant along the trajectory of a fluid element.
So the equation dx/dt = 2u can be easily integrated2 and
gives

xi − x0,i = aiτ sin (q · x0 + ψ ) (34)

for the Lagrangian positions. Using Eq. (19), it is straightfor-
ward to evaluate Ji j ; from the last relation

Ji j (x0) = δi j + τaiq j cos (q · x0 + ψ ). (35)

Bhat and Subramanian [36] motivated an expansion of the
exponential of the evolution tensor [Eq. (26)] in the limit
of small Strouhal numbers St = qaτ � 1. In the context of
small-scale turbulent dynamos the magnetic spectrum in the
kinematic regime peaks around the resistive scale [56–58]
which can be evaluated to be rη ∼ (l0/R1/2

M ) with l0 being the

2The factor 2 comes from the fact that in the first subinterval we
have twice the initial velocity.

integral scale of the flow.3 In the case considered here, the
flow has only one typical scale (1/q), thus rη ∼ 1/(qR1/2

M ). We
used RM ∼ a/(qη) for the magnetic Reynolds number which
is usually very high in astrophysical objects [see Table 1 of
Ref. [55]] such that qrη is very small and hence sin (q · rη) ∼
q · rη. The phase of the exponential in Eq. (26) is then given
by aqτ pηrη ∼ qaτ = St. Since the terms in the vicinity of
the resistive scale will contribute more to the magnetic spec-
trum, the expansion of sin (q · x0 + ψ ) − sin (q · y0 + ψ ) =
sin (q · r0/2) cos (q · (x0 + y0) + ψ ) is reasonable. In this sec-
tion, we only keep terms up to second order in τ and we will
see that it leads to the original Kazantsev equation (9).

The equation (26) for Ri jhl can then be rewritten in the form

Ri jhl =
〈
Ji j (x0)Jhl (y0)

[
1 − iτβσ − τ 2β2σ 2

2!

]〉
, (36)

where β = sin (q · x0 + ψ ) − sin (q · y0 + ψ ) and σ = a · p.
To continue further we make use of the average over ψ and
we also introduce the notation φx0 = q · x0 + ψ . In fact, if
we try to average a function of the type cos (nφx0 + mφy0 )
or sin (nφx0 + mφy0 ) with n and m being two integers, then
we find that it always goes to zero except when n = −m. In
particular, it highlights the fact, as we hypothesized in Sec. III,
that Ri jhl is only dependent on r0 = x0 − y0.

Term by term evaluation of the average over ψ of Eq. (36),
leads to the following expression:

Ri jhl =
〈
δi jδhl + τ 2aiq jahql

2
cos (q · r0)

− i
τ 2σ

2
sin (q · r0)(δhlaiq j + δi jahql )

− τ 2σ 2

2
(1 − cos (q · r0))δi jδhl

〉
. (37)

Each term can then be matched with Eq. (30) to obtain

Ri jhl = δi jδhl − 2τ∂l∂ jTih + 2iτ pm(δhl∂ jTim + δi j∂lThm)

−2τ pn pmδi jδhl (Tnm(0) − Tnm), (38)

where we replaced qi by suitable derivatives with respect to
the components of r0 and σ by am pm. This expression for Ri jhl

cannot be simplified further and we need to go back to Eq. (27)
and perform the integration.

D. Derivation of the Kazantsev equation

The original Kazantsev equation (9) describes the evolu-
tion of the two-point magnetic field correlation function in
real space. Instead of evaluating M̂ih(p, t ) we take its inverse
Fourier transform. Formally we get

Mih(r, t ) =
∫

e−2ητ p2
eip(r−r0 )Ri jhl Mjl (r0, t0)

d3r0d3 p
(2π )3

. (39)

To further simplify this expression we assume that η is
small, such that the exponential can also be expanded giving

3This definition for the resistive scale is limited to the cases where
the hydrodynamic Reynolds number Re is close to unity. Some au-
thors used a more general expression kη ∝ R1/2

M R1/4
e [40,77,87].
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exp(−2ητ p2) ∼ 1 − 2ητ p2. This expansion is justified in the
context of negligible η or large RM. Terms like ητ 2 are also
ignored, so the part −2ητ p2 only contributes from the δi jδhl

term in the expression of Ri jhl as it is the only term that does
not depend on τ 2. Once again we rewrite components of the
wave vector (here p) as derivatives with respect to the position
(here r) such that p j → −i∂ j .

We adopt the notation [·]i j for partial derivatives with re-
spect to ri and r j . In the limit τ → 0 we can divide both sides
by τ and replace [Mih(r, t ) − Mih(r, t0)]/τ → ∂Mih(r, t )/∂t
such that from Eq. (39) we arrive at [see Ref. [59], for a
detailed calculation]

∂Mih(r, t )

∂t
= 2[Mil Tjh] jl + 2[MjhTil ] jl − 2[MihTjl ] jl

− 2[Mjl Tih] jl + 2[Mih(TL(0) + η)] j j . (40)

Note that TL(0) appears from Tnm(0) = δnmTL(0). This re-
sult is very important for the formalism as we started from
equation (37) that tracks the evolution of an initial state to
the equation (40) for the two-point magnetic field correlation
function that depends on other quantities evaluated at the same
space-time positions.

We can even simplify the computation further by contract-
ing Eq. (40) with r̂ih on both sides to get an equation for
ML(r, t ). We refer the reader to Table II for detailed ex-
pressions of different contractions that enter the computation.
Using incompressibility we finally find

∂ML(r, t )

∂t
= 2

r4
∂r{r4[η + TL(0) − TL]∂rML}

− 2

r

(
r∂2

r TL + 4∂rTL
)
ML, (41)

which is exactly the incompressible Kazantsev equation (9)
in the limit of a flow that is δ-correlated in time. In compar-
ison to previous works [e.g., Refs. [33,41]], the input here is
the velocity field that is used to solve directly the induction
equation.

V. GENERALIZED KAZANTSEV EQUATION

In this section we will derive the equivalent of the Kazant-
sev equation in the context of the renewing flow method.
Previous studies have analysed separately the effects of the
finite correlation time [36] and the compressibility [40] of
the flow. By generalized we mean that we relax the incom-
pressibility assumption used in the previous work of Bhat
and Subramanian [36]. Our new equations then include the
contributions from the time correlation of the flow as well as
its degree of compressibility.

A. Lagrangian positions

In the case of an incompressible flow ξ ≡ a · q was set
to 0 (see Sec. IV). We can introduce a degree of compress-
ibility by relaxing this condition, allowing ξ to be nonzero
with ξ ∈ [−aq; aq]. This allows us to include the nontrivial
contribution from the compressibility of the flow. We can no
longer apply the same reasoning as before (see Sec. IV C)
since this time we have dφ/dt = 2ξ sin (φ). If we integrate
this expression over the first subinterval, then we find

| tan (φ/2)| = eξτ | tan (φ0/2)|. (42)

We defined φ = q · x + ψ to be the phase of the velocity field
at the final position (after a time τ/2) and φ0 = q · x0 + ψ to
be the phase of the initial position.

Furthermore, by integrating the velocity field we get

xi − x0,i =
∫

dxi

dt
dt = ai

ξ
(φ − φ0). (43)

However, this formula cannot be inverted. The idea is thus to
use Eq. (42) to isolate φ to plug it into Eq. (43) such that we
get an expression of the Lagrangian positions x that depends
only on the initial position x0.

We have imposed a peculiar velocity field that is periodic
with respect to the variable φ with a period of 2π . It is
then expected that the displacement x − x0 also possesses
this periodicity. Furthermore, the velocity field is static in a
τ -interval which means that fluid elements are permanently
pushed in the direction of a until they reach a zero of the
velocity field and stop moving. As a result a fluid element
with initial position φ0 ∈ [nπ, (n + 1)π ] will have a position
after a time τ/2 such that φ ∈ [nπ, (n + 1)π ] where n is an
integer. Equation (42) can thus be inverted, leading to

φ/2 − πφ/(2π ) + 1/2� = arctan (eξτ tan (φ0/2)). (44)

Recall that in Sec. IV C we motivated an expansion with
respect to a small Strouhal number St. We motivate the same
idea here as |ξτ | = |aqτ cos (γ )| < St with γ being the angle
between a and q. With a similar argument we can show that
any new term depends directly on St raised to some higher
powers. To include effects due to finite correlation times we
keep terms up to fourth order in τ . The expansion of the
right-hand side of Eq. (44) also harbors a floor function that
will cancel the one on the left-hand side.

We are now ready to plug the expression of φ from this
expansion into Eq. (43)

xi = x0,i + aiτ

{
sin (φ0) + ξτ

4
sin (2φ0)

+ξ 2τ 2

12
[sin (3φ0) − sin (φ0)]

+ξ 3τ 3

96
[3 sin (4φ0) − 4 sin (2φ0)]

}
, (45)

which has the desired limit for ξ → 0. It is straightforward to
show that the Jacobian is then given by

Ji j = δi j + aiq jτ

{
cos (φ0) + ξτ

2
cos (2φ0)

+ ξ 2τ 2

12
[3 cos (3φ0) − cos (φ0)]

+ ξ 3τ 3

24
[3 cos (4φ0) − 2 cos (2φ0)]

}
. (46)

B. Fourth-order velocity two-point function

To include finite correlation times we have to consider
terms up to the fourth order in τ . The evolution tensor Ri jhl

is then given by

Ri jhl =
〈
Ji jJhl

[
1− iτβσ − τ 2β2σ 2

2!
+ i

τ 3β3σ 3

3!
+ τ 4β4σ 4

4!

]〉
,

(47)
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where the Jacobian matrices are given in Eq. (46) and

β = sin (φx ) − sin (φy) + τξ

4
[sin (2φx ) − sin (2φy)]

+ τ 2ξ 2

12
[sin (3φx ) − sin (3φy) − sin (φx ) + sin (φy)]

+ τ 3ξ 3

96
[3 sin (4φx ) − 3 sin (4φy)

− 4 sin (2φx ) + 4 sin (2φy)]. (48)

The evolution tensor now has dependencies on aia jahal

due to the inclusion of τ 3 and τ 4 terms. It motivates the intro-
duction of fourth-order two-point correlators that are defined
in Bhat and Subramanian [59] by

T x2y2

i jhl = τ 2〈ui(x)u j (x)uh(y)ul (y)〉,
T x3y

i jhl = τ 2〈ui(x)u j (x)uh(x)ul (y)〉, (49)

T x4

i jhl = τ 2〈ui(x)u j (x)uh(x)ul (x)〉,

where the factor τ 2 is included due to the time correlation of
the flow. We can carry out the average over ψ such that the
fourth-order correlators are given by

T x2y2

i jhl = τ 2

8
〈aia jahal [cos (2q · r) + 2]〉,

T x3y
i jhl = 3τ 2

8
〈aia jahal cos (q · r)〉,

T x4

i jhl = 3τ 2

8
〈aia jahal〉. (50)

Note that r is still given by r = x − y.

Similar to the second-order velocity two-point correlation
function we would like an expression for the fourth-order
correlators in the case of an isotropic, homogeneous, and
nonhelical velocity field. Following the ideas of De Karman
and Howarth [44], Batchelor [60], Landau and Lifshitz [61],
it can be shown that [62]

Ti jhl (r) = r̂i jhl T L(r) + P̂(i j P̂hl )T N(r) + P̂(i j r̂hl )T LN(r), (51)

where r̂i jhl = rir jrhrl/r4, P̂i j = δi j − rir j/r2 and T L/N/LN are
the longitudinal, transverse and mixed terms of the ve-
locity correlation function. This formula has been derived
and used by Bhat and Subramanian [36]. The bracket
(·) operator denotes here the summation over all the
different terms, formally P̂(i j P̂hl ) = P̂i j P̂hl + P̂ihP̂jl + P̂il P̂jh

and P̂(i j r̂hl ) = P̂i j r̂hl+P̂ihr̂ jl + P̂il r̂ jh + P̂hl r̂i j+P̂jl r̂ih + P̂jhr̂il .
Knowing that it is straightforward to show that in the case
of an incompressible flow the transverse, longitudinal, and
mixed terms are related by

6T LN = 2T L + r∂rT L, 4T N = 4T LN + r∂rT LN. (52)

These two relations will be especially useful to check if our
generalized Kazantsev equation has the right form when as-
suming incompressibility.

C. Generalized equation

The compressibility effects are characterized by the intro-
duction of ξ and ξ 2 in the evolution tensor and the Jacobian
matrices. These factors are not necessarily fixed between two
τ intervals. To treat them we just need to recall that ξ = aiqi,
such that the methodology explained in Secs. IV C and IV D
can still be applied. Surprisingly we find that the compress-
ibility only affects the fourth-order correlators, and Eq. (40)
still holds for a velocity field that is δ-correlated in time in the
compressible case. The resulting equation is given by

∂Mih

∂t
= 2[MjhTil ] jl − 2[MihTjl ] jl + 2[Mil Tjh] jl − 2[MjlTih] jl + 2[MihTL(0)] j j} ξ 0τ 2 terms

+2[Mihη] j j} term due to resistive exponential expansion

+τ

(
[Mjl T̃ihmn]mn jl + [

Mih
(
T̃mnst + T x4

mnst/12
)]

mnst − [MjhT̃imns]mns j − [Mil T̃hmns]mnsl
}

ξ 0τ 4 terms

−[Mjl∂nT̃ihmn]m jl − [Mih∂t T̃mnst ]mns + [Mjh∂sT̃imns]mn j + [Mil∂sT̃hmns]mnl} ξ 1τ 4 terms

+ 2

3
[Mjl∂m∂nT̃ihmn] jl + 2

3
[Mih∂s∂t T̃mnst ]mn − 2

3
[Mjh∂n∂sT̃imns]m j

− 2

3
[Mil∂n∂sT̃hmns]ml − 5

48

[
Mjl∂m∂nT x2y2

ihmn

]
jl

− 5

48

[
Mih∂s∂t T

x2y2

mnst

]
mn

+ 5

48

[
Mjh∂n∂sT

x2y2

imns

]
m j + 5

48

[
Mil∂n∂sT

x2y2

hmns

]
ml + 5

48

[
Mih∂s∂t T

x2y2

mnst

∣∣
0

]
mn

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
ξ 2τ 4 terms (53)

where we introduced the tensor T̃i jhl = T x2y2

i jhl /4 − T x3y
i jhl /3. The compressibility adds the divergence of the fourth-order velocity

correlators, which is evaluated to be zero in the case of an incompressible flow; such that the incompressible limit (ξ = 0) gives
back Eq. (16) in Bhat and Subramanian [36].

To derive the equation for ML we contract Eq. (53) with r̂ih. By doing so we need to evaluate every term in the equation using
the velocity correlation functions described in Eqs. (3) and (51). Even if this computation does not involve very complicated
algebra we will not detail our derivation as it is very extensive. However, we give in Table II the main tools and properties to
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perform the complete calculation. Another very useful expression to simplify the computation is

∂i∂ j[r̂i j f (r) + P̂i jg(r)] = ∂2
r f (r) + 2

r
∂r[2 f (r) − g(r)] + 2

r2
[ f (r) − g(r)], (54)

where f and g are two arbitrary functions of r. Using these properties, simplifications, and denoting T L/N/LN the respective
components of T̃i jhl we eventually arrive at the generalized Kazantsev equation

∂ML

∂t
= ∂4

r ML

(
τ

{
T L + T x3y

L (0)

12

})
+ ∂3

r ML

(
τ

{
2∂rT L + 8

r
T L + 2T x3y

L (0)

3r

})
+ ∂2

r ML

(
− 2TL + 2TL(0) + 2η

+ τ

{
5

3
∂2

r T L + 41

3r
∂rT L − 8

3r
∂rT LN + 40

3r2
T L − 80

3r2
T LN + 32

3r2
T N − 5

48
∂2

r T x2y2

L − 20

48r
∂rT x2y2

L

+ 50

48r
∂rT x2y2

LN − 10

48r2
T x2y2

L + 110

48r2
T x2y2

LN − 80

48r2
T x2y2

N + 2T x3y
L (0)

3r2
+ K

})
+ ∂rML

(
− 2∂rTL − 8

r
TL + 8

r
TL(0) + 8η

r
+ τ

{
2

3
∂3

r T L + 25

3r
∂2

r T L − 8

3r
∂2

r T LN + 55

3r2
∂rT L − 104

3r2
∂rT LN

+ 32

3r2
∂rT N + 8

3r3
T L − 160

3r3
T LN + 64

3r3
T N − 5

48
∂3

r T x2y2

L − 40

48r
∂2

r T x2y2

L + 50

48r
∂2

r T x2y2

LN − 70

48r2
∂rT x2y2

L

+ 260

48r2
∂rT x2y2

LN − 80

48r2
∂rT x2y2

N − 20

48r3
T x2y2

L + 220

48r3
T x2y2

LN − 160

48r3
T x2y2

N − 2T x3y
L (0)

3r3
+ 4K

r

})
+ML

(
− 4

r
∂rTL − 4

r
∂rTN − 4

r2
TL + 4

r2
TN + τ

{
4

3r
∂3

r T L + 4

3r
∂3

r T LN + 20

3r2
∂2

r T L

− 12

3r2
∂2

r T LN − 16

3r2
∂2

r T N + 8

3r3
∂rT L − 104

3r3
∂rT LN + 48

3r3
∂rT N − 8

3r4
T L − 56

3r4
T LN

+ 80

3r4
T N − 10

48r
∂3

r T x2y2

L − 10

48r
∂3

r T x2y2

LN − 50

48r2
∂2

r T x2y2

L + 30

48r2
∂2

r T x2y2

LN + 40

48r2
∂2

r T x2y2

N

− 20

48r3
∂rT x2y2

L + 260

48r3
∂rT x2y2

LN − 120

48r3
∂rT x2y2

N + 20

48r4
T x2y2

L + 140

48r4
T x2y2

LN − 200

48r4
T x2y2

N

})
, (55)

where K = 5C(0)/48 is a constant with C(r) = ∂2
r (T x2y2

L ) +
4∂r (T x2y2

L )/r − 10∂r (T x2y2

LN )/r + 2T x2y2

LN /r2 − 22T x2y2

L /r2 +
16T x2y2

N /r2. This equation has the most generic form if
we assume only isotropy, homogeneity, and nonhelicity of
the velocity flow in the vicinity of small St. To solve this
equation we should define the boundary conditions. The
magnetic field correlation function should go to zero for
infinitely large space scales. Also we would require ML

to be finite in r = 0 such that the autocorrelation of the
magnetic field is a local maxima. These two conditions can
be summarized by

lim
r→0

∂rML(r, t ) = 0, lim
r→∞ ML(r, t ) = 0. (56)

Note that if we assume incompressibility in Eq. (55) we
retrieve Eq. (17) in Bhat and Subramanian [36]. Except for
its length, the general aspect of the equation is unchanged
for an arbitrary degree of compressibility (DOC). The most
interesting difference arises in terms that depend on ML. In
the incompressible case, these terms cancel perfectly but not
when the DOC is nonzero. We can already get the intuition

that these terms will control the time growth rate of the mag-
netic correlation function.

D. Small-scale limit

In this section we discuss the limit of length scales much
smaller than the turbulent forcing scale (i.e., z ≡ qr � 1) of
Eq. (55). The Kazantsev spectrum Mk (k) ∼ k3/2 is predicted
in the range q � k � kη. Since we consider large RM, it is
sufficient to expand our generalized equation in the limit of
small z. We introduce two different cases, which correspond
to two initialization for a and q. The first case is used to give a
detailed derivation. However, the second case is more general
and gives rise to a lengthy calculation so we will only present
the results.

1. Two independent vectors

First consider the case where a and q are perfectly inde-
pendent. It is straightforward to evaluate Eqs. (30) and (50)
knowing that 〈aia jahal〉 = δ(i jδhl )/15 for a random vector and
we can directly plug the expansion of the correlators’ com-
ponents in Eq. (55). These considerations simplify strongly
our generalized Kazantsev equation such that it reduces to the
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following expression in the limit z � 1:

∂ML

∂t
= q2TL(0)

[(
2η

TL(0)
+ z2

3

)
∂2

z ML +
(

8η

zTL(0)
+ 2z

)
∂zML + 8

3
ML

]

+ a4q4τ 3

160

[
z4

10
∂4

z ML + 8z3

5
∂3

z ML + 958z2

135
∂2

z ML + 404z

45
∂zML + 32

27
ML

]
. (57)

We can further assume that M̃L is independent of space such that we use the ansatz ML(r, t ) = M̃L(z)eγ t̃ where t̃ = tTL(0)q2

and γ is a normalized growth rate. We also set τ̄ = τTL(0)q2 and rename TL(0) = ηt to stick to the conventions used in Bhat
and Subramanian [36]. After some algebra we end up with

0 =
(

2η

ηt
+ z2

3

)
∂2

z M̃L +
(

8η

zηt
+ 2z

)
∂zM̃L +

(
8

3
− γ

)
M̃L

+ 9τ̄

10

[
z4

10
∂4

z M̃L + 8z3

5
∂3

z M̃L + 958z2

135
∂2

z M̃L + 404z

45
∂zM̃L + 32

27
M̃L

]
. (58)

We now focus on the range zη = qrη � z � 1, where τ̄ terms cannot be neglected. Here, we use a Landau-Lifshitz
approximation [63] and consider τ̄ to be a small parameter. To derive approximated expressions for the high order derivatives of
M̃L as a function of the first and the second-order derivatives, we neglect τ̄ and

√
η/ηt compared to z,

z3∂3
z M̃L = −8z2∂2

z M̃L + (3γ0 − 8)∂zM̃L,
(59)

z4∂4
z M̃L = (3γ0 + 58)z2∂2

z M̃L − 10(3γ0 − 14)∂zM̃L,

where γ0 is the growth rate for a δ-correlated in time flow. As a first approach (we will give in Sec. VI a more rigorous treatment)
we neglect

√
η/ηt . The two expressions for high order derivatives can be plugged into Eq. (58) to obtain

0 = 9τ̄

10

[
z2

(
3γ0

10
+ 13

135

)
∂2

z M̃L + z

(
9γ0

5
+ 78

135

)
∂zM̃L + 32

27
M̃L

]
+ z2

3
∂2

z M̃L + 2z∂zM̃L +
(

8

3
− γ

)
M̃L. (60)

It is obvious that this equation admits a power-law solution
M̃L ∼ z−λ. Solving for λ we find

λ = 5

2
± i

2

[
4

8 + 16τ̄ /5 − 3γ

1 + 81γ0τ̄ /100 + 13τ̄ /50
− 25

]1/2

. (61)

We find that the real part of λ is 5/2, which is exactly the
same as Bhat and Subramanian [36] and is expected for a
Kazantsev spectrum. Gruzinov et al. [64] have argued that the
growth rate, in the limit of RM → ∞ is given by finding a
value of λ such that dγ /dλ = 0. We can then plug that value
into Eq. (61), γ is thus given by

γ = 7
12 − 147

320 τ̄ , (62)

where we used the self-consistent value for γ0 = 7/12. Note
that the complete expression for the growth rate of the dynamo
is then γtot = γ TL(0)q2.

2. Arbitrary degree of compressibility

The main problem with the initialization that we just pre-
sented is that it does not include any parameter to control the
DOC. We define the DOC by

σc ≡ 〈(∇ · u)2〉
〈(∇ × u)2〉 = 〈aia jqiq j〉

〈εi jkεihl akalq jqh〉 , (63)

where εi jk is the Levi-Civita symbol; the third expression is
obtained after averaging over ψ . The DOC is then zero for an
incompressible flow and goes to infinity for a fully irrotational
flow. To derive an equation for an arbitrary DOC we set q to

be a random vector with norm q and a defined by

ai = b[P̃i j Â j sin (θ ) + q̂ j Â j q̂i cos (θ )], (64)

where as before A is a random vector of norm A and Â j =
Aj/A. The two parameters b and θ (that are constant) allow
to control, respectively, the norm of 〈a2〉 and the DOC. In
such a parametrization the component of A along q is always
rescaled by cos (θ ) whereas the component of A orthogonal
to q in the plane described by A − q is always recaled by
sin (θ ). This parametrization is taken for convenience, and θ

can be interpreted as the mean absolute angle between a and
q. Although this parametrization might seem arbitrary, we can
show that the results we derive here are independent on the
exact evaluation of ai as long as σc is uniquely defined (see
Appendix A). Under such considerations

σc = 1

2 tan (θ )2 , 〈a2〉 = b2

[
2

3
sin (θ )2 + 1

3
cos (θ )2

]
.

(65)

We directly see that the value θ = π/2 represents the incom-
pressible case and θ = 0 the fully irrotational one. Note that
due to the random behavior of A we have 〈ξ 〉 = 0.

We apply the exact same methodology as for the first ini-
tialization, which means we expand the two-point correlators,
use the ansatz, and re-express the high order derivatives with
the first and the second-order ones. The expressions for the
velocity correlators with this parametrization can be found in
the Appendix B [Eq. (B1)]. Furthermore, we define the two
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functions

ε(θ ) = 216

5(� + 3)2

[
� + 3

5 − �

(
1

24
�1 − 3

28
�2 + 3

40
�3

)
×

(
5γ0 − 40

� + 3

)
+ 157

420
�1 − 599

630
�2 + 121

180
�3

]
,

ζ (θ ) = 216

5(� + 3)2

[
2

3
�1 − 14

9
�2 + 8

9
�3

]
. (66)

The set of parameters �i appears very naturally in the deriva-
tion of Eq. (B1) and depends only on θ ; exact expressions
are given in Eq. (B2). From the velocity correlators we have
ηt = τb2(� + 3)/72. However, the parameter b is still free
and we can set it to b2 = 6a2/(� + 3) such that 〈a2〉 = a2. As
a result ηt = τa2/12, and the normalized correlation time can
be evaluated to τ̄ = St2/12. The normalized correlation time
is then fully controlled by St, independently on the choice of
DOC.

The resulting equation is(
2η

ηt
+ z2 5 − �

5(� + 3)

)
∂2

z M̃L

+
(

8η

zηt
+ 6z

5 − �

5(� + 3)

)
∂zM̃L +

(
8

� + 3
− γ

)
M̃L

+ τ̄
[
ε(θ )z2∂2

z M̃L + 6ε(θ )z∂zM̃L + ζ (θ )M̃L
] = 0. (67)

Similar to the first case we compute the growth rate and scale
factor of the power-law solution in the limit of large RM, we
find that the real part of λ is still 5/2. The growth rate is given
this time by

γ0 = 7 + 5�

4(� + 3)
, γ = γ0 + τ̄

[
ζ (θ ) − 25

4
ε(θ )

]
. (68)

We already see from this quick evaluation that the Kazant-
sev spectrum seems to be preserved even with an arbitrary
DOC and correlation time. However, to confirm this first
approach and include the effects of finite magnetic Reynolds
numbers, we need to study more carefully the solutions to
Eq. (67).

VI. FINITE MAGNETIC RESISTIVITY SOLUTIONS

The scaling solution that has been derived in the previous
section only works if the term

√
η/ηt is neglected. However,

to include effects due to a finite magnetic resistivity we should
not systematically neglect it. A WKB approximation can be
used to evaluate the solution of Eq. (67) including the finite
resistivity. An explicit derivation of the WKB solutions can
be found in Appendix C. We only review the main results
obtained for the magnetic power spectrum and the growth rate
of the dynamo including a finite magnetic Reynolds number.

A. Growth rate

The normalized growth rate of the dynamo that includes
contributions from the magnetic resistivity (through RM),
compressibility (through � and θ ), and finite correlation time

TABLE I. Presentation of the velocity field and magnetic spec-
trum parameters for three types of flow: incompressible, irrotational,
and intermediate (see Sec. V D).

Parameters Incompressible Intermediate Irrotational

θ π

2
π

4 0

σc 0 1
2 ∞

λk
3
2

3
2

3
2

γ0
3
4

7
12

1
4

γ1 − 135
224 − 147

320 − 1017
2240

γRM
1
5 + τ̄ 27

280
1
3 + τ̄ 293

1200
3
5 + τ̄ 3429

2800

RM,thresh ∼3 × 105 ∼1.5 × 105 ∼7 × 104

(through τ̄ ) is found to be

γ = −
(

π

ln (RM)

)2[ 5 − �

5(� + 3)
+ τ̄ ε(θ )

]
+ 7 + 5�

4(� + 3)

+τ̄

[
ζ (θ ) − 25

4
ε(θ )

]
,

≡ −
(

π

ln (RM)

)2

γRM + γ0 + τ̄ γ1, (69)

where the functions ε(θ ) and ζ (θ ) are given in Eq. (66) and
we have introduced the different components of the growth
rate γRM , γ0, and γ1. In Table I we list the different parameters
of the flow and the magnetic spectrum for three regimes,
namely incompressible (∇ · u = 0), irrotational (∇ × u = 0),
and the intermediate case treated in Sec. V D 1. To get a better
intuition on the results presented here, we display in Fig. 1
the DOC dependency of the two main contributions to the
growth rate. From the evolution of γ0 it is very clear that
the compressibility tends to decrease the growth rate of the
magnetic energy spectrum of the dynamo. Moreover, γ0 is

FIG. 1. Evolution of the two main contributions to the magnetic
spectrum growth rate with respect to the DOC for large magnetic
Reynolds number. The left axis represents the main contribution γ0

and the right axis the contribution to the growth rate related to the
correlation time γ1 of Eq. (69). Dashed lines correspond to the value
for a fully irrotational flow (σc → ∞).
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FIG. 2. Ratio of the growth rate and its main contribution for
a few values of RM and St = 10−2. Dashed lines correspond to the
value for a fully irrotational flow (σc → ∞).

comprised between 0.75 and 0.25 which indicates that the
dynamo action always exists. It is interesting to note that γ0

is a monotonously decreasing function of the DOC, whereas
γ1 has a maximum around σc ∼ 2.

In Fig. 2 we study more precisely the dependence of the
growth rate on RM. As expected from Eq. (69), γ increases
as RM increases. In practice, due to the WKB approximation,
there is a limiting value on the magnetic Reynolds number
(RM,thresh) for which Eq. (69) is valid such that we need to
keep RM > RM,thresh. The impact on the total growth rate of the
DOC is stronger when RM is small. In this work, we only con-
sidered first-order corrections; and discrepancies can already
represent ∼85% for the lowest values of RM presented. How-
ever, the correlation time has a negligible impact on the total
growth rate in the limit St � 1. Indeed, the correlation time
enters the computation through St which itself contributes
through τ̄ ∝ St2 � 1.

B. Magnetic power spectrum

In the range of interest, zη � z � 1, we find the solution
for the longitudinal two-point magnetic correlation function

ML(z, t ) = eγ t̃ z−5/2M0 cos

[
π

ln (RM)
ln

(
z

z0

)]
, (70)

where γ is given by Eq. (69). This result is already very inter-
esting as we can identify a power law z−5/2 independent of the
correlation time that dominates the spectrum compared to the
slowly varying cos [ln (z)] function. However, the Kazantsev
spectrum we are interested in predicts that the magnetic power
spectrum scales as Mk (k) ∼ k−3/2 in the range q � k � kη.
We can show (see Appendix D) that the magnetic power
spectrum and the longitudinal two-point correlation function
are related by

Mk (k, t ) = 1

π

∫
(kr)3ML(r, t ) j1(kr) dr. (71)

The Bessel function j1(x) is very peaked around x ∼ 2, so
the dominant part of the integral is around k ∼ 1/r. Thus, for
ML(r) ∼ rλ we have Mk (k) ∼ kλk with λk = −(1 + λ). Plug-
ging in λ = −5/2 gives the well-known Kazantsev spectrum

Mk (k) ∼ k3/2 even for the compressible and time-correlated
flow considered here. Note that the main contribution to the
power spectrum derived does not depend on any of the pa-
rameters of the flow. The last row of Table I corresponds to
the minimal value of RM for which the WKB approximation
holds (see Appendix C 3). We see that for most astrophysi-
cal application of the small-scale dynamo our derived results
remain valid.

VII. DISCUSSION AND CONCLUSIONS

Several authors have previously modeled the kinematic
phase of the small-scale dynamo with the Kazantsev theory
[see, e.g., Refs. [33,35,40,65]]. They found that the Kazantsev
spectrum is preserved, even for a compressible flow. However,
they often assumed Gaussian statistics of the velocity field,
such that the flow is δ-correlated in time. There are several
examples of analytic treatments that include a finite corre-
lation time: Kolekar et al. [50] and Lamburt and Sokoloff
[66] used a similar approach to our work but in the context
of the mean-field dynamos, Schekochihin and Kulsrud [67]
and Kleeorin et al. [68] considered a general case of fluc-
tuation dynamo, and Bhat and Subramanian [59] solved the
incompressible case. Most of the theoretical studies, if not
all, have found that the Kazantsev spectrum is preserved even
if compressibility, finite correlation time, or finite resistivity
are considered. Our work shows that the combined effect of
the three on the Kazantsev spectrum is negligible, as Eq. (70)
scales mostly with the power law z−5/2. However, our results
are only derived for first-order corrections from the correlation
time, as higher-order corrections are usually hard to treat.

Besides the shape of the magnetic energy spectrum, the dy-
namo growth rate γ is of particular interest. Our results for γ

are similar to the ones obtained by Kulsrud and Anderson [33]
and Schekochihin et al. [35] for the limit of incompressibility.
Schekochihin et al. [40] also derived a formula for the growth
rate for an arbitrary DOC for a δ-correlated in time flow. They
found that γ ranges between 3/4 for an incompressible flow
and 1/8 for a fully irrotational flow. It does not match our
results by a factor of two in the limit of the fully irrotational
flow. Similarly, the growth rate related to the finite resistivity
γRM matches their result in the incompressible case but is
overestimated by a factor of 2 in the fully compressible limit.
The discrepancy can be solved when we consider instead of γ

alone the complete growth rate, namely γ ηt q2. In their paper
Schekochihin et al. [40] defined the initial growth rate from
the velocity correlators in Fourier space while we define it
from real space. If we transfer a factor (� + 3)/4 from ηt

to γ , then our growth rate matches theirs in both limits. It is
worth mentioning that Illarionov and Sokoloff [69] derived a
growth rate that depends on the Strouhal number but does not
match ours exactly. However, they also found that γtot ∝ aqSt
and that τ̄ reduces the growth rate. Although, we derived an
expression for the growth rate that includes the DOC, a finite
resistivity and time correlations our treatment of turbulence
is very simple due to the imposed velocity field. A more
rigorous treatment [15] highlights that the growth rate might
also be a power law of the Reynolds number. Rogachevskii
and Kleeorin [41] used a different approach to the problem
as they impose directly a velocity correlation function in-
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stead of the velocity field itself. Their results match ours for
the magnetic power spectrum as long as TL(r) ∼ r2; but the
growth rate differs as their velocity spectrum is different from
ours. This highlights that the Kazantsev spectrum should be
preserved for a large class of flows. Using a similar approach,
some authors [70–72] studied more deeply the influence of
the Prandtl number on the growth rate or magnetic spectrum
while we fix the Reynolds number in our work. These papers
suggest that the growth rate we derived should also depend on
the Prandtl number if an even more general case is considered;
this relation is beyond the scope of this paper as we want to
focus on the effect of compressibility.

From a numerical point of view it seems indeed that a
slope close to 3/2 in the magnetic energy spectrum can be
observed in both incompressible and compressible magne-
tohydrodynamic simulations at large length scales [see, e.g.,
Refs. [73–77]]. Although the slope measured in simulations is
often close to the theoretical prediction, small discrepancies
can still arise. One of the possible explanations can directly
appear from the size of the simulation box. Indeed k has to be
small but simulations are limited in resolution. This often can
lead to an insufficient separation of spatial scales. A related
problem is the assumption of very large hydrodynamic and/or
magnetic Reynolds numbers in theoretical models. The re-
quired large values of these two numbers make a comparison
between numerical simulations and theory hard. Kopyev et al.
[78] also found that time irreversible flows can generate a
nontrivial deviation to the Kazantsev spectrum. Regarding the
growth rate of the dynamo, its reduction by the correlation
time has also been observed in numerical studies [79]. Further
discussions of the current state of dynamo numerical simula-
tions can be found in Brandenburg et al. [80].

In conclusion, we have given an example of an analytical
treatment for the fluctuation dynamo in the most generic case
of a compressible flow with a finite correlation time. To this
end, we proposed a framework to study the cumulative ef-
fects of a finite correlation time and an arbitrary degree of
compressibility by generalizing the former work of Bhat and
Subramanian [36]. We used the renovating flow method which
assumes a very crude flow that does not allow for a very
complex modeling of turbulence but keep the analytical treat-
ment tractable. We derived a generalization to the Kazantsev
equation in real space [Eq. (55)] that is valid at any scale. We
note however that if we assume an incompressible flow that
is δ-correlated in time at this point we retrieve the original
Kazantsev equation. This equation describes the time evolu-
tion of the two-point magnetic correlation function ML from
the velocity correlators and the spatial derivatives of ML up to
the fourth order. We then studied solutions for length scales
much smaller than turbulent forcing scale (i.e., qr � 1).

By the use of the WKB approximation, we derived for-
mulas for the growth rate and slope of the magnetic power
spectrum Mk (k) for large magnetic Reynolds number RM � 1
and small Strouhal number St � 1. In particular, it allowed to
capture the effect of finite magnetic diffusivity. Furthermore,
we could define a lower bound on RM for which our results
should hold, RM,thresh ∼ 105, which is smaller than most of the
typical values in astrophysical objects. Although the growth
rate showed dependencies on both the degree of compressibil-
ity and the correlation time, the Kazantsev spectrum seemed to

be preserved, i.e., Mk (k) ∼ k3/2, independently of τ or σc. Our
results are derived in a very special context, namely for a ren-
ovating flow. But our predictions regarding the magnetic field
spectrum seem robust in the sense that both numerical and the-
oretical studies agree with the conservation of the Kazantsev
spectrum for compressible and time-correlated flows.
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APPENDIX A: GENERAL INITIALIZATION
FOR δ-CORRELATED IN TIME FLOW

We will review an even more general initialization than the
one presented in Sec. V D 2. We only consider a δ-correlated
in time flow but this discussion could in principle be general-
ized to a finite correlation time. A very general expression for
a that preserves isotropy is

ai = b(P̃i j Â j f1 + q̂ j Â j q̂i f2), (A1)

where f1 and f2 are two constants. To control the norm a we
should impose that f1/2 are between minus one and one. It is
then straightforward to show that σc = f 2

2 /(2 f 2
1 ). Once again

we compute the velocity correlators and plug in Eq. (55). To
simplify this derivation we also neglect the resistivity η. We
find the equation

z2

5

2 f 2
1 + 3 f 2

2

2 f 2
1 + f 2

2

∂2
z M̃L + 6z

5

2 f 2
1 + 3 f 2

2

2 f 2
1 + f 2

2

∂zM̃L

+
(

4
f 2
1 + f 2

2

2 f 2
1 + f 2

2

− γ

)
M̃L = 0, (A2)

that again allows some power-law solution. If we follow the
same approach than in Sec. V D 2, then we find

λ = 5

2
± ig( f1, f2, γ ), γ = 6 f 2

1 + f 2
2

4
(
2 f 2

1 + f 2
2

) , (A3)

with g( f1, f2, γ ) a function that characterizes the growth rate.
Once again the power spectrum slope is constant and γ = 3/4
for an incompressible flow, γ = 1/4 for a fully irrotational
one and γ = 7/12 if f1 = f2. If we define

f1 = sin θ, f2 = cos θ, (A4)

then we retrieve the initialization presented. This is convenient
as we reduced the number of parameters to only θ to com-
pletely and uniquely define σc. Also it presents the option to
work with another more natural parameter as in this case f 2

1
and f 2

2 are related by f 2
1 + f 2

2 = 1. In fact, we just showed
that the exact initialization does not matter as long as σc is
uniquely defined and that we can choose the most convenient
one. Note also that f2 = √

2 cos (θ ) is also an option that
keeps the norm of a independent of the DOC.
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TABLE II. Summary of the most basic tools to contract Eq. (53) with r̂ih.

Expression Reduced form

r̂ii 1

P̂ii 2

P̂i j r̂il 0

P̂i j P̂il P̂jl

∂i r̂i∂r

∂i∂ j r̂i j∂
2
r + P̂i j

∂r
r

∂i r̂ j
1
r P̂i j

∂i r̂ jl
1
r (r̂l P̂i j + r̂ j P̂il )

∂iP̂jl − 1
r (r̂l P̂i j + r̂ j P̂il )

Tii 2TN + TL

r̂iTi j r̂ jTL

r̂i jTi j TL

P̂i jTi j 2TN

Mi jTil P̂jl MNTN + r̂ jl MLTL

Tii j j T L + 8T N + 4T LN

Tii jl r̂ jl T L + 4P̂jl T N + (P̂jl + 2r̂ jl )T LN

r̂iTi jhl r̂ jhl T L + (P̂jl r̂h + P̂jhr̂l + P̂hl r̂ j )T LN

r̂i jTi jhl r̂hl T L + P̂hl T LN

P̂i jTi jhl 4P̂hl T N + 2r̂hl T LN

∂iTi jhl r̂ jhl

(
∂rT L + 2

r T L − 6
r T LN

) + (r̂ j P̂hl + r̂hP̂jl + r̂l P̂jh )
(
∂rT LN + 4

r T LN − 4
r T N

)
∂i∂ jTi jhl r̂hl

(
∂2

r T L + 4
r ∂rT L − 10

r ∂rT LN + 2
r2 T L − 22

r2 T LN + 16
r2 T N

)
+P̂hl

(
∂2

r T LN + 8
r ∂rT LN − 4

r ∂rT N + 12
r2 T LN − 12

r2 T N

)
APPENDIX B: COMPLEMENTARY EXPRESSIONS

We display in Table II the main tools used to contract
Eq. (53) with r̂i j .

If we carry out all the algebra of Sec. V D 2, then we
get the following expressions for the two-point velocity
correlators:

Ti j = τb2

12

{
r̂i j

(
� + 1

2
+ �∂2

z

)
+ P̂i j

(
� + 1

2
+ �

∂z

z

)}
j0(z),

T x2y2

i jhl = τ 2b4

120

{
r̂i jhl

[
3

16
�1∂

4
z + 3

2
�2∂

2
z + 3�3 + 6

�tot

j0(2z)

]
+ r̂(i j r̂hl )

[
3

16
�1

(
∂2

z

z2
− ∂z

z3

)
+ 1

2
�2

∂z

z
+ �3 + 2

�tot

j0(2z)

]

+ P̂(i j r̂hl )

[
3

16
�1

(
∂3

z

z
− 2

∂2
z

z2
+ 2

∂z

z3

)
+ 1

4
�2

(
∂2

z + ∂z

z

)
+ �3 + 2

�tot

j0(2z)

]}
j0(2z),

T x3y
i jhl = τ 2b4

40

{
r̂i jhl

[
3�1∂

4
z + 6�2∂

2
z + 3�3

] + r̂(i j r̂hl )

[
3�1

(
∂2

z

z2
− ∂z

z3

)
+ 2�2

∂z

z
+ �3

]
+ P̂(i j r̂hl )

[
3�1

(
∂3

z

z
− 2

∂2
z

z2
+ 2

∂z

z3

)
+ �2

(
∂2

z + ∂z

z

)
+ �3

]}
j0(z), (B1)

where the set of five parameters is defined as follows:

� = 2 sin (θ )2 − 1, �1 = �2, �2 = �
� + 1

2
,

�3 =
(

� + 1

2

)2

, �tot = �1

5
− 2�2

3
+ �3. (B2)

These five parameters appear very naturally in the deriva-
tion of the velocity correlators that is why we decided not
to reduce the expressions to a single dependency on �. Note
that � = 1 for an incompressible flow and � = −1 for a fully
irrotational one.
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APPENDIX C: WENTZEL-KRAMERS-BRILLOUIN
SOLUTIONS DERIVATION

The scaling solution that has been derived in the previous
section only works if the term

√
η/ηt is neglected. However,

to include effects due to a finite magnetic resistivity we should
not systematically neglect it. A WKB approximation can be
used to evaluate the solution of Eq. (67) including the finite
resistivity.

1. WKB approximation

The WKB approximation is first introduced in 1926
[81,82]. In particular, this approximation method has been ex-
tensively used in quantum mechanics to solve the Schrödinger
equation [83,84]. Formally the method can be used to solve
equations of the type

d2�

dx2
+ p(x)� = 0, (C1)

where the WKB solutions to this equation are linear combina-
tions of

� = 1

p1/4
exp

(
± i

∫
p1/2 dx

)
. (C2)

We call turning points the value of x where p(x) is zero.
In a given interval if p(x) < 0 the solution is in the form
of growing and decaying exponential however if p(x) > 0
we have an oscillatory regime. Moreover, the solutions need
to satisfy boundary conditions; it is especially common to
impose �(x) → 0 for x → ±∞.

2. Magnetic spectrum and growth rate at finite magnetic
Reynolds number

In the context of dynamos the WKB approximation is
commonly used to derive the growth rate of the two-point
correlation function of magnetic fluctuations. Reconsider
Eq. (67), which is valid in the limit z � 1. To apply the WKB
approximation we define a new coordinate, which is more
convenient to use [34], as ex = z̄ ≡ √

ηt/ηz. With this new
coordinate Eq. (67) becomes(

d2M̃L

dx2
− dM̃L

dx

)(
τ̄ ε(θ ) + 5 − �

5(� + 3)
+ 2

z̄2

)
+dM̃L

dx

(
6τ̄ ε(θ ) + 6

5 − �

5(� + 3)
+ 8

z̄2

)
+M̃L

(
τ̄ ζ (θ ) + 8

� + 3
− γ

)
= 0. (C3)

To simplify notations we rewrite(
d2M̃L

dx2
− dM̃L

dx

)
A(x, θ ) + dM̃L

dx
B(x, θ ) + M̃LC(x, θ ) = 0,

(C4)

where the three functions are simply

A(x, θ ) = τ̄ ε(θ ) + 5 − �

5(� + 3)
+ 2

z̄2
,

B(x, θ ) = 6τ̄ ε(θ ) + 6
5 − �

5(� + 3)
+ 8

z̄2
,

C(x, θ ) = τ̄ ζ (θ ) + 8

� + 3
− γ . (C5)

We further assume that M̃L can be expressed as a product of
two functions M̃L = g(x)W (x). The idea is to impose certain
relations on g(x) such that all first-order derivatives of W (x)
are canceled, leading us to an equation that has the desired
form. If we take

dg

dx
= g

A(x, θ ) − B(x, θ )

2A(x, θ )
, (C6)

then we find the desired equation Eq. (C1) for W (x) with

p(x) = 1

A2

[
AC − 1

2
(B′A − A′B) − 1

4
(A − B)2

]
, (C7)

where primes denote derivative with respect to x and the three
functions are given by Eq. (C5). After some computation we
can even show that

p(x) = A0z̄4 − B0z̄2 − 9

(2 + Fz̄2)2
, (C8)

where, for convenience, we set the following three functions
of the DOC:

A0 =
(

τ̄ ε(θ ) + 5 − �

5(� + 3)

)
×

{
7 + 5�

4(� + 3)
+ τ̄

[
ζ (θ ) − 25

4
ε(θ )

]
− γ

}
,

B0 = 2γ + 19τ̄ ε(θ ) − 2τ̄ ζ (θ ) + 15 − 19�

5(� + 3)
,

F = τ̄ ε(θ ) + 5 − �

5(� + 3)
. (C9)

Recall that we are interested in the solution for the range
zη � z � 1 which implies roughly that 1 � z̄ � R1/2

M . If we
take the limit of very small z̄, x → −∞, then we see that
p → −9/4. As z̄ increases p(x) increases too, let us call the
first turning point z̄0. We can guess from the evaluation of γ

in Sec. V D 2 that A0 is very small compared to B0. Indeed
when plugging in the value for γ we found previously, we
obtain that A0 goes to zero while B0 has a part independent
on τ̄ . In particular, it implies that z̄0 is large enough to neglect
the constant terms in the equation of p(x) (i.e., z̄0 � 1). The
opposite limit of very large z̄, x → ∞, is not described by
Eq. (C3) as it is valid only in the small z limit. We need to
go back to Eq. (55) and use that in the limit of very large z
the velocity correlators and their derivatives should go to zero.
After some computation we obtain for the highest contribution

p(x) ∼ −2e2x (1 + ηt/η)γ0

V (θ, ηt , η, τ̄ )2
, (C10)

such that p(x) < 0 in this limit. Note that we do not need to
specify the exact form of V (θ, ηt , η, τ̄ ) as the denominator
is always positive. In this formula we also neglected terms
that depend on τ̄ in the numerator as they should always be
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smaller than ηt/η or γ0 which are both positive. Such a form
means that p(x) must have gone through another zero at some
point that we call z̄1. To simplify the treatment we will say that
Eq. (C8) is valid for z < 1 and Eq. (C10) is valid for z > 1.
The boundary between the two can be taken to be z1 such
that z̄1 ∼ R1/2

M . In fact we will find that the final results have
a small dependence on the exact value of z1 such that we can
approximate it without changing the conclusions [40,55,59].
To summarize we consider that we have damped solutions for
z̄ � z̄0 and z̄1 � z̄ and an oscillatory one for z̄0 � z̄ � z̄1.
The exponentially growing solutions are discarded as ML(z)
must remain finite at both z = 0 and z = ∞.

For the oscillatory solution to match the two damped
regime we have to require [85,86]∫ x1

x0

p(x)1/2 dx = (2n + 1)π

2
, (C11)

where n is an integer. This condition is key to determine the
growth rate γ of the two-point correlation of the magnetic
field. In the context of this work we only consider the fastest
eigen-mode given by n = 0. As we already mentioned the
constant terms in Eq. (C8) can be neglected which makes the
solution to Eq. (C11) exact. Evaluating the integral gives∫ x1

x0

p(x)1/2 dx =
∫ z̄1

z̄0

p(z)1/2

z
dz,

�
∫ z̄1

z̄0

√
A0z2 − B0

Fz2
dz,

=
√

A0

F

{
ln

(
z1

z0
+

√
z2

1

z2
0

− 1

)
−

√
1 − z2

0

z2
1

}
,

(C12)

where to go from the first to the second line we used that z̄0 ∼√
B0/A0 > 0. We can thus use the condition of Eq. (C11),

square both sides, and isolate the growth rate. The growth rate
is finally given by

γ = −
(

π

ln (RM)

)2[ 5 − �

5(� + 3)
+ τ̄ ε(θ )

]
+ 7 + 5�

4(� + 3)
+ τ̄

[
ζ (θ ) − 25

4
ε(θ )

]
, (C13)

where again we plugged the self-consistent value for γ0. Note
that in this equation we also used the self-consistent evalua-
tions z̄0 ∼ ln (RM) and z̄1 ∼ R1/2

M , such that we neglected z̄0

compared to z̄1.
In the oscillatory range 1 � z̄0 � z̄ � z̄1 the WKB solu-

tion is thus given by

W (x) ∼
(

ln (RM)

π

)1/2

cos

[
π

ln (RM)
ln

(
z

z0

)]
. (C14)

In this limit we see that Eq. (C6) can be simplified such
that g′(x) → −5g(x)/2 which gives g(x) ∼ e−5x/2. The two-
point magnetic correlation function is then also scaling as
z−5/2. So finally we find the equation for the longitudinal
two-point magnetic correlation function in the region zη �
z � 1,

ML(z, t ) = eγ t̃ z−5/2M0 cos

[
π

ln (RM)
ln

(
z

z0

)]
, (C15)

FIG. 3. plim as a function of the magnetic Reynolds number RM

for St = 10−2 and a couple of DOC σc. The dashed line corresponds
to the threshold over plim such that the intersections with the curves
give the threshold RM,thresh for which the WKB approximation holds.

where γ is given by Eq. (C13).

3. Validity of the WKB approximation

It can be showed that if we plug the solutions of the
WKB approximation into Eq. (C1) we arrive at the following
equation:

d2�

dx2
+

(
1 + 1

4p(x)2

d2 p

dx2
− 3

16p(x)3

(
d p

dx

)2)
p(x)� = 0,

(C16)

such that we retrieve the initial problem to solve only if

plim ≡ 1

4p(x)2

d2 p

dx2
− 3

16p(x)3

(
d p

dx

)2

= z2 p′′(z) + zp′(z)

4p(z)2
− 3z2 p′(z)2

16p(z)3
(C17)

is very small compared to 1. Here primes denote derivatives
with respect to the z variable. Furthermore, in a similar way to
Schober et al. [15], we consider that the criterion of validity
for our WKB approximation is |plim| < 0.1. We find that plim

depends not only on the magnetic Reynolds number but also
on St, σc, and zc. We define here zc to be the scale at which we
evaluate p(z) and it derivatives. As the WKB approximation
is valid between the two zeros of p(z) we must impose z0 �
zc � z1. Until now, we only ask RM to be very large, but the
latter criterion gives us a way to quantify it. In particular, we
use the expressions derived earlier for p(z) and τ̄ to define a
threshold on RM for which we consider that the derived results
are valid4. To respect the conditions imposed on zc, we take
zc = (z0 + z1)/2. Although the scale can seem arbitrary, we
find only a slight dependency on it as long as zc is not too close
to z0 or z1. In Fig. 3 we present plim for a fixed St = 10−2 and a
few DOC. Again, St being tiny its exact value does not highly
impact RM,thresh. It appears that the threshold of this work,
regarding RM is around 5 × 105. More precisely, the RM,thresh

4Note that this threshold on RM is completely unrelated to the
critical value of magnetic Reynolds number for which the dynamo
can exist.
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threshold decreases until it reaches ∼7 × 104 when the DOC
goes to infinity. The results derived in this work concerning
the magnetic field are thus valid for most astrophysical objects
where the fluctuation dynamo plays a major role. Note that
from Fig. 3 we also have a valid WKB approximation for very
small RM. We can exclude this range of validity as we derived
our generalized Kanzantsev equation (i.e., the expansion with
respect to St) with the condition that RM was a large number.

APPENDIX D: PROOF OF EQ. (71)

Let us start by expressing the magnetic power spectrum as
the Fourier transform of the magnetic two-point correlation
and take the Fourier transform of this expression

Mk (k) = 2πk2M̂ii(k) = k2

(2π )2

∫
Mii(r)eik·r d3r. (D1)

Now use the properties of M(r) to derive the following:

Mk (k) = k2

2π

∫
r2 sin (θ )Mii(r)eikr cos (θ ) drdθ,

= ik

2π

∫
rMii(r)(e−ikr − eikr ) dr,

= 1

π

∫
kr(3ML(r) + r∂rML(r)) sin (kr) dr,

= 1

π

∫
krML(r)(sin (kr) − cos (kr)) dr,

= 1

π

∫
(kr)3ML(r) j1(kr) dr, (D2)

where to go from the third to the fourth line we integrated by
parts. It is pretty obvious from the definition of rML(r) that
the boundary terms just go to zero.
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