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Three-dimensional feedback processes in current-driven metal
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Using three-dimensional (3D) magnetohydrodynamic simulations, we study how a pit on a metal surface
evolves when driven by intense electrical current density j. Redistribution of j around the pit initiates a feedback
loop: j both reacts to and alters the electrical conductivity σ , through Joule heating and hydrodynamic expansion,
so that j and σ are constantly in flux. Thus, the pit transforms into larger striation and filament structures predicted
by the electrothermal instability theory. Both structures are important in applications of current-driven metal:
The striation constitutes a density perturbation that can seed the magneto-Rayleigh-Taylor instability, while
the filament provides a more rapid path to plasma formation, through 3D j redistribution. Simulations predict
distinctive self-emission patterns, thus allowing for experimental observation and comparison.
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I. INTRODUCTION

Metals commonly contain an abundance of defects, includ-
ing µm-scale resistive inclusions [1,2] and voids [3]. These
obstacles force electrical current density j to deflect and, as a
consequence, develop regions of enhanced j. While the small
size of defects suggests a correspondingly small j amplifi-
cation, in fact theory and simulation show this is not the
case. From the analogy between hydrodynamic and electrical
current flow [4,5], we can understand flow of j around resis-
tive obstacles through the corresponding solutions for ideal,
incompressible hydrodynamic flow, which obey the similarity
principle (e.g., Ref. [6]). Consequently, assuming for instance
a spherical void, j amplifies at the equator by a factor of 3/2
above its unperturbed value, independent of void diameter,
which only determines the characteristic scale length of the
flow pattern.

Non-negligible j amplification driven by defects results in
a corresponding increase in Joule heating j2/σ , where σ is
the electrical conductivity. Due to the dependence of σ on
temperature T in metals (i.e., dσ/dT < 0 as seen in Fig. 1),
Joule heating can trigger a feedback loop: Regions of higher
j and j2/σ will drive higher T and lower σ , which causes
j to redistribute out of this region and amplify elsewhere.
Consequently, as the peak in j shifts, so does the peak in
Joule heating. This effect is well studied in one dimension
(1D) in nonlinear magnetic diffusion (NLMD) propagation
[8–13]: When electrical current is applied to a metal, j must
gradually diffuse into the metal from the surface, occupying
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a resistive skin depth δ. Due to Joule heating, σ falls in the
outermost, hotter, current-carrying layer δ, causing the peak
in j and j2/σ to redistribute inward to cooler, higher-σ metal,
which then overheats. Hence, the region of hotter, lower-σ
metal near the surface continuously grows, while the peak in
j and j2/σ continuously burrows deeper into the metal.

Let r denote the characteristic dimension of the conductor
cross section; for instance, in a cylindrical rod with j flowing
along the axis, r corresponds to the rod radius. In a “thick”
conductor satisfying r�δ (which is the case of interest in this
work), NLMD effects become important when j is sufficiently
intense as to lower σ to roughly half its room temperature
value. More conveniently, this condition can be recast as a
minimum magnetic field strength B > Bm (e.g., Bm∼31 T for
aluminum [8,10]).

While the above 1D description is suitable for a perfectly
homogeneous metal, more realistically we must superpose the
NLMD picture on top of localized enhanced Joule heating
driven by 3D defects. The region of enhanced Joule heating
is of similar size to the defect, so for µm-scale defects we
might expect the overheated regions to play a minor role in
applications of much larger size. However, just as feedback
allowed the resistive region δ to grow in NLMD (through
the shifting Joule heating peaks), so might feedback allow
isolated defects to grow and transform.

Structures towards which 3D defects might evolve were
anticipated decades ago, in the context of the Joule heating-
driven electrothermal instability (ETI) [14–21]. Consider
current flowing vertically through a metal that is thin rel-
ative to δ, so that j is fully diffused. Assuming 2D plane
wave solutions (see Appendix A for a brief overview of lin-
ear ETI theory), ETI predicts that in solid or liquid metals,
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FIG. 1. Electrical conductivity σ (1/�m) of aluminum from the
Lee-More-Desjarlais model [7], overlaid on a phase diagram show-
ing solid, liquid, liquid-vapor biphase, and vapor boundaries. In the
solid and liquid phases, dσ/dT < 0, while in the liquid-vapor and
vapor phases, dσ/dT > 0.

where dσ/dT < 0 (see Fig. 1), horizontally oriented, over-
heated, lower-density “striations” will develop. Striations
are important in applications using magnetically accelerated
metal, including magnetoinertial fusion [22–31]. Here j is
driven through cylindrical metal shells (also known as liners)
that then implode due to the interaction of the self-generated
magnetic field B with current (i.e., j × B force). Density
perturbations on the liner surface will be amplified by the
magneto-Rayleigh-Taylor instability (e.g., Refs. [15,32–35]),
resulting in large-scale perturbations [36] that can degrade
performance. Because the magneto-Rayleigh-Taylor instabil-
ity acts most virulently on perturbations aligned perpendicular
to j, the striation constitutes an ideal seed.

Once the Joule-heated metal expands into the vapor phase
where dσ/dT > 0, the dominant ETI mode rotates from hor-
izontal striations to overheated vertical “filaments.” Filaments
are important in understanding how and when plasma initiates
on the metal surface, which is another design consideration in
current-driven metal applications. In magnetoinertial fusion,
plasma formation on the outer liner surface can shunt current
away from the liner [37] and develop magnetohydrodynamic
(MHD) instabilities, reducing performance. The inner liner
surface bounds fusion fuel, and plasma formation here [38]
can mix liner material into the fuel, reducing fusion yield. Ex-
periments studying plasma formation on Joule-heated metal
show overheated structures aligned parallel to j [1,20,39,40],
suggesting ETI filament development.

While both striations and filaments have been predicted
in 2D ETI theory, basic questions remain: How do striations
develop from isolated 3D defects? How do horizontal stria-
tions transform into vertical filaments? Given the orthogonal
orientation of these modes, we expect this is a 3D process,
possibly driven by the aforementioned feedback loop acting
on a 3D perturbation.

In order to trigger the feedback loop, we consider a non-
linear perturbation, which drives a current perturbation δj on
order the equilibrium current j0. In this case, the resulting δT
(due to enhanced Joule heating) and δσ will also be compara-
ble to the equilibrium T0 and σ0, thus altering the equilibrium
and initiating the feedback loop. Considering a void pertur-
bation, the magnitude of δ j is independent of void size but
depends on its shape. For instance, a skinny, pen-shaped el-
lipsoid (with major axis aligned along j0) generates δ j � j0
[4,41] and is thus a linear perturbation, whereas a spherical
void is a nonlinear perturbation, resulting in δ j/ j0 = 1/2.

In this work, we use MHD simulations to show how a 3D
nonlinear perturbation (i.e., a hemispherical pit on the metal
surface) self-consistently seeds both the striation and filament
forms of ETI through the feedback loop connecting j and
σ . The striation is a hot strip aligned transverse to j, which,
owing to its lower density ρ, serves as a seed to later magneto-
Rayleigh-Taylor growth. The filament is aligned parallel to
j and coexists simultaneously with the striation but at larger
radius in the lower-ρ vapor. The filament illustrates the 3D na-
ture of plasma formation, achieving plasmalike temperatures
significantly earlier than an equivalent 1D simulation, owing
to ETI-enhanced Joule heating.

Simulations predict that nonuniform heating seeded by
the pit results in distinctive, evolving self-emission patterns,
and in fact recent experiments [42] have validated these
predictions. While qualitative and quantitative discrepancies
exist between simulation and experiment, the overall good
agreement is vital to the credibility of the simulations. The ex-
perimental paper [42] also briefly describes simulation results,
to the extent necessary to understand the origin of the emis-
sion patterns, but does not address the striation development
or details of filament formation; we reserve this discussion for
the present paper, as well as the companion paper [43].

Metals driven by intense electrical current are used in
a range of applications including laboratory astrophysics
[44,45], material property studies [37,46–49], magnetic flux
compression [8,10,50], and magnetoinertial fusion. Accord-
ingly, the work in this paper is most relevant to high-energy-
density applications [51,52]. However, it may also inform
other areas of physics. For instance, the ETI filament is
closely connected to the “short circuit” instability [53–55],
proposed as a heating mechanism in meteorites. Furthermore,
the growth of the pit, due to Joule heating, into the larger
ETI striation bears a resemblance to the “quench” process in
superconductors [56,57], where a region of enhanced Joule
heating (due to surface defects) [58,59] exceeds the critical
temperature at which superconductivity is lost, and this re-
gion of lower σ quickly spreads [60]. In laser-driven inertial
confinement fusion, the growth of isolated defects (through
hydrodynamic instabilities) and their impact on performance
is also actively studied (e.g., Refs. [61–66]). Finally, switching
to more of an engineering perspective, the structural damage
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FIG. 2. Computational setup. (a) Current drive applied to rod.
(b) Simulation scenario: aluminum rod of radius r0, with evenly
spaced hemispherical pits removed from the surface (only 9 are
shown). (c) Periodic wedge with a single pit, colored by j (A/m2).
Also shown are front or top visualization planes; subsequent top
views show the midplane zm = 95 µm, unless otherwise noted. P1

and P2 represent points at the azimuthal and axial boundaries of the
wedge, respectively, used in the text to estimate the importance of
interpit communication through the periodic boundary conditions.

caused by electromagnetically driven defect growth has been
studied in lower-j, nonimploding systems such as magnetic
confinement fusion (i.e., crack development in tokamak walls
[67]), microelectronic circuit lines, and metallic structures
exposed to lightning strikes [68,69].

The paper is organized as follows: Section II introduces
3D MHD simulations of a current-driven metal rod with a
periodic array of pits on the surface. Section III describes
the transformation of a pit into a bump due to the feedback
process, and the ensuing formation of the striation as well
as hot spots. Section IV shows how the hot spot explosion
results in expanding plumes in which the plasma filament
develops. Comparison with 1D simulation illustrates how the
different trajectory in equation-of-state space followed in 3D
(due to the ETI instability) allows earlier plasma formation.
We conclude in Sec. V.

II. 3D MHD SIMULATION

We use the MHD code Alegra [70] to model experi-
ments applying a ∼0.85 MA current pulse I (t ) [Fig. 2(a)]
to a 1-mm-diameter aluminum (Al) rod, on the surface of

FIG. 3. Flow around a hemispherical pit jsphere, at t = 20 ns. Pan-
els (a), (c), (e), and (g) visualize the surface of the rod (r = 0.5 mm),
showing σ (1/�m), j (A/m2) with representative j streamlines,
j2/σ (W/m3), and B (T ). Panels (b), (d), (f), and (h) show the cor-
responding top views. In (g) and (h), the pit boundary is represented
by the the black circle and semicircle, respectively. In (h) the white
lines represent magnetic field streamlines (the tangent to a streamline
gives the direction of B).

which we machine 20-µm-diameter hemispherical pits [42].
A SESAME equation of state [71] models the rod, which is
initialized at room temperature T = 294 K (all units are SI).
To capture the relation between stress and strain [18,72], we
include material strength (elastic-plastic constitutive model
combined with the Steinberg-Guinan-Lund yield model).
Electrical and thermal conductivities are provided by the
Lee-More-Desjarlais model [7]. The aforementioned material
models, in conjunction with Alegra, have been validated by
> 15 years of dynamic materials research at Sandia National
Laboratories (e.g., Refs. [46,48]).

Simulations assume ion and electron temperatures are
equal and do not account for radiative losses; estimates
show these assumptions are valid for the densities and tem-
peratures considered in this paper. To keep the (Eulerian)
computational domain tractable, we only model a section of
the rod, using the wedge geometry shown in Figs. 2(b)
and 2(c), with periodic boundary conditions in both the
axial (i.e., z) and azimuthal (i.e., θ ) directions. At the out-
ermost boundary rmax = 0.8 mm, we apply the boundary
condition B = μ0I (t )

2πrmax
θ̂ , which physically corresponds to a per-

fectly conducting boundary at rmax. To resolve j redistribution
around the pit, we use fine resolution (0.5 µm) in its vicinity.

Figure 3 visualizes the outer surface of the rod r0 =
0.5 mm at early time, when the rod is near room temperature,
so that σ is uniform aside from the pit [see Figs. 3(a) and
3(b)]. As described in Ref. [5], the flow of j around the pit can
be understood in terms of its analogous ideal hydrodynamic
flow velocity. For the case of a pit of radius R embedded in a
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uniform flow j0ẑ, the solution is

jsphere = j0 cos φ

(
1 − R3

γ 3

)
γ̂ − j0 sin φ

(
1 + R3

2γ 3

)
φ̂, (1)

where radial coordinate γ and angular coordinate φ are
defined in Fig. 3(a). The first term in each parentheses cor-
responds to the uniform flow j0ẑ, while the second term
captures the modification in flow due to the pit, which decays
rapidly as R3/γ 3. Just as in hydrodynamic flow around an
impenetrable sphere, j deflects around the pit [Fig. 3(c)],
resulting in reduced j at the poles φ = 0, π (i.e., stagnation
points in the analogous hydrodynamic flow), and amplified j
around the equator φ = π/2, which in turn leads to enhanced
j2/σ there [Figs. 3(e) and 3(f)]. Maximum j amplification
is reached at the edge of the pit (γ = R, φ = π/2), where
jsphere = 3

2 j0ẑ. Hence, j amplifies by a factor 3/2, independent
of pit size R.

The top view [Fig. 3(d)] shows that j consists of jsphere

in addition to the magnetic diffusion solution. To elaborate,
in the absence of the pit, j will diffuse radially inward from
the rod surface, occupying a constantly growing resistive skin
depth δ, illustrated in Fig. 3(d); this behavior is described by
the 1D (radial) magnetic diffusion solution. In our problem
of interest, the magnetic diffusion solution is superposed on
top of j redistribution due to the pit jsphere, corresponding to
enhanced j within the blue contour. We should also consider
the contribution to j from adjacent pits, due to periodic bound-
ary conditions in Fig. 2(b). However, if the periodic wedge is
sufficiently large relative to R, then the influence of adjacent
pits is negligible. We can estimate this effect by evaluating
jsphere at the wedge boundaries; if jsphere is approximately
the unperturbed value j0ẑ, then the modification to j due to
the pit has decayed sufficiently that we can regard pits as
noninteracting. In fact, this is the case for the wedge shown
in Fig. 2(c): at the azimuthal boundary (see point P1, located
at γ = 104.7 µm, φ = π/2), jsphere = 1.0004 j0ẑ, and at the
axial boundary (see point P2, located at γ = 95 µm, φ = π ),
jsphere = 0.9988 j0ẑ.

As seen in Fig. 3(g), vanishing j in the pit results in a
modest magnetic field decrease δB/B0 ∼ 5%, where B0 =
μ0I
2πr0

is the value of B at the rod surface r = r0 in the ab-
sence of the pit. Note that Fig. 3(g) focuses on a narrow
range of B to emphasize δB. The top view of B in Fig. 3(h)
includes B streamlines which point nearly azimuthally, as
would be the case for a perfectly smooth rod. At very early
time (e.g., t = 1 ns), the current skin depth δ is so small that
the metal approximates a perfect conductor, with the asso-
ciated boundary condition B · n = 0 (n is a vector normal
to the rod surface). In this case, B does not point purely
azimuthally, rather dipping into the pit so as to conform to the
metal surface. However, as j continues to diffuse deeper into
the metal, the B · n = 0 condition relaxes, so that B pierces
the surface. Such is the case shown in Fig. 3(h), although
we can still see evidence of Br �= 0, as B dips slightly into
the pit.

Later in time, the Joule heating pattern in Figs. 3(e) and 3(f)
results in higher T , as seen in Figs. 4(a) and 4(b). As estimated
in the Supplemental Material to Ref. [43], thermal conduction
losses are negligible compared to Joule heating for R = 10 µm

FIG. 4. Melt propagation due to j redistribution, at t = 61 ns.
Front views visualize r = 0.5 mm. The hottest region closest to the
pit, visualized in (a) and (b), has melted, reducing σ there and forcing
j to redistribute further from the pit. Units are T (K), σ (1/�m),
j (A/m2), and j2/σ (W/m3).

pits, during this phase of pit evolution. Once the overheated
region around the pit equator begins the melt transition, σ

drops by ∼3× [Figs. 4(c) and 4(d)], thus initiating the 3D
feedback loop intertwining j and σ . As seen in Figs. 4(e) and
4(f), j diverts around the melting region, so that j and j2/σ

[Figs. 4(g) and 4(h)] peak further from the pit. Consequently
this region overheats until it also melts. In this way, j contin-
uously shifts further from the pit, so as to grow the hotter,
melted region in the radial and azimuthal directions. This
process, which has been described in Refs. [18,73], continues
so long as the sharp σ contrast between melted and unmelted
metal exists.

III. STRIATION DEVELOPMENT

At t = 69 ns, with the exception of the cooler, high-σ
stagnation points at the poles of the pit, the entire surface
has melted [Fig. 5(c)], thus quenching the drive mechanism
responsible for melt propagation in Fig. 4. At this time, the
pit is again the dominant σ perturbation, causing j to deflect
around the pit and amplify around the equator [Figs. 5(e) and
5(f)], similarly to jsphere in Fig. 3. Because the rod surface has
melted, material strength vanishes and hydrodynamic expan-
sion begins in earnest, further altering the σ topography by
deforming the rod surface. We note that in an equivalent 1D
radially resolved simulation, 
r = 0.5 µm resolution (used
also in 3D simulation) shows close agreement with experi-
mental expansion rates [74].

The overheated region around the pit [Figs. 5(a) and 5(b)]
is hottest and expands first. As shown in Fig. 5(b), the void
creates a pressure gradient which azimuthally focuses the
resulting expansion, similarly to the “shaped-charge” effect
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FIG. 5. Postmelt j at t = 69 ns. Front views visualize r =
0.5 mm. Except for the poles, the rod surface has melted, quenching
the σ contrast responsible for the melt propagation process seen in
Fig. 4. Units are identical to Fig. 4.

[75,76]. Hence, as overheated metal surrounding the pit ex-
pands, it concentrates into the center of the pit, forming a
bump by t = 80 ns [Figs. 6(a) and 6(d)], while also resulting
in a region of lower density ρ behind the bump [bounded by
the gray curve in Fig. 6(d)]. Due to bump formation, j no
longer deflects around a pit (i.e., azimuthally away and radi-
ally inward) but rather flows into the bump (i.e., azimuthally
toward and radially outward), as illustrated by j streamlines in
Figs. 6(b) and 6(e). In the 2D (r, z) solution for hydrodynamic
flow over a bump (see Appendix B), flow is fastest at the
base of the bump, where the surface transitions from curved
to flat. Similarly, in our electrical problem, jbump peaks at the
bump base [Figs. 6(b) and 6(e)], leading to peaks in j2/σ there
[Fig. 6(c)]. This flow pattern contrasts with the original jsphere

solution, seen in Fig. 3.
To determine the timescale on which the jsphere solution

switches to jbump, we recall the magnetic field evolution
equation:

∂B
∂t

= ∇ × (v × B) + 1

μ0σ
∇2B. (2)

The first term on the right-hand side is dominant in a
perfect conductor and describes how B is “frozen” into a
medium moving with velocity v; the second term describes
resistive diffusion of B into a medium with finite σ . The rel-
ative importance of terms, found through simple dimensional
considerations, is quantified through the magnetic Reynolds
number RM ∼ μ0σvl , where l is a typical length scale,
in this case representative of the pit or bump size. Using
σ∼2 × 106 1/�m, v∼1500 m/s, and l∼10 µm, we estimate
RM∼0.04, so the resistive diffusion term is dominant. In this
case, once again dimensional arguments yield the timescale

FIG. 6. By t = 80 ns, expansion transforms the pit into a bump,
qualitatively changing the j flow pattern from jsphere to jbump. (a) Rod
surface illustrating the bump (white dotted semicircle). The side
viewing plane cuts through the center of the bump at θ = 0◦. [(b) and
(c)] Front view of j (A/m2) and j2/σ (W/m3) near the rod surface
(r = 0.499 mm) with representative j streamlines. (d) Top view of
density ρ (kg/m3). (e) Side view, showing j peaking at the base of
the bump.

on which B and j respond (via diffusion) to the evolving
conductivity: τR∼μ0σ l2∼0.25 ns. Because this timescale is so
much faster than the hydrodynamic timescale τH ∼ 10 ns on
which the pit transforms into a bump, j can effectively respond
instantaneously to changes in σ during this process.

Later in time, the bump-driven Joule heating pattern shown
in Fig. 6(c) persists at the rod surface [Fig. 7(a)] and drives
two hot spots (HS), visualized in Fig. 7(b). A simulated
self-emission image is generated using the postprocessing
code SPECT3D [77], which solves the radiative trans-
fer equation along lines-of-sight through the computational
grid. At each volume element along the line-of-sight, the
frequency-dependent absorption and emissivity of aluminum
are computed, under the assumption of local thermodynamic
equilibrium. Photon energies in the visible range (1.65–
3.26 eV) are used in computing Fig. 7(c), which shows the
HS and allows comparison to experiments [42], which in fact
have validated the simulation prediction.

Figure 7(c) does not resolve another overheated struc-
ture that lies too deep within the metal to be visible in
self-emission. This structure—a nascent ETI striation—is
visualized in Fig. 7(d). The striation, roughly bounded by
the σ = 7.5 × 105 1/�m contour, is broader than the HS
in Fig. 7(b), as well as lower ρ than surrounding metal
[Fig. 7(e)]. Its origin traces back to the overheated metal
surrounding the pit in Figs. 5(a) and 5(b), which expands,
creating the hotter, lower-ρ region bounded by the gray curve
in Fig. 6(d). In relation to Fig. 1, the striation sits in the
melted metal phase, where dσ/dT < 0 and dσ/dρ > 0. Con-
sequently, the lower ρ and higher T in the striation results
in lower σ there [i.e., using a subscripted S to denote the
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FIG. 7. At t = 100 ns, the Joule heating pattern arising from
jbump results in hot spots (HS) near the rod surface, as well as a stria-
tion deeper in the metal. (a) Side view of j2/σ . White vertical lines
show r = 0.494 and 0.508 mm, while the solid black line represents
the σ = 7.5 × 105 1/�m contour. (b) HS near rod surface should be
visible in (c) visible self-emission. The striation, observed in (d)–(h),
has lower electrical conductivity σ relative to surrounding metal,
forcing j to divert around and amplify at the edges. The resulting
enhanced j2/σ drives striation growth in the azimuthal and radial
directions. Units are j2/σ (W/m3), T (K), ρ (kg/m3), σ (1/�m),
and j (A/m2).

striation, δσS < 0 in Fig. 7(f)] and, consequently, lower j
[δ jS < 0 in Fig. 7(g)]. Nevertheless, the striation experiences
enhanced j2/σ [Fig. 7(h)] and thus continues to overheat,
because the enhancement in j2/σ due to δσS < 0 overcomes
the reduction due to δ jS < 0. As shown in Appendix A, a
similar scenario occurs even in 2D, when the striation is
oriented at an angle to the current flow (i.e., π/4 < α < π/2
in Appendix A).

Note that δσS < 0 causes j to divert azimuthally around
the striation, as shown in Fig. 7(g), so j and j2/σ amplify
at the edges, similarly to flow around the pit. In this way,
the striation continuously widens by converting high-σ , dense
metal at the edges into hotter, expanded, lower-σ metal, char-
acteristic of the striation. The j redistribution responsible for
striation widening also applies in the radial direction: As seen
in Fig. 7(a), the striation constitutes a low-σ “divot” which
forces j to divert inward and amplify at the divot tip (see
Appendix B). Consequently a local peak in j2/σ develops
there [see the magenta arrow in Fig. 7(a)], and the resulting
overheating allows the striation to propagate deeper into the
metal. Similar behavior has been observed computationally
and experimentally in the study of crack growth in electrical
conductors [68,69].

IV. CRATER AND PLASMA FILAMENT FORMATION

At t = 115 ns, the striation has continued to heat and widen
through the mechanisms described above. Closer to the rod
surface, the overheated HS in Figs. 7(a) and 7(b) explode,

creating expanding plumes as well as craters, as seen in
Figs. 8(a) and 8(b). The ρ = 400 kg/m3 contour in Fig. 8 is
close to the critical density ρcrit∼375 kg/m3 [71] and thus
roughly visualizes the boundary between liquid metal and
dense vapor. Low ρ in the crater results in a corresponding
low σ , and hence the crater plays a similar role to the orig-
inal pit, forcing j to divert around [as sketched in Fig. 8(c)]
and amplify at the crater’s equator. Consequently, just as j
redistribution resulted in a region of enhanced j2/σ encircling
the pit [Fig. 3(f)], the same can be seen in the crater [blue
dashed contour in Fig. 8(j)]. Enhanced j2/σ at the edge of
the crater/HS [Fig. 8(d)] will overheat higher-ρ metal there,
causing it to explode, thus continuously widening and deep-
ening the crater/HS. As a result, the corresponding visible
emission pattern in Fig. 8(e) has broadened relative to its
earlier-time counterpart in Fig. 7(c), a result which has been
experimentally confirmed in Ref. [42].

Now consider the HS once they expand past the rod sur-
face, so they are no longer surrounded by melted metal but
rather low-ρ, low-σ vapor, as in Figs. 8(f)–8(h). With the
exception of the higher-ρ, higher-σ metal protrusions, the
HS (bounded by the magenta T = 1.1 × 104 K contour with
squares) represent local peaks in σ [Fig. 8(g)] relative to the
surrounding vapor; the HS have expanded sufficiently that
now the dependence of σ on T changes sign relative to the
solid or liquid case (i.e., dσHS/dT > 0). Hence, in contrast
to Fig. 8(c), where the HS represented minima in σ (rela-
tive to surrounding metal), forcing j to redistribute around,
now the HS represent local peaks in σ . Consequently, the
HS can satisfy the feedback loop required for the filament
form of ETI (see Appendix A): δTHS > 0 ⇒ δσHS > 0 ⇒
δ jHS > 0 ⇒ δ( j2/σ )HS > 0 [Fig. 8(h)] ⇒ dTHS > 0. Just as
in striation formation, j redistribution plays a vital role in
HS and filament formation, now concentrating in the HS and
providing enhanced j2/σ to compete with pdV cooling during
plume expansion.

In a “conventional” thermal explosion, the HS expand
axially and azimuthally as they travel radially outward. Sim-
ulations also exhibit this behavior once the HS travel far
enough away from the rod, as sketched by the white ve-
locity vectors v in Figs. 8(a) and 8(k). However, within the
metal, the HS initially focus azimuthally, once again due to
the shaped-charge effect. As seen in Fig. 8(i), the crater re-
sulting from the HS explosion generates a region of lower
ρ and p, resulting in an azimuthally focusing −∇p, just as
in the case of the pit [Fig. 5(b)]. Hence, newly heated material
around the periphery of the crater [i.e., within the blue dashed
curve in Fig. 8(j)], born in the presence of this −∇p, initially
focuses azimuthally while expanding axially as it explodes.
Figure 8(k) plots vθ (m/s) overlaid with v vectors; as seen in
the circled regions, v initially focuses azimuthally before ex-
panding. The azimuthally focusing component of v is modest
(vθ∼vr/10) but is sufficient to introduce a flow asymmetry
in the expanding HS—in Fig. 8(f), the white v vectors show
vz > vθ . This flow asymmetry allows the HS to grow faster
axially than azimuthally, as observed in Fig. 9(c), where we
follow the HS in Fig. 8(f) at t = 115 to 125 ns—the HS
transition to the axially elongated filaments predicted by ETI.

Relative to melted metal, the low-ρ plume is not an attrac-
tive current path, due to its low σ as well as its geometry,
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FIG. 8. [(a) and (b)] At t = 115 ns, the hot spots (HS) have exploded, resulting in expanding plumes as well as craters on the rod surface
(visualized by the ρ = 400 kg/m3 solid contour). White vertical lines show r = 0.517 and 0.528 mm. [(c) and (d)] Front views of HS/crater
at r = 0.517 mm. (e) Simulated visible emission. [(f)–(h)] Front views at r = 0.528 mm show conditions for ETI filamentation in the HS,
bounded by the T = 1.1 × 104 K contour (with squares). In (f), the white velocity vectors illustrate flow asymmetry vz > vθ , leading to
filaments. The zHS = 100 µm plane cuts through a hot spot and is shown in top view in (i)–(k). In (k), velocity vectors azimuthally focus in
circled regions, due to the the shaped-charge effect. Units are T (K), ρ (kg/m3), σ (1/�m), j2/σ (W/m3), and vθ (m/s).

requiring j to bend radially outwards [see j streamline in
Fig. 9(b)]. Just as in hydrodynamic flow over a bump (see
Appendix B), j diminishes as it travels deeper into the plume.
Hence, relatively little j flows in the HS as they expand
outwards. Nevertheless, due to dσ/dT > 0, σ in the HS is
enhanced relative to the surrounding liquid-vapor mixture.
The resulting δ jHS > 0 [Fig. 9(d)] and δ( j2/σ )HS > 0 allow
the HS to maintain T ∼ const as they expand, despite pdV
cooling. Hence, comparing Figs. 8(f) and 9(c), the liquid-
vapor mixture (which does not experience enhanced j2/σ )
cools from t = 115 to 125 ns, while THS is approximately
constant.

Enhanced j2/σ in the HS allows the constituent fluid
particles to develop into plasma significantly earlier than an
equivalent 1D simulation (which models a perfectly smooth
rod using the same radial resolution as 3D) by following a
qualitatively different trajectory in the equation of state. To
see this, Fig. 10(a) visualizes the equation of state in (p, ρ)
space. The black lines, representing isotherms T = const, be-
come flat in the liquid-vapor biphase (i.e., coexistence) region,
as is commonly described in textbooks (e.g., Refs. [78,79]).
Consider the path P crossing the biphase region along an
isotherm. At the rightmost (i.e., liquid) boundary of P , we
imagine a sealed container with a fixed mass of fluid. As
we increase the container volume, the fluid separates into a
boiling liquid-vapor mixture, so that the average density in
the container decreases (corresponding to moving to the left

along P). As we further increase the container volume, the
vapor pressure remains constant since the extra volume is
filled with additional vapor, which comes at the expense of
the fluid mass. To remain on the isotherm P requires constant
energy input, to counteract pdV cooling during expansion, as
well as to vaporize liquid into vapor. Eventually, the container
expands sufficiently to reach the left boundary of P , where
the fluid has converted completely into vapor. The total en-
ergy supplied to cross P from liquid to vapor is the latent
heat of vaporization LV . Once this energy has been “paid,”
subsequent energy input can go towards increasing thermal
energy (i.e., T ) rather than towards phase transition.

Figure 10(a) visualizes the equivalent 1D simulation at
three different times to illustrate the plasma formation process
in the absence of 3D ETI, which has been studied in detail in
previous works [80–82]. Each red cross represents (p, ρ) in a
computational cell at t = 115 ns. As the liquid metal expands,
the surface reaches lower ρ and also cools (thus crossing
isotherms), signaling that pdV cooling exceeds Joule heating.
At t = 115 ns the surface has cooled sufficiently that it has
entered the biphase region. At t = 125 ns (green diamonds),
outermost cells continue to cool and expand (lower ρ and T )
but eventually carry sufficient j that Joule heating exceeds
pdV cooling. However, as described earlier, the added energy
goes primarily into LV rather than increasing T ; cells are
“trapped” in the biphase region until the entirety of LV has
been supplied. By t = 148 ns (blue triangles), the outermost
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FIG. 9. As the HS explode, they grow preferentially in the ax-
ial (i.e., ẑ) direction, thus transitioning toward ETI filaments by
t = 125 ns. Unlike the other side views in this paper, (a) and (b) do
not visualize the center of the computational mesh (i.e., θ = 0◦), but
rather θ = 1◦, to show the axial elongation of the HS. Units are T
(K), σ (1/�m), and j (A/m2).

cells have expanded and heated sufficiently that they have
finally escaped the biphase region, reaching the vapor bound-
ary [see green dashed line on left-hand side of Fig. 10(a)].
At this point, since the phase change from liquid to vapor is
complete, additional heating goes toward raising T , allowing
the outermost cells to heat rapidly to T ∼ 3 × 104 K.

Figure 10(b) overlays (p, ρ) pairs from the 3D simulation
at t = 125 ns. The lower green circle roughly corresponds to
cells constituting the liquid-vapor mixture surrounding the
HS, shown in Fig. 9(c). Similarly to the 1D case at t =
125 ns, the liquid-vapor mixture cools as it expands, eventu-
ally falling into the biphase region. In contrast, the HS follow
a qualitatively different trajectory in (p, ρ) space. Because of
the azimuthally focused j and resulting ETI-enhanced j2/σ

(which cannot be modeled in 1D), as the HS expand, they
are able to maintain T ∼const despite pdV cooling. As a
result, the HS remain “above” the biphase region, so once
j2/σ > pdV , the HS can heat rapidly.

The significance of this observation is seen at t = 135 ns,
when the expanding plume has spanned the axial extent of the
computational domain [Fig. 11(a)]. Recalling from Fig. 2(b)
that our computational scenario treats a single pit in a periodic
array, j can flow through axially neighboring plumes without
having to bend radially out of the rod [compare j streamline
in Figs. 9(b) and 11(a)]. At this point, j carried in the plume
increases sharply, and the resulting j2/σ boosts the filaments
to plasmalike temperatures [compare Fig. 11(d) and Fig. 9(c)],

FIG. 10. (a) Phase plot for aluminum. Solid black lines are
isotherms. Each symbol represents (p, ρ) in a computational cell in a
1D simulation, with red crosses, green diamonds, and blue triangles
corresponding to t = 115, 125, and 148 ns, respectively. (b) (p, ρ)
pairs from the 3D simulation at t = 125 ns. The upper blue circle
shows the approximate location of HS cells in Fig. 9(c), while the
lower green circle corresponds to surrounding liquid-vapor mixture.
Due to ETI-enhanced j2/σ , the HS avoid the biphase region, leading
to earlier plasma formation than the 1D case.

which dominates self-emission in Fig. 11(h). Because Joule
heating in the filament can go directly into increasing T rather
than supplying LV , the filament achieves plasmalike tempera-
tures ∼17 ns earlier than the equivalent 1D simulation shown
in Fig. 10(a).

In Ref. [82], researchers simulated 1D plasma formation
as applied to a similar experimental scenario, 1 MA elec-
trical current applied to aluminum rods of various diameter.
Using LMD conductivities similar to those used here, they
found that 1D simulation forms plasma significantly later
than experiment (e.g., ∼14 ns later for 1-mm-diameter rods).
The 3D ETI-assisted Joule heating mechanism described
here may help explain this discrepancy, since experimental
self-emission shows plasma forming via 3D filaments
[1,20,39,40,83], rather than in a 1D uniform sense.

Inside the metal, the striation has continued to overheat
and widen [compare Figs. 11(e) and 7(d)] through the j
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FIG. 11. At t = 135 ns, the plume spans the computational domain axially, increasing j carried in the filament and leading to rapid Joule
heating. The filament, visualized in (a) and (d), dominates self-emission in (h). The striation, visualized in (e)–(g), coexists with the filament.
Units are T (K), ρ (kg/m3), j2/σ (W/m3), and j (A/m2).

redistribution process described earlier. The striation and
filament are spatially large enough that estimates of ther-
mal conduction losses are again negligible relative to Joule
heating, similarly to the case of early-time pit overheating
illustrated in Figs. 4(a) and 4(b). Due to the expulsion of
overheated material through the plumes, the striation also
corresponds to a region of significantly lower ρ, as seen
in Fig. 11(f). For instance, ρ at the center of the striation
(identified by ρS) is 2.6× lower than the unperturbed value
ρ0. Hence, the pit has seeded a crater that is roughly 4×
deeper [Fig. 11(b)] and 5× wider than the original pit size,
providing a seed for the magneto-Rayleigh-Taylor instability,
as demonstrated in Ref. [43]. The low-σ striation will con-
tinue to widen, due to j deflecting azimuthally [see Fig. 11(g)],
causing a local enhancement in j and j2/σ at the edge. The
striation will also continue to deepen, due to j bending radially
[see j streamline in Fig. 11(c)], resulting in enhanced j and
j2/σ behind the striation [see white arrow in Fig. 11(c)].

Finally, Fig. 12 shows top views of j and B, along with
B streamlines. While the filament carries enhanced j relative
to the surrounding liquid-vapor mixture, the fraction of total
current carried by the filament Ifil/I < 1% is too small to
noticeably perturb B in Fig. 12(b). In particular, B streamlines
do not encircle the filament (which would be the case when Ifil

is a significant fraction of total current I), thus precluding the
possibility of filament self-pinching through the j × B force.

V. CONCLUSION

Three-dimensional MHD simulations illustrate how a
hemispherical pit on a metal surface initiates a complex 3D
feedback loop involving j and σ : Regions of enhanced j and
Joule heating exhibit higher T and lower ρ (due to hydro-
dynamic expansion), altering the σ (ρ, T ) topography, which

causes j to redistribute. Consequently, j constantly shifts as
it both reacts to and alters the ever-changing σ , transforming
the pit into a bump, which then overheats to create exploding
plumes and residual craters.

In solid or liquid metal, an overheated, expanded region
O exhibits negative feedback: Higher T and lower ρ drive
lower σ , which causes j (the source of overheating) to migrate
out of O and amplify at the edges. The resulting enhanced
Joule heating allows O to grow in a direction transverse
to the axially flowing, unperturbed current by overheating
surrounding material. Hence, negative feedback in solid or liq-
uid metal encourages spatial growth through j redistribution.
Despite reduced j in O, enhanced Joule heating there is still

FIG. 12. Top views of j (A/m2) and B (T ), visualizing zHS =
100 µm [see Fig. 11(a) for location]. Black lines represent ρ =
400 kg/m3 and nearly horizontal white curves in (b) are magnetic
streamlines.
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possible if the enhancement due to reduced σ overcomes the
reduction due to reduced j [as in Fig. 7(h)]. Through these
processes, an initially localized resistive perturbation (the pit)
seeds the development of a wide, hot strip (the ETI striation),
which is an important seed for the magneto-Rayleigh-Taylor
instability. Throughout the many flow patterns exhibited by
j during this feedback-driven evolution, the analogy between
j and hydrodynamic flow provides insight.

Once material expands into the vapor phase, as in the
exploding plumes, dσ/dρ becomes negligible compared to
dσ/dT (see Fig. 1). Because dσ/dT > 0 in vapor, an over-
heated region O will now experience positive feedback:
Higher T generates higher σ , which in turn encourages higher
j and increased Joule heating. Hence, now j tends to fo-
cus into O, rather than divert around, so j redistribution no
longer drives spatial growth transverse to unperturbed current
flow. However, as seen in Sec. IV, the overheated HS still
grow spatially, now through hydrodynamic expansion rather
than j redistribution. Due to the shaped-charge effect, the HS
grow preferentially in the axial direction, transforming them
into the elongated plasma filaments predicted by ETI theory.
While j redistribution does not directly determine HS spatial
growth, it nevertheless plays an important role: Enhanced j
and Joule heating in the HS (due to j redistribution) counter-
acts pdV cooling more effectively than in an equivalent 1D
radially resolved simulation. Consequently, in 3D, HS fluid
particles follow a different trajectory in (p, ρ) space, avoiding
the liquid-vapor biphase region. As a result, for the scenario
treated here, plasma forms ∼17 ns earlier in 3D compared to
1D, thus illustrating the important role of 3D j redistribution
in plasma formation.

Simulations rely heavily on equation-of-state and electrical
conductivity tables, as well as 3D hydrodynamics. Further-
more, most of the processes occur in the difficult-to-model
warm dense matter regime (e.g., Refs. [84,85]), underscoring
the need for experimental validation. While experiments in-
volving current-driven metal rods indeed show a connection
between initial surface features and later-time emission [1,40],
testing the predictions presented here—namely detailed self-
emission patterns driven by a single 3D pit—requires special
effort. Naturally occurring defects in metals are µm scale,
so the resulting emission is below the resolution limit of
most cameras. Furthermore, because there are so many de-
fects, with unknown distribution (surface characterization
cannot discern buried defects), the resulting emission im-
ages are very complicated, making interpretation difficult.
Efforts to carefully track individual inclusions from preshot
characterization to self-emission showed no clear one-to-one
correspondence [86].

Recent experiments strived to understand the emission
from isolated 3D defects by enforcing as unambiguous
an initial condition as possible [42]. Using 99.999% pure
aluminum rods (effectively no native inclusions or voids)
with ultrasmooth (∼10 nm) surface finishes (to minimize
emission from machining grooves), pits were machined on
the surface to seed the feedback loop discussed in this
paper. While the quasihemispherical pits (12- and 24-µm
diameters) are larger than typical voids encountered natu-
rally, they are large enough to experimentally resolve detailed

emission features. Furthermore, if the similarity principle
(mentioned in the Introduction) holds, then large pits serve
as surrogates for smaller voids in the sense that the initial j
redistribution driven by large and small pits is the same, up to
a spatial scale size. However, this surrogacy may be broken
by thermal conduction: As estimated in the Supplemental
Material to Ref. [43], thermal conduction losses are expected
to be negligible for a 10-µm-scale pit but significant for a
1-µm pit.

As mentioned previously, these experiments show promis-
ing agreement with the emission patterns predicted in
Figs. 7(c), 8(e), and 11(h). Since these patterns reflect the
shifting Joule heating peaks and associated hydrodynamics,
the agreement gives us confidence in the basic adequacy
of MHD modeling, albeit for a very specific case, 24-µm
quasihemispherical pits on the surface of a 1-mm-diameter
aluminum rod driven with ∼1 MA current. We have started
testing the robustness of the results by simulating pits filled
with dielectric (to mimic resistive inclusions), tilted ellip-
soidal pits (to break the symmetry imposed by a hemisphere),
higher dI

dt current pulses, and MagLIF-like [22–27] liners
driven by 20-MA current. While this is only a small subset of
possible variations, all cases show qualitatively similar behav-
ior, in particular developing the larger striation and filament
structures. This result suggests that the physical processes
described here—3D structure evolution driven by dynamic
j and j2/σ , coupled with hydrodynamics—have a universal
character and constitute building blocks toward a 3D theory
of defect evolution in current-driven metal.

Although we conclude our discussion here, many questions
remain. For instance, given that metals commonly contain
plentiful 3D defects (e.g., voids and inclusions), how do de-
fects communicate through j redistribution to coalesce into
larger structures? What is the effect of different materials?
How do defect-driven ETI and the magneto-Rayleigh-Taylor
instability interact in imploding systems? Are non-MHD ef-
fects important in the low-density plume? Regarding this
final question, in the plasma filament the drift velocity ud ≡
ve − vi = − j/ene, measuring the difference between electron
velocity ve and ion velocity vi, is indeed comparable to the
fluid velocity v. This condition can signify the onset of Hall
effects (e.g., see discussion in Ref. [44]) as well as anomalous
resistivity (e.g., Ref. [87]), and indeed some experimental ob-
servations of filament evolution have so far defied explanation
by MHD simulation. Finally, on higher current pulsed-power
accelerators, we should consider the role of contaminant plas-
mas (generated in the magnetically insulated transmission
lines) striking the metallic target, thus providing an additional
seed for ETI [88,89]. In summary, the 3D evolution of current-
driven metal is a largely unexplored, physically rich subject
that invites further experimental, numerical, and theoretical
investigation.
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APPENDIX A: ETI SUMMARY

In this section, we review the fundamentals of the ETI,
which is a heating instability that occurs whenever electrical
conductivity σ depends on temperature T . For purposes of
this discussion, it will be more convenient to work with the
electrical resistivity η ≡ 1/σ . In the case of solid or liquid
metals, where dη/dT > 0, the physical basis of the instability
can be roughly described as follows: A hotter region will have
higher η, leading to enhanced Joule heating η j2 (under certain
conditions, to be clarified below), which drives the region even
hotter. ETI can also occur when dη/dT < 0, as in the vapor or
plasma phase: Hotter regions have lower η, but higher current
j (from Ohm’s law j = E/η), which can lead to enhanced
Joule heating, driving higher T .

To quantify the above arguments, we briefly review the
analysis of Ref. [15], which considers a planar shell with
vertical current jz, generating horizontal magnetic field By,
as in Fig. 13(a). The shell thickness 
R is assumed suffi-
ciently thin that current is fully diffused. We assume small
perturbations of the form eγ t+ikyy+ikzz, where k is the wave
vector forming an angle α with the magnetic field and γ is
the ETI instability growth rate. Such a perturbation results in
alternating hot and cold bands, as illustrated in Fig. 13(a).
In the simplest case where we ignore thermal conduction
and hydrodynamic expansion, we can estimate a typical
value of the ETI timescale γ −1 ∼ ρcV /( dη

dT j2) in aluminum
prior to melt. Approximating dη

dT ∼ 1.2 × 10−10 �m/K, j ∼
1 × 1012 A/m2, ρ ∼ 2700 kg/m3, cV ∼ 920 J/kgK, we find
1/γ ∼ 21 ns.

Even in this 2D geometry, current redistribution δj plays
an important role. Taking the z component of the perturbed
Ohm’s law, we find

δ jz = −δη

η
jz + 1

η
δEz, (A1)

where the first term represents how δ jz responds to δη (i.e.,
region of enhanced resistivity δη > 0 results in reduced jz),
whereas the second term is the contribution to δ jz from the

FIG. 13. (a) ETI planar analysis. The y coordinate corresponds
to azimuthal coordinate θ in cylindrical geometry. (b) Striation form
of ETI in metal (dη/dT > 0). (c) Filament form of ETI in vapor
(dη/dT < 0). (d) Dependence of δ jy (blue) and δ jz (red) on angle α.

induced electric field, satisfying Faraday’s law,

∇ × δE = −∂δB
∂t

. (A2)

As shown in Ref. [15], combining Ampère’s law with
Eq. (A2) allows us to express δ jz in terms of δη:

δ jz = − jz cos2 α

1 + γ τR

δη

η
, (A3)

where τR ≡ μ0
R
2kη

is a resistive diffusion timescale for pertur-
bations of wavelength λ = 2π/k and radial extent 
R. Also,
charge conservation ∇ · δj = 0 requires

δ jy = − kz

ky
δ jz. (A4)

Combining Eqs. (A3) and (A4), noting cos α = ky/k and
sin α = kz/k, we can rewrite

δ jy = jz
2

sin 2α

1 + γ τR

δη

η
. (A5)

Note that if α = π/2, corresponding to the striation form of
ETI [see Fig. 13(b)], δ jy = δ jz = 0; there is no current redis-
tribution because j cannot flow “around” the δη > 0 regions,
which span the plane. Conversely, if α = 0, corresponding to
the filament form of ETI [as in Fig. 13(c)], then δ jy = 0 and

δ jz = − jz
1 + γ τR

δη

η
, (A6)

i.e., now current redistribution is nonzero, with j preferentially
flowing in the lower resistivity δη < 0 filaments.

The α = 0 case provides a simple illustration of the im-
portance of the induced electric field δEz in determining
j redistribution. If we simply ignored δEz, then Eq. (A1) yields
δ jz = − δη

η
jz. Comparing to Eq. (A6), which does account for

δEz, we see that the effect of δEz is to reduce δ jz by the
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factor (1 + γ τR)−1. Recall δEz captures the Faraday effect,
so j responds to changes in δη not instantaneously but rather
on the resistive diffusion timescale τR. Hence, if γ τR � 1,
then δ jz → 0, i.e., j is frozen, because the timescale τR for j
redistribution is long relative to the instability timescale γ −1.
Conversely, if γ τR � 1, then the effect of δEz is negligible:
γ −1 is so long compared to τR that δ jz effectively redistributes
instantaneously to the value δ jz = − δη

η
jz.

Let us now seek a simple physical explanation for why
horizontal striations naturally occur in solid or liquid metals,
while vertical filaments appear in the vapor or plasma phase.
The perturbed Ohmic heating yields

δ(η j2) = δη j2 + 2η jδ j, (A7)

where

j =
√

( jz + δ jz )2 + δ j2
y � jz + δ jz (A8)

and

δ j � δ jz, (A9)

with Eq. (A9) and the final equality in Eq. (A8) being valid
to first order. Equations (A3), (A7), (A8), and (A9) can be
combined to yield

δ(η j2) = δη j2 + 2η jδ j � δη j2

(
1 − 2 cos2 α

1 + γ τR

)
. (A10)

In the limit γ τR � 1,

δ(η j2) = δη j2 + 2η jδ j � δη j2(1 − 2 cos2 α). (A11)

Consider the condition for instability as applied to Eq. (A11).
In order for instability to grow, a region of enhanced tem-
perature δT > 0 must have enhanced Joule heating δ(η j2) >

0 so that δT can be driven even higher. Let us first con-
sider a metal so that δη > 0 in the hot spot. Then the first
term δη j2 in Eq. (A11) is positive, and hence drives insta-
bility, but must compete with the stabilizing second term
2η jδ j, which is negative owing to δ j < 0 in the region δη >

0. Therefore, maximum growth rate is achieved by mini-
mizing the stabilizing term proportional to δ j, which from
Eq. (A11) occurs for α = π/2. Physically, this scenario cor-
responds to the horizontal hot and cold bands illustrated in
Fig. 13(b).

Having explained why striations are the most virulent in-
stability in the solid or liquid phase, we now consider the
vapor or plasma phase, where dη/dT < 0 and the filament
form of ETI dominates. Now a hotter region has lower η, and
for ETI to grow, this region must have δ(η j2) > 0. Looking at
Eq. (A11), the role of the terms is reversed from the previous
discussion: Since δη < 0 in the hot region, the first term is
negative and stabilizing, whereas the second term is positive
and destabilizing. Physically, reduced η in the hot region will
reduce Joule heating but also amplify j, enhancing Joule heat-
ing. The maximum instability occurs when δ j is maximized,
which from Eq. (A11) occurs for α = 0, thus resulting in the
filaments of Fig. 13(c).

To complete our picture of current redistribution in the 2D
system, we consider the general case 0 < α < π/2. Consider
the metal phase where dη/dT > 0 and “striation-like” struc-
tures with π/4 < α < π/2. In this case, Eqs. (A3) and (A5)

FIG. 14. Current redistribution in ETI planar analysis in (a) α >

π/4 and (b) α < π/4, showing j in bands of varying resistivity. In
regions of reduced resistivity δη < 0, j is amplified, and δ jy < 0,
consistent with our intuition that j tries to flow along the band
δη < 0. Conversely, when δη > 0, we see δ jy > 0: j tries to cross
the region “quickly” by flowing nearly perpendicular.

show that δj is nonzero. As illustrated in Fig. 14(a), regions
of enhanced η have reduced δ jz and δ j, but Eq. (A11) and
Fig. 13(d) show that hot bands of δη > 0 still have δη j2 > 0,
i.e., current redistribution is not sufficient to stabilize the
δη > 0 bands. Once α = π/4, from Eq. (A5) the transverse
current δ jy reaches a maximum (|δ jy| = |δ jz|) and current
redistribution out of the δη > 0 region is sufficient to reach
marginal stability in Eq. (A11), δ(η j2) = 0. Decreasing α still
further to α < π/4, as in Fig. 14(b), |δ jz| increases to the point
where now in the hotter δη > 0 regions, current redistribution
is sufficient to drive δ(η j2) < 0 there, as seen in Eq. (A11).
Hence, the instability is quenched: Hotter regions of δη > 0
have reduced Joule heating, thus breaking the positive feed-
back loop.

APPENDIX B: FLOW OVER BUMP OR DIVOT

In this section we review 2D current flow over a bump or
divot, using the analogous hydrodynamic solution presented
in the monograph by Milne-Thomson [41]. For the benefit of
readers interested in studying Ref. [41] further, we maintain
his notation. The solution is expressed in coaxal coordinates
(η, ξ ), related to Cartesian coordinates (x, y) through

x

c
= sinh η

cosh η − cos ξ
, (B1)

y

c
= sin ξ

cosh η − cos ξ
, (B2)

where c is an arbitrary constant that will parametrize the
half-width of the bump or divot. Figure 15 plots contours
of constant ξ (dashed lines), representing circles centered at
x = 0, y = c cot ξ with radius c| csc ξ |, which always intersect
the x axis at x = ±c. Consider a specific value of ξ = ξ0

satisfying 0 < ξ0 < π . As seen in Fig. 15, this describes the
portion of a circle lying above the x axis; to access the bot-
tom portion of the circle at y < 0, we consider ξ = ξ0 + π .
Also, as ξ → 0, the circle becomes so large and is centered
so far above the x axis that it approximates the x axis (for
|x| > c, as seen by the ξ = π/100 contour); points on the
x axis satisfying |x| < c are described by ξ = π . Curves
of constant ξ provide a natural description of divots and
bumps.

Contours of constant η represent circles centered at x =
c coth η, y = 0 with radius c|csch η|. As η → 0, the circle is
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FIG. 15. Coaxal coordinates (ξ, η) used to study flow over a
divot or bump. Dashed lines represent curves of constant ξ , while
solid lines represent constant η. Each point in the (x, y) plane is
associated with a unique (ξ, η) pair.

so large and centered so far from the origin that it approx-
imates the y axis (see η = 0.1 curve in Fig. 15), whereas
as η → ∞, the circle shrinks to a point centered at x = c.
Note that η = η0 > 0 traces out a circle centered at x0 > 0,
whereas η = −η0 traces out the mirror image of the circle,
centered at x = −x0 (compare η = ±2 in Fig. 15). Hence, we
can associate any point in the (x, y) plane with a unique coaxal
coordinate pair (η, ξ ).

To connect to the problem of interest in this paper—axial
current flow j0 flowing over a radially extended bump or
divot—we associate x in Fig. 15 with the axial coordinate
z and y with the radial coordinate −r. Hence, in the case of
a perfectly smooth rod, the metal occupies y > 0, with vac-
uum in y < 0. To introduce a divot, we consider ξ = ξ0 with
0 < ξ0 < π describing a divot of varying radial depth and
fixed axial half-width c. Conversely, π < ξ0 < 2π represents
a bump.

For current flow j flowing over either a divot or bump, the
solution is

j

j0
= 4

n2

(
cosh η − cos ξ

cosh 2η

n − cos 2ξ

n

)
, (B3)

where j0 is the value of j infinitely far from the divot or
bump (flowing in the x̂ direction) and n characterizes the
shape and depth of the divot or bump through ξ0 = nπ/2.
Hence, 0 < n < 2 (i.e., 0 < ξ0 < π ) describes a divot while
2 < n < 4 (i.e., π < ξ0 < 2π ) describes a bump.

Figure 16 illustrates the solution for ξ0 = 3π/2, corre-
sponding to a semicircular bump with depth δy equal to
half-width c. The unperturbed metal occupies y > 0; we only
plot j in the bump. At the base of the bump (x = ±c, y = 0),
the metal surface makes an abrupt 90◦ turn, causing j stream-
lines to bunch up as j is pulled into the bump. Consequently,
j achieves its maximum value, in fact approaching ∞. This
unphysical singularity is well known in the theory of plane

FIG. 16. (a) Flow of j over bump, described by ξ0 = 3π/2.
Coloring represents j/ j0, where j0 is the value of j infinitely far
from the bump, and black lines are j streamlines. At the corners
(x/c = ±1, y = 0), j → ∞. (b) Solution for jtip/ j0 as a function of
aspect ratio 
y/c for both bump and divot. The black and red dots
correspond to the solution for the bump shown in (a), and the divot
in (c), respectively. The inset illustrates a plume connection scenario,
leading to enhanced j carried in the plume, as described in the text.
(c) Flow of uniform stream over divot, described by ξ0 = π/2.

ideal (i.e., zero viscosity) hydrodynamic flow around a convex
corner (e.g., see Sec. 18.2 in Ref. [90]). Here the singularity
vanishes when additional viscous physics is added, effectively
smoothing the corner.

In a conducting metal, as suggested in Ref. [10], in reality
the corner will be rounded rather than perfectly sharp, thus
resolving the singularity. Even in the idealized case of a sharp
corner, the singularity in j will rapidly resolve itself by heat-
ing the corner, with the corresponding drop in σ effectively
smoothing the corner. Finally, the solution in Fig. 16(a) as-
sumes that the bump (at y < 0) and overlying metal (at y > 0)
have the same electrical conductivity σ . However, in both
cases in this paper in which the bump solution is applicable—
when the pit converts to a bump (Fig. 6) and when hot spots
explode to form plumes (Fig. 8)—the protrusion has lower
σ than the rod, which will further prevent the singularity in j.
However, the bump solution still provides important physical
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insight: Figures 6(b) and 6(e) clearly show localized peaks in
j at the predicted locations.

One measure of j in the bump is its minimum value at the
tip, jtip [see Fig. 16(a)]. Figure 16(b) plots jtip/ j0 as a function
of the aspect ratio 
y/c, where 
y is the bump depth and
c is the half-width. As the bump deepens and 
y/c increases,
jtip decreases, since it is “harder” for j to reach the tip. This
dependence on 
y/c provides a geometrical means for a
current-carrying plasma plume [e.g., see Fig. 8(a)] to increase
j when it merges with another plume. As illustrated in the
inset of Fig. 16(b), bumps corresponding to exploding plasma
or vapor plumes from two axially separated pits are initially
separated at time t1. Current follows the streamline j(t1), with
each plume pulling j outward, as determined by 
y

c (t1). As the
plumes expand radially and axially, they eventually merge at
time t2. The resulting smaller 
y

c (t2) makes the merged plume
a more accessible current path, increasing jtip as well as j
throughout the plume. This process is demonstrated numer-
ically and supported experimentally in Ref. [42].

Last, Fig. 16(c) illustrates the solution for uniform current
j0 flowing over a divot, described by the coaxal coordinate
ξ0 = nπ

2 → π/2 [hence n = 1 in Eq. (B3)]. Unlike the bump,
j is finite over the entire domain, reaching a maximum at the
tip of the divot. For this particular value of ξ0, describing
a semicircular divot, the solution is identical to hydrody-
namic flow over a circular cylinder, reaching jtip/ j0 = 2.
More generally, current amplification depends on the ratio of
depth to width 
y/c, with jtip/ j0 initially increasing linearly
with 
y/c:

jtip
j0

� 1 + 4

π


y

c
,


y

c
<

1

2
, (B4)

as seen in Fig. 16(b). At larger 
y/c, the divot takes on a
bulbous shape (see for instance ξ = π/4 in Fig. 15), and
jtip/ j0 increases more slowly. As described in the main text,
j amplification at the tip of the divot results in enhanced
Joule heating there, providing a means for craters in exploding
metals to continuously deepen.
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