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We study ab initio approaches for calculating x-ray Thomson scattering spectra from density functional theory
molecular dynamics simulations based on a modified Chihara formula that expresses the inelastic contribution
in terms of the dielectric function. We study the electronic dynamic structure factor computed from the Mermin
dielectric function using an ab initio electron-ion collision frequency in comparison to computations using a
linear-response time-dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium
and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate
treatment of these contributions, where only the free-free part follows the Mermin dispersion, shows good
agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed
matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson
scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with

traditional analytic models at small scattering angles.
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I. INTRODUCTION

X-ray Thomson scattering (XRTS) has been one of the
premier diagnostic tools for warm dense matter (WDM) ex-
periments, enabling measurements of the electron density,
temperature, and ionization state [1-3]. The states reached
in these experiments are characterized by temperatures of a
few electron volts (eV) and around solid densities, which
constitutes strongly correlated plasmas with non-negligible
degeneracy. This prevents the application of ideal plasma the-
ory for the analysis of these experiments, and rather requires
a quantum mechanical treatment in a many-body framework.
Knowledge of equation of state data as well as thermal and
electrical transport properties for warm dense hydrogen and
beryllium is essential for modeling astrophysical objects [4,5]
and inertial confinement fusion [6], where hydrogen is used
as fuel while beryllium often serves as ablator material [7,8].
Furthermore, hydrogen and beryllium are excellent test cases
for new theoretical approaches. The analytical behavior in
many limiting cases for fully ionized hydrogen plasmas are
known and beryllium can be used to test the treatment of
bound states in a simple low-Z material. WDM is typically
opaque in the optical regime, as the light frequency is smaller
than the plasma frequency wy; of these plasmas. Therefore, it
is indispensable to have diagnostic tools at experiments that
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are well understood, both experimentally and theoretically.
XRTS has proven to overcome many of the experimental
challenges of probing WDM. The high-energy x-ray photons
can penetrate dense plasmas, and since the advent of free-
electron lasers (FELSs), rep-rated x-ray sources with sufficient
brilliance for probing short-lived transient states are available
in addition to laser-plasma sources which only allow a limited
number of experiments and require complex sample assem-
blies. New FEL techniques like self-seeding [9,10] have also
resulted in much narrower bandwidths of the x-ray source,
enabling the measurement of phonons and ion acoustic modes
[11,12] and a better resolution of density and temperature-
sensitive regions in the XRTS spectrum.

Due to the steadily improving quality of collected spectra,
it is vital to have accurate theoretical modeling of the scatter-
ing. While in the past, the resolution of XRTS spectra often
did not allow for discrimination between different theoretical
approaches, now, fitting experimental spectra to theoretical
models has allowed predictions of electron temperature and
density to within a few percent uncertainty [13—15]. As a
result, the fidelity of the theoretical model used is now the
limiting factor in determining the correct plasma parame-
ters in experiments that employ XRTS as a diagnostic tool.
Most approaches rely on the semiclassical Chihara decompo-
sition [16,17] of the spectrum into three distinct contributions
which originates from distinguishing between free and bound
electrons in a chemical picture. An analogous fully quantum-
mechanical description has also been proposed [18]. The
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standard approach for modeling XRTS spectra in the Chi-
hara description is a combination of theories to describe each
component individually [19]. The ion dynamics are usually
described by the hypernetted-chain approximation with dif-
ferent expressions for the interaction potential while the form
factors are described by a screened hydrogenic approximation
to the wave functions [20] and the Debye-Hiickel approxima-
tion for the screening cloud. The plasmon can be described by
the random phase approximation (RPA) or the Mermin dielec-
tric function in order to also include electron-ion collisions
which can also be approximated to different degrees [21].
Further electron correlations can be accounted for by local
field corrections [22]. Contributions that are related to bound-
free transitions are treated within the impulse approximation
[23] which is sometimes modified by the ionization potential
depression and normalized according to different sum rules.

In recent years, this approach has been partially re-
placed by ab initio descriptions like density functional theory
molecular dynamics (DFT-MD) simulations and real-time or
linear-response time-dependent DFT (RT/LR-TDDFT) com-
putations. Witte et al. successfully used electron-ion collision
frequencies determined by DFT to accurately model the
plasmon of an aluminum plasma [24]. This approach was
subsequently compared to LR-TDDFT and other theoretical
models by Ramakrishna er al. for ambient and extreme con-
ditions in aluminum [25] and carbon [26], which was then
used to discern miscibility in an XRTS experiment [13]. Mo
et al. also used LR-TDDFT to study isochorically heated
aluminum [27]. Baczewski et al. went beyond the Chihara
decomposition by simulating the real-time propagation of the
electronic density using RT-TDDFT [28]. Path integral Monte
Carlo simulations have delivered approximation-free results
for the uniform electron gas [29] and hydrogen plasmas [30],
but are currently unable to describe heavier elements.

The capability of DFT-MD to compute ion dynamics and
the form factors was already demonstrated and tested in previ-
ous publications [31-33]. Therefore, in this work, we focus on
the inelastic contribution to the scattering spectrum, i.e., the
plasmon and bound-free contribution. Although the ab initio
approaches offer a better description of the many-body na-
ture involved in the scattering process, they incur substantial
computational cost and take a long time to perform, which
is especially troubling if the conditions reached in an experi-
ment cannot easily be constrained. Therefore, the much faster
analytic approach of using the Mermin dielectric function is
still widely used in the field of WDM research [14,34,35]. To
test the validity of the Mermin description, we connect the
DFT and Mermin approach in the macroscopic limit (k — 0)
by introducing an ab initio electron-ion collision frequency,
as first described in Ref. [24], and examine differences of the
predicted scattering spectra at finite scattering angles.

In Secs. IT A and I B, we give an overview of the theoreti-
cal foundation for computing the electronic dynamic structure
factor from the Mermin dielectric function with a dynamic
complex collision frequency and apply this framework to
extract a DFT-based collision frequency. In Sec. II C, a short
summary and the relevant equations for LR-TDDFT is given.
In Sec. ID we give the details of the simulation method.
We compute DFT-based collision frequencies for a hydrogen
plasma and compare them to several analytic approaches in

Sec. III and we study the impact of these collision frequen-
cies on dynamic structure factors (DSFs) for hydrogen and
beryllium plasmas in Secs. IV A, IVB, and IVC. In Sec. V,
we apply the full ab initio description of LR-TDDFT to inter-
pret XRTS experiments on beryllium, which were previously
analyzed using analytic approaches. We evaluate the impact
on the inferred plasma parameters for XRTS experiments at
small and large scattering angles, showing good agreement in
the backscattering and significant deviations in the forward
scattering.

II. THEORETICAL BACKGROUND

A. Dynamic structure factor
The electronic DSF [1]

S©Uk, w) =

/ dt(n%(r)ni;(r—i—t))reiw’ ()

—00

2N,

is the central quantity representing the spatially resolved
power spectrum of an electronic system, describing its dy-
namics at given temporal and spatial periodicities given by
the frequency w and the wave vector k, respectively. The
number of considered electrons is N, and the spatial Fourier
components of the electron density are given by nz The time
is described by ¢ and 7, where (- - - ), describes a time average
over 7. Experimentally, S;‘;t(l;, ) can be used to identify how
strong a photon will couple to density fluctuations at a given
energy transfer and scattering angle [1]. In this work we will
use a slight modification of the common decomposition of
Eq. (1) introduced by Chihara [16,17]:

SOUE, ) = |/i(K) + g(B) S (K, w)
+ 780 (k, ) + ZSei (k, @) . ()

ZSe (ko)

The first term refers to the elastic response of the electrons
which follow the ion motion described by the ion-ion struc-
ture factor Sﬁ(lz, w). Here, fi(l_c') describes the contribution
of tightly bound electrons and q(l_é) represents the loosely
bound screening cloud around the ions. The second term,
called the electron feature, arises from the collective behavior
of the free electrons in the system undergoing transitions to
different free-electron states. The number of free electrons
per atom is labeled Z; and their DSF is denoted by Sge(%, ).
The last term in Eq. (2) is the bound-free contribution. In
the original work, Chihara clearly separates free and bound
electrons and describes this term as a convolution of the DSF
of the core electrons with the self-part of the ionic DSF [17].
We treat the bound-free contribution on the same footing as
the free-electron contribution and introduce the bound-free
DSF Sy¢(k, ) and the number of bound electrons per atom
Zy,. Both the free-electron and bound-free contributions arise
due to inelastic transitions of the electrons and can, therefore,
be combined into one DSF Set(lz, w) that accounts for all
electronic transitions. This avoids the artificial separation into
bound and free electrons for both the charge state Z and the
DSE. According to the fluctuation-dissipation theorem [36],
this combined DSF can be related to the dielectric response
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described by the dielectric function e(lz, w) via
eolik? Im[e ' (k, »)]

nezne 1 —exp (

Ser(k, w) = 3)
ke T. )
The vacuum permittivity is denoted by €y, the reduced Planck
constant is 7, and e is the elementary charge. The electron
density is given by n,, the electron temperature is 7,, and the
Boltzmann constant is kg. At which conditions the separa-
tion into free and bound-free parts in Eq. (2) is justified and
yields the same results as the combined approach discussed in

Secs. IVB and IV C.

B. Dielectric function with electron-ion collisions

The dielectric function €(k, w) is a central material prop-
erty that is connected to other material properties, like the
electrical conductivity o (w) in the long-wavelength limit or
the DSF via the fluctuation-dissipation theorem from Eq. (3).
One of the first approaches that produced collective features
of the electron system, such as plasmons, is the Lindhard
dielectric function [37]

RPAR )

a3 e — fa
= lim [1——/ q3 fq k/2 fq+k/2 }
n—0 €ok? Q2n)’ i(w+in) + qulz/z Eq’+k/2
4)

which accounts for electric field screening in the RPA. The
arguments k and w are the wave vector and the angular fre-
quency, respectively. E; and f; are the kinetic energy and
the Fermi occupation of an electron with wave vector g in
the unperturbed free-electron gas. The small imaginary con-
tribution to the frequency 7 is introduced to avoid the pole in
the integration and approaches zero thereafter. However, for
degenerate, strongly correlated systems, electron-ion interac-
tions, which are neglected in Eq. (4), have to be accounted for
in order to accurately describe the dielectric function.

It was shown that electron-ion collisions can be included
via a dynamic collision frequency v(w) in the framework of
the Mermin dielectric function [38—41]

eMemin [ o; v(w)]

(1 + i) (eRPA R, w + iv(w)] — 1)

v(w) eRPA[k a)+w(a))] 1
1 T GRPA(/( 0)—1

=1+ (5)

This collision frequency is defined as the difference to the
RPA in the macroscopic limit due to the interaction of elec-
trons and ions [21]. Further correlations between the electrons
can be included via local field corrections by going beyond the
RPA and replacing €R™ in Eq. (5) by the dielectric function
of the one-component plasma [22,42,43]. Extensive work has
been performed on the evaluation of different analytic colli-
sion frequencies and local field corrections [21,22,44], as well
as first attempts to incorporate ab initio results to determine
collision frequencies [45].

We present the derivation of the RPA dielectric function
in the presence of a dynamic complex collision frequency
in Appendix A. Equations (5), (A7), and (A8) are the basis
for calculating the Mermin dielectric function for a given
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FIG. 1. Schematic work flow for determining the dynamic colli-
sion frequency and k-dependent dielectric function via DFT.

dynamic collision frequency v(w). In the following, because
we are dealing with isotropic systems, we will only consider
the magnitude of wave vector k and drop the vector notation.

One of the most prominent approximations for the collision
frequency is the Born collision frequency [21], the combina-
tion of which with the Mermin dielectric function in Eq. (5)
is called the Born-Mermin approximation. It is widely used in
the analysis of XRTS spectra in the WDM field. We give the
exact equations used in this work in Appendix B. However,
complex many-particle effects, as they are considered in ab
initio simulations, cannot be accounted for by this approach.

In Fig. 1, we show the schematic procedure to compute a
DFT-based collision frequency from an electrical conductiv-
ity in the optical limit. In essence, we construct a complex
collision frequency for which the Mermin dielectric function
coincides with the ab initio dielectric function in the optical
limit. As input, the temperature and electron density of the
plasma are needed for the Mermin dielectric function and
the real part of the electrical conductivity is needed from
the simulation. According to the Kubo-Greenwood formula
[46,47] the conductivity is

Re[o(k =0, w)]

2mwe? 3
T 300 Xg:wg] . ;[f(éjg) Sfei ]l
X (V0| g) |*8(€ig — €5 — iw). (©6)

The indices i and j run over the eigenstates, o runs over the
spatial orientations, and g denotes the reciprocal vectors in the
Brillouin zone where the wave functions ;3 are evaluated.
The Fermi-Dirac occupation at a given eigenenergy €; s is
described by f(e;3) and 9, is the velocity operator in the
direction «. The normalization volume is denoted by 2 and
wj is the weighting of each k point. We translate the electrical
conductivity to the imaginary dielectric function via

Im[e(k = 0, )] = 60%) Re[o(k =0, w)] (7
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and use the Kramers-Kronig transformation to compute the
corresponding real part, leading to a complex dielectric func-
tion €PFT(k = 0, w). If we require an equivalence between the
DFT result and the Mermin dielectric function in the optical
limit

Tk =0, w) = lim M ke, ;v (), ®)

the real and imaginary parts must be equal simultaneously.
This can be achieved by adjusting the real and imaginary
parts of the dynamic collision frequency which feeds into
the Mermin dielectric function, leading to a two-dimensional
optimization problem. The result of this optimization is a
collision frequency vP¥T(w) for which the analytic Mermin
dielectric function yields the same results as DFT in the
macroscopic limit. Because there is no notion of bound states
in the theoretical framework of the Mermin dielectric func-
tion, the electrical conductivity must only originate from free
or quasi-free states. For this purpose, the conductivity in
Eq. (6) can be split into different contributions (see Ref. [48]
for details).

Figure 2 shows the convergence of the Mermin dielectric
function and DSF to the DFT result in the optical limit for a
beryllium plasma at p = 5 g/cm?® and 7 = 100 eV. Due to
the presence of bound states in beryllium at these conditions,
only the electrical conductivity due to free electrons can be
used as an input to the workflow depicted in Fig. 1 and all
quantities in Fig. 2 are free-electron contributions. The DFT
results for the dielectric function €T (k, @) and the connected
DSF SPFT(k, ) are only available at k = 0 and are shown
as a constant reference for the various k depicted in Fig. 2.
In both panels, it is apparent that, with the correct collision
frequency v°FT(w), the Mermin result converges to the op-
tical limit described by DFT. In practice, the limit k — O is
reached at wave numbers that correspond to length scales that
are significantly larger than any characteristic length scales
of the studied system. For beryllium at these conditions, the
convergence is reached for wave numbers smaller or equal to
10~* A~! as depicted in Fig. 2. The dielectric functions in
the upper panel are connected to the DSF in the lower panel
by Eq. (3). However, it is apparent that the dynamic dielec-
tric function in the upper panel of Fig. 2 is more sensitive
to changes in the wave number than the DSF shown in the
bottom panel, which is dominated by the pole in € ! (k, w).

C. Linear-response time-dependent density functional theory

In the framework of LR-TDDFT the density response of
the noninteracting homogeneous Kohn-Sham system can be
evaluated at a finite momentum transfer as [49,50]

1 fleig) = f(€;5.7)

Loy=t |
XKS( ) Q Z w+ €ig— Ej,g+1€ +in

&1.J
X (Wigle ™ 1y, ) Wigle™ 1, 0. )

The quantities in this equation are defined analogously to the
Kubo-Greenwood formula in Eq. (6). This response function
can be related to the full density response x via a Dyson
equation [49], with different levels of approximation for the
exchange-correlation kernel fxc. A closed expression can be

Re[eFT (k

— 0) ® Re[eMcrmin(k)]
DFT(f; —
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FIG. 2. The top panel shows the free-electron part of the dielec-
tric function €(k, ) in a beryllium plasma at p = 5 g/cm® and T =
100 eV. The DFT results are given at k = 0, where the solid lines
are the real part and the dash-dotted lines are the imaginary part.
The Mermin dielectric function from Eq. (5) is calculated with the
DFT collision frequency vPfT. The colors represent different values
for k, while the real and imaginary parts are given by the circles
and crosses, respectively. The bottom panel shows the free-electron
DSF S9 (k, w) computed from DFT (solid lines) at k = 0 and from
the Mermin dielectric function (circles) at various k. The DSFs are
scaled to the same magnitude and the dielectric function and DSFs
are shifted by 75 and 0.5 arb. units, respectively, with respect to the
next lowest wave number for readability.

written as

AR xxs(k, o)
x(k, w) = = = —,
I = [v(k) + fxc(k, w)]xks(k, w)

where U(E) is the Fourier transform of the Coulomb potential.
The exchange-correlation kernel in Eq. (10) is closely con-
nected to the local field corrections mentioned in Sec. II B
[42,51,52]. The level of the RPA is achieved for fxc = 0, for
which the dielectric function can be computed as

(10)

N 4 R
Ak, w) =1 — WXKS(/(, o). (1)

In this framework, the electron-ion coupling is considered, on
the one hand, through the snapshots taken from the DFT-MD
simulation, which effectively account for static screening via
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the static ion-ion structure factor, and on the other hand,
through the Kohn-Sham orbitals v, ; in Eq. (9), which are
the result of a DFT calculation that considers the Coulomb
interaction between the electrons and ions.

Because the Mermin dielectric function accounts for elec-
tron interactions on the level of the RPA, we set fxc =0
and use Eq. (11) in Secs. IV A, IVB, and IV C to facilitate
comparisons. In Sec. V, we use the adiabatic local density
approximation [49,53].

D. Computational details

All DFT-MD simulations for this work were performed
with the Vienna ab initio simulation package (VASP) [54-56].
The electronic and ionic parts are decoupled by the Born-
Oppenheimer approximation and, for fixed ion positions,
the electronic problem is solved in the finite-temperature
DFT approach [57]. In VASP, the electronic wave functions
are expanded in a plane-wave basis set up to an energy
cutoff E.,. After the electronic ground state density is de-
termined self-consistently at every time step, the forces on
the ions via Coulomb interactions with other ions and the
electron cloud are computed and the ions are moved accord-
ing to Newton’s second law. The temperature control in the
MD simulation is performed via the Nosé-Hoover algorithm
[58,59] with a mass parameter corresponding to a temperature
oscillation period of 40 time steps. All simulations are per-
formed using the exchange-correlation functional of Perdew,
Burke, and Ernzerhof (PBE) [60]. For beryllium, we use the
PAW_PBE Be_sv_GW 31Mar2010 potential with an energy
cutoff of 800 eV for all simulations apart from the compressed
case in Sec. IV C for which we use a Coulomb potential with
a cutoff of 10000 eV. For further details on the hydrogen
simulation parameters, see Ref. [61].

The dynamic electrical conductivity, which is the input
for the scheme presented in Fig. 1, was computed from the
eigenfunctions and eigenenergies of separate DFT cycles with
a more precise energy convergence criterion via the Kubo-
Greenwood formula (6). These simulations were performed
on at least five snapshots taken at equidistant time steps from
the DFT-MD simulation. The scheme described in Sec. IIB
was implemented using the NUMPY software package [62] for
arrays to store the dynamic properties and for the evaluation
of simple numerical integration. More elaborate integrals,
such as in Egs. (A7) and (AS8), were evaluated using Gaus-
sian quadrature from the SCIPY software package [63]. The
Kramers-Kronig transformation between the real and imagi-
nary parts of the dynamic dielectric function and the electrical
conductivity was performed according to Maclaurin’s formula
from Ref. [64].

The LR-TDDFT calculations were performed in the
GPAW code [50,65-67]. The same snapshots as for the
Kubo-Greenwood calculations were used and a 2 x 2 x 2
or 4 x 4 x 4 Monkhorst-Pack grid [68] was employed for
calculations of k-dependent dielectric functions. For the con-
sidered conditions, already the Baldereschi mean value point
[69] yields converged optical conductivities for the Kubo-
Greenwood calculations. For hydrogen, the dielectric function
was computed with a plane-wave energy cutoff of at least
50 eV, while for beryllium at least 250 eV were used.

T T T T T T T
v — DFT  —e— GDW
—— LB GDW with e-e
% LR-TDDFT
N
=,
Q
o~
=
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N
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Q
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>
o,
N
=,
(]
o~
. Rl Lol b =
0 100 200 300 400 500 600 700
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FIG. 3. The real part of the dynamic collision frequency of hy-
drogen plasmas at p = 2 g/cm?® for temperatures ranging from 5 to
100 eV. The DFT and LR-TDDFT collision frequencies determined
via Eq. (8) from their respective electrical conductivities are shown
in black and pink, respectively. The LB collision frequency is shown
in blue with crosses and the T-matrix approach is shown in yellow
with plus symbols. The GDW collision frequencies with and without
electron-electron collisions are depicted in red as a dotted line and as
a solid line with filled circles, respectively.

III. DYNAMIC COLLISION FREQUENCY

The workflow presented in Fig. 1 results in a complex
dynamic collision frequency vPfT(w). To study how this
collision frequency compares to different levels of analytic
approximations, we determine the real part of vPfT for a
hydrogen isochore at p =2 g/cm? from 5 to 100 eV (see
Ref. [61] for numerical details). This temperature range was
chosen to illustrate the transition from the WDM regime to
the ideal plasma regime. In Fig. 3 we compare these collision
frequencies to the Lenard-Balescu (LB) collision frequency,
the T-matrix (TM) approach, and the Gould-DeWitt (GDW)
approach. The LB approach goes beyond the Born collision
frequency by including dynamic screening, while the TM
approach accounts for strong binary collisions by summing up
ladder diagrams in the perturbation expansion [70]. The GDW
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scheme combines the dynamic screening of the LB approach
with the strong collisions of the TM treatment and should, in
principle, give the most accurate results. For further details
on the analytic approaches, see Refs. [21,70-73]. The afore-
mentioned approaches solely describe electron-ion collisions,
but electron-electron (e-e) collisions can be included by mod-
ulating the collision frequency with a renormalization factor
[21]. The GDW collision frequency including e-e collisions is
also indicated in Fig. 3 by the red dotted lines. It is apparent
that although the DFT predictions agree well with the TM
and GDW approaches at high temperatures, it deviates sig-
nificantly at lower temperatures where complex many-body
and quantum effects contribute strongly. At T = 100eV, the
collision frequency is dominated by strong collisions between
ions and electrons. However, the inclusion of e-e collisions
via the renormalization factor leads to worse agreement with
the DFT results, which is in agreement with recent observa-
tions that the Kubo-Greenwood formula applied to DFT lacks
e-e collisions [61,74]. Furthermore, we apply the workflow
presented in Fig. 1 to the electrical conductivity in the optical
limit computed by LR-TDDFT to extract a collision frequency
which we show as the pink dashed lines in Fig. 3. At all tem-
peratures, its behavior is very similar to the Kubo-Greenwood
results, which indicates that electron-electron collisions are
also not included in this description of transport properties.
It is remarkable that at high frequencies the LR-TDDFT colli-
sion frequency lies significantly below the Kubo-Greenwood
results for all considered temperatures. In our tests, this could
not be attributed to a lack of convergence in the number of
bands or cutoff energy.

IV. DYNAMIC STRUCTURE FACTOR
A. Hydrogen

Given a dynamic collision frequency v(w), Egs. (3) and (5)
can be used to compute the electronic DSF S,.(k, w) where
the k dependence only enters through the Mermin dielectric
function. The LR-TDDFT approach allows direct access to the
dielectric function at finite k¥ by computing transition matrix
elements between Kohn-Sham states at different k£ points [50].
In Fig. 4, we show the electronic DSF of a hydrogen plasma
at p =2 g/cm? and T = 50eV (lower panel) and T = 5eV
(upper panel). The direct computations through LR-TDDFT
are shown as solid lines, while we also present DSFs com-
puted via the Mermin dielectric function in conjunction with
the DFT and GDW collision frequencies shown in Fig. 3 as
dashed and dash-dotted lines, respectively. Additionally, we
show the results from the Mermin dielectric function with the
Born collision frequency [see Eq. (B1)], which constitutes
the often used Born-Mermin approach, as dotted lines. At
the lowest wave number shown in Fig. 4, k = 0.67 1&", we
are considering the collective behavior where collisions are
important, as can be seen from the dimensionless scattering
parameter « (see Ref. [1] for definition), which is 4.17 and
284 forT =5and T = 50eV, respectively.

As expected for a fully ionized hydrogen plasma, the
k dependence encoded by the Mermin dielectric function
agrees well with the direct computation via LR-TDDFT
for all considered collision frequencies at both conditions.

—— LR-TDDFT —+= Mermin + GDW (e-¢)
=== Mermin + DFT  ---:- Mermin + Born

LA

Set(k,w) [arb. units]

Set(k,w) [arb. units]

hw [eV]

FIG. 4. The inelastic electronic DSF S.(k, w) of a hydrogen
plasma at p = 2 g/cm? and T = 5eV (upper panel) and T = 50eV
(lower panel) from £ = 0.67 to k = 2.40 A~!. The solid line denotes
the direct computation from LR-TDDFT at the respective wave num-
bers, while the other lines denote DSFs computed from the Mermin
dielectric function with the DFT collision frequency (dashed lines),
the GDW collision frequency including electron-electron collisions
(dash-dotted lines), and the Born collision frequency (dotted lines).
The DSFs are shifted by 0.5 arb. units with respect to the next lowest
wave number for readability.

However, at T = 5 eV, the damping of the plasmon predicted
by LR-TDDFT can only be captured with the DFT collision
frequency, especially at small k. The Born collision frequency
leads to a vast overestimation of the plasmon magnitude for
k below 2.4 A~! and also the GDW approach with renor-
malization overestimates the magnitude by a factor of 2 for
k below 1.15A~!. With increasing wave numbers, the colli-
sions become less significant, and the DSFs for all collision
frequencies start to converge to the same result. At7 = 50 eV,
the collisions play a smaller role, which is demonstrated by
the largely identical predictions from all collision frequencies
for k above 1.15 A~ It is notable that although the inclusion
of electron-electron collisions leads to significant discrepan-
cies between the dynamic collision frequencies in Fig. 3,
these differences cannot be observed in the DSF, given the
numerical noise. In the LR-TDDFT data, a small additional
contribution at /iw = 0eV appears, which has also recently
been seen in path-integral Monte Carlo simulations [75]. This
bump is not included in the Mermin formalism and appears
more pronounced at higher temperatures and lower densities
(also see Secs. IVB and IV C), leading us to propose that
it is connected to bound-bound transitions without energy
transfer.
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FIG. 5. The inelastic electronic DSF S (k, ) of a beryllium
plasma at p = 1.8 g/cm® and T = 12 eV for various k values on a
logarithmic scale. The solid lines are direct computations at the given
k using LR-TDDFT. The dash-dotted and the dashed lines denote
DSFs computed from the Mermin dielectric function with the full
DFT collision frequency, determined from the electrical conductivity
including bound-free transitions, and the free-free collision fre-
quency, determined from the electrical conductivity including only
free-free transitions, respectively. The dotted lines denote the DSF
computed directly from the bound-free conductivity at k = 0 A~".

B. Isochorically heated beryllium

To investigate the impact of tightly bound states on the
presented procedure, we study a beryllium plasma at p =
1.8 g/cm? and T = 12 eV, for which the approach of Ref. [48]
predicts a charge state Z = 2.1. The bound ls states are
energetically clearly separated from the free electrons. The
collision frequency can either be determined from the full dy-
namic electrical conductivity that includes the transitions from
the bound 1s states to the conduction band, or from the free-
free electrical conductivity by restricting the transition matrix
elements in Eq. (6) to transitions originating and ending in
the conduction band (for details on this decomposition, see
Ref. [48]). In the latter case, only the free-free contribution to
the DSF is considered within the Mermin dielectric function,
while the bound-free contribution must be approximated by
its behavior at k — 0. In Fig. 5, we show the comparison
of these two approaches to the direct computation of the
electronic DSF using LR-TDDFT. At the lowest wave number
k = 0.49 A~', shown in the upper panel, all approaches agree
well, as expected due to the construction of the collision fre-
quency which requires equivalence in the limit of small & [see
Eq. (8)]. The separation of the conductivity into a free-free
and a bound-free contribution allows us to clearly identify
the different terms of the Chihara formula (2) in the DSF.

The dotted line represents the bound-free contribution, which
agrees exactly with the LR-TDDFT data above ~90 eV, and
the dashed line represents the free-free contribution (plas-
mon), which matches the LR-TDDFT results below ~90eV.
Remarkably, the prefactors Z; and Z, in Eq. (2) which give
the respective weighting of these two features come out of
the definition of the charge state described in Ref. [48] and
agree virtually exactly with the direct computation including
all transitions in LR-TDDFT.

At k = 1.47 A~ in the middle panel of Fig. 5, the de-
viation of the approach using the full collision frequency
to the other approaches becomes apparent. The bound-free
dominated DSF above ~90¢eV is still well approximated by
both the full collision frequency and the bound-free feature at
k — 0. Below ~90¢eV, however, the approach using the full
collision frequency, denoted by the dash-dotted line, deviates
strongly (note the logarithmic scale) from the LR-TDDFT
result. The free-free feature computed solely from the col-
lision frequency based on free-free transitions, denoted by
the dashed line, still agrees very well with the LR-TDDFT
calculation in this energy regime.

The bottom panel of Fig. 5, showing the DSF at k =
3.42 A-!, highlights the complete breakdown of the approach
using the full collision frequency. While the DSF is still de-
scribed adequately above ~90 eV, its shape is very different
from the LR-TDDFT result below that energy. On the other
hand, the separate description of free-free and bound-free
contributions again describes the DSF accurately compared
to the LR-TDDFT data. However, the approximation of the
bound-free feature by its k — 0 limit starts to deteriorate
at this wave number. At the highest energy shift shown in
Fig. 5, this approximation underestimates the LR-TDDFT
value by a factor of almost 2. Additionally, at the onset of
the bound-free feature around 100 eV, it overestimates the
DSF compared to the LR-TDDFT as can be seen in Fig. 6
which shows the DSF on a linear scale. The fast deterio-
ration beyond the k — 0 limit of the approach using the
full collision frequency is expected because the framework
of the Mermin dielectric function, which encodes the k de-
pendence, does not include the existence of bound states.
Therefore, any such states that are artificially introduced via
the collision frequency cannot be handled correctly in the k
dependence.

Furthermore, in Fig. 6, we show the DSFs computed from
the Mermin dielectric function with Born collision frequen-
cies for a plasma with a charge state Z =2 and Z = 4. The
position of the plasmon peak for Z =2 agrees well with
the DFT spectra, while the position of the Z = 4 plasma is
consistently at too high energies, as expected due to the higher
free-electron density. However, at low k, the dampening of the
plasmon peak due to the Born collision frequency is too low
compared to the DFT data, similar as observed for hydrogen
in Fig. 4. At the higher wave numbers, the plasmon-peak
position of the DFT results agrees well with the Mermin
function using the Born collision frequency at Z = 2, clearly
indicating that the bound 1s states do not contribute to this
feature. The inset in Fig. 6 shows the density of states (DOS)
of the beryllium plasma, which shows a clear separation be-
tween the narrow ls band, which is fully occupied, and the
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FIG. 6. The inelastic electronic DSF S (k, ) of a beryllium
plasma at p = 1.8 g/cm® and T = 12¢€V for various k values. The
solid lines are direct computations at the given k using LR-TDDFT,
while the dotted and dash-dotted lines denote DSFs computed from
the Mermin dielectric function with the Born collision frequency for
a plasma with a charge state of Z = 2 and Z = 4, respectively. The
dashed lines represent the sum of the DSF computed through the
Mermin dielectric function using the free-free collision frequency
and the bound-free DSF at k = 0 A~'. The DSFs are shifted by 0.5
arb. units with respect to the next lowest wave number for readability.
In the inset, the solid line shows the density of states, while the
shaded area denotes the occupied density of states.

conduction band. This clear distinction is the reason why the
separate treatment of free-free and bound-free contributions
is successful. The bound-free feature does not exhibit a strong
k dependence up to high k values [23,76], and the plasmon
occurs energetically separated in the DSF.

C. Compressed beryllium

With increasing density and temperature the notion of
bound states becomes ill-defined in WDM. The inset in Fig. 7
shows the DOS of a beryllium plasma at 7 = 50eV and
o =40 g/cm?, which demonstrates the closing of the band
gap compared to the inset in Fig. 6. Furthermore, the for-
mer 1s states broaden significantly into a band and the DOS
converges towards the +/E behavior of a free-electron gas.
Because the band gap is still clearly identifiable, the separate
treatment of bound-free and free-free contributions to the
DSF presented in the previous section can also be applied to
these conditions. Figure 7 shows the results of this separate
treatment, as well as the direct computation using LR-TDDFT
and the DSF from the Mermin dielectric function using the
full collision frequency. While the separate treatment of

—— LR-TDDFT
=== (Mermin + f-f) + b-f(k =0)  -==- Mermin + DFT(full)

Set(k,w) [arb. units]

k=137 A™!

0 100 200 300 400 500 600 700 800
hw [eV]

FIG. 7. The inelastic electronic DSF S (k, @) of a beryllium
plasma at p = 40 g/cm? and T = 50¢€V for various k values. The
solid lines are direct computations at the given k using LR-TDDFT,
while the dashed lines represent the sum of the DSF computed
through the Mermin dielectric function using the free-free collision
frequency and the bound-free DSF at k = 0 A~'. The dotted lines
denote the DSF computed through the Mermin dielectric function
with the full collision frequency. The DSFs are shifted by 0.5 arb.
units with respect to the next lowest wave number for readability. In
the inset, the solid line shows the density of states, while the shaded
area denotes the occupied density of states.

bound-free and free-free contributions yields excellent results
for the near-ambient density case in Fig. 5, it poorly ap-
proximates the LR-TDDFT results in strongly compressed
beryllium shown in Fig. 7. The plasmon peak at k = 1.37 A~
is severely underdamped due to the missing bound-free tran-
sitions in the collision frequency, which occur in the same
energy range as the free-free transitions at these conditions.
The use of the Born collision frequency in lieu of the free-free
DFT collision frequency leads to an increase of the plasmon-
peak magnitude by a factor of 2 (not shown in Fig. 7).
The broader peak arising around ~130eV for k = 4.12 and
k =6.87 A~' is due to the insufficient approximation of
the bound-free feature by its value at k =0 A~'. As can
be seen from the LR-TDDFT data, the bound-free features
merge with the free-free feature to form one homogeneous
feature. At these conditions, using the full collision frequency
in the Mermin dielectric function gives better results, which
is expected as the former 1s states lose their bound charac-
ter due to the higher compression and higher temperature.
For all considered wave numbers, this approach yields good
agreement with the LR-TDDFT data above ~200eV, and
approximates the trends below that energy fairly well. Solely
at ~100 eV this approach predicts a feature that is not visible
in the LR-TDDFT results across the considered k range.
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FIG. 8. The lower panel shows the scattering intensity of an
isochorically heated beryllium target at 7 = 18eV from Ref. [77].
The colors of the solid lines encode different densities used in the
LR-TDDFT simulations. The dotted lines denote the inelastic contri-
butions. The upper panel shows the x? deviation depending on the
density used in the simulation where the colored dots correspond to
the spectra shown in the lower panel and the black curve is achieved
by interpolating to 40 evenly spaced densities between these spectra.

V. APPLICATION TO EXPERIMENTS

We reanalyze previous XRTS experiments by Ddppner
et al. [77] and Kritcher et al. [78] using LR-TDDFT to
evaluate the influence of advanced methods on the initially
inferred plasma parameters. In general, temperature and den-
sity of the target must be considered simultaneously. However,
since Doppner et al. used detailed balance in their forward-
scattering experiment to determine the temperature as 7 =
18eV, we use this value and vary the density to find the
best agreement with the experimental data. To justify this
approach we show the results of a recently suggested model-
free temperature diagnostic [79] in Appendix C. For the other
experiment, we include the temperature in the analysis.

Firstly, in Fig. 8, we show simulated XRTS spectra with
densities ranging from 1.0 to 2.2 g/cm? at T = 18eV to-
gether with the forward XRTS spectrum recorded by Déppner
et al. [77], which was collected at the Omega laser facility
at the Laboratory for Laser Energetics at the University of
Rochester. The experiment probed a scattering vector of ap-
proximately k = 1 A~!, enabling access to collective behavior
of the plasma. In the original analysis of the experiment a
density of 1.17 g/cm® was determined by Ddppner et al.
[77]. The electron feature was treated on the level of the RPA
without including electron-ion collisions and the ionization
was assumed to be Z; = 2.3. We compute the electron feature
for various densities from LR-TDDFT while including local
field corrections via the adiabatic local density approximation
[49,53]. The magnitude of the ion feature is left as a free
parameter in the x? minimization. Although none of the com-
puted spectra capture the plasmon at 2930 eV perfectly, the
spectrum at p = 1.8 g/cm? yields a 5% lower x2 deviation
than any of the other considered densities. The ionization

Exp. (t =3.1+0.1 ns, Kritcher et al.)

Total spectrum

1.0

08 Inelastic contribution

06 Elastic contribution

0.4

0.2

Intensity [arb. units]

0.0

p(p[Exp.)

p [g/cm’]

FIG. 9. Scattering intensity of imploding beryllium shells from
Ref. [78]. The upper panel shows the experimental data at a delay r =
3.1 0.1 ns and the posterior prediction for the elastic and inelastic
contributions based on LR-TDDFT simulations. The thin lines are
100 spectra computed from parameters randomly sampled from the
posterior probability distribution. The shaded areas show the region
below the average posterior predictions. The lower panel shows the
reduced posterior probability distribution in the density parameter p
where the dark shaded area under the curve indicates the 80% highest
posterior density interval.

state at this density is Z = 2.14, determined via the Thomas-
Reiche-Kuhn sum rule [48], which is approximately 7% lower
than the value used by Doppner et al. [77]. Furthermore, the
originally determined density is approximately 35% smaller
than the here computed density. The remaining disagreement
in the shape of the plasmon could be explained by uncertainty
in the instrument function or, potentially, local field correc-
tions caused by a more sophisticated exchange-correlation
kernel. However, the general spectral position of the plasmon
is captured well by our fit and the difference in inferred
density highlights the importance of considering many-body
physics in the collective scattering regime.

For the experiment by Kritcher et al. [78], the temperature
cannot reliably be inferred from the detailed balance relation
and the temperature must, therefore, be included in the analy-
sis. Furthermore, the instrument and source functions were not
available and must be modeled explicitly in the analysis. To
analyze the experiments, we simulate spectra on a sufficiently
large temperature and density grid and interpolate between
them [80] to model arbitrary p-T combinations in this range.
Due to the high number of parameters involved in this sort
of analysis, we employ Bayesian inference [81] implemented
in the PYMC3 software package [82] and use the sequential
Monte Carlo algorithm [83,84] for sampling the parameter
space. In Fig. 9, we consider the backward XRTS experiment
at k = 8.42 A=! on imploding beryllium shells by Kritcher
et al. [78], which was also performed at the Omega laser
facility. To analyze the experiment, we simulate spectra on
a grid ranging from 2 to 32 g/cm? and from 0.1 to 25 eV.
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No instrument or source function was supplied in Ref. [78].
We, therefore, use the parametrization of a zinc source given
in Ref. [14] and include all the parameters of the instrument
response function in the Bayesian analysis. We also replace
the Gaussian describing the source broadening by a skewed
Gaussian to account for the asymmetry observed in the ion
feature. Thus, ten parameters determine the shape of the spec-
trum, including the physical parameters describing the density
and temperature of the sample and the magnitude of the ion
feature, and seven parameters describing the experimental
setup. The upper panel of Fig. 9 shows an XRTS spectrum
collected from an imploding beryllium shell at a delay of
t =3.1£0.1 ns and the posterior prediction for the elastic
and inelastic contribution to the simulated scattering spec-
trum. The posterior predictions are obtained by sampling
parameters according to the posterior probability distribution
and using these parameters to simulate the spectrum. The
agreement between the simulated spectrum and the experi-
mental data is excellent. The bottom panel of Fig. 9 shows
the reduced posterior probability distribution in the density
parameter p, which is the full probability distribution inte-
grated over all other parameters. The inferred density p =
7.91“(1):(8) g/cm? corresponds to the maximum a posteriori prob-
ability and the uncertainties are determined from the 80%
highest posterior density interval. With an assumed ionization
state Z = 2, the original analysis by Kritcher et al. [78] re-
sulted in estimates of p = 8.23 +2.24 g/cm® and T = 14 +
3eV. The density, which is the most sensitive plasma param-
eter with respect to the Compton feature at these conditions,
agrees very well with our current study. However, Kritcher
et al. also used a temperature-dependent model for the ion
feature, while we keep the ion feature as a free parameter.
Therefore, the inferred temperature is mainly determined from
the relative magnitude of the ion feature and the Compton
feature. Because the shape of the Compton feature is not very
sensitive to the temperature at these conditions, we cannot
reliably determine the electron temperature.

VI. CONCLUSION

In this work, we presented the theoretical basis for com-
putation of DSFs using the Mermin dielectric function with
a dynamic complex collision frequency and showed how this
framework can be used to extract collision frequencies from
DFT simulations. We compared these collision frequencies
to several analytic approaches for hydrogen plasmas at p =
2 g/cm? and, for temperatures approaching the ideal plasma
limit, found good agreement with models that incorporate
strong collisions. Furthermore, we studied how different colli-
sion frequencies impact the DSF calculated from the Mermin
dielectric function and compared these results to the direct
computation of the DSF at the given wave numbers using
LR-TDDFT. For hydrogen, we find good agreement for all
collision frequencies at high k, while at small &, especially the
frequently used Born approximation leads to underdamped
plasmon peaks. For beryllium, we showed that a separate
treatment of free-free and bound-free contributions to the

DSF yields excellent agreement with the LR-TDDFT for
near-ambient densities up to moderate wave numbers (k =
3.42 A~1), while it disagrees significantly for highly com-
pressed beryllium because bound-free transitions interact with
the free-free transitions to dampen the plasmon. Therefore,
in order to get accurate DSFs over a wide range of wave
numbers in extreme conditions, it is imperative to employ
ab initio approaches like LR-TDDFT or path integral Monte
Carlo simulations. Analytic approaches that are based on
electron-ion collision frequencies should only be used for
the free-free part if free and bound states are clearly sepa-
rated, and even at these conditions standard descriptions like
the Born collision frequency significantly underdampen the
plasmon in the collective regime. We applied LR-TDDFT to
XRTS experiments on beryllium and found significant dif-
ferences of roughly 35% in inferred density for small k for
Doppner et al. [77] and found good agreement with analyt-
ical approaches for backscattering with large k for Kritcher
etal. [78].
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APPENDIX A: DERIVATION OF REAL AND IMAGINARY
PARTS OF RPA DIELECTRIC FUNCTION

The collision frequency is generally a complex number

v(w) = vi(w) + iv(w), (AD)

meaning that its imaginary part acts as a shift of the frequency
that enters into eRP in Eq. (5) and its real part takes on the
role of the artificial damping » that was introduced in Eq. (4).
However, in this case, the damping is not set to zero after the
integration.

Now, we will split Eq. (4) into its real and imaginary parts

and consider the modulation of the input frequency w by the
complex frequency from Eq. (A1) where the argument of v is
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The shifted frequency @ = @ — v, is introduced here.
These integrals are performed across the entire momentum space and can therefore be shifted by an arbitrary vector y because
for an integral of a function G(X), which goes to 0 as |X| — o0, it holds that

/ Fx () = f PrGE—F), with 5] < oo.
R’ R

Therefore, we can separate the integrand in Eqs. (A2) and (A3) into two summands with the Fermi occupation of the up- and
down-shifted momentum, respectively. We further use Eq. (A4) to shift the momenta in the argument of the Fermi occupation to
g in order to get f7 as a common prefactor for both summands. The momenta in the subscripts of the energy have to be shifted

accordingly. This gives
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for the real part and
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for the imaginary part. Here, k was fixed in the g3 direction and z = cos 6 where 9 is the angle between g and k. The shorthands
k = ¢ and A = =2t with the electron mass m, are introduced. The Fermi occupation can be pulled out of the angle integration
as it only depends on the magnitude of the momentum. The integral over the angle can be performed analytically in Eqs. (A5)

and (A6), giving
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with the ion density nj, the electron density n,, and the nor-
malization volume 2. There are different approximations for
the electron-ion potential V,; and the static structure factor Sj.
The potential can be approximated by the screened Coulomb

for the real part, and

Im[eRPA(z, w ~+ iv)]

mee>  [® dg
= _4 3qfq
0

T €olitk3 (27) potential with the Debye-Hiickel or Thomas-Fermi screening
‘ ‘ parameter depending on the density and temperature regime
K—35— K+ 35+ i
« | arctan 2 — 4 1 arctan 2 T4 considered.
A A Approaches to the structure factor range from the assump-

tion of a homogeneous electron gas [Sii(¢) = 1] or analytic
models like the Debye-Hiickel theory to more sophisticated
methods like the hypernetted-chain equation or MD simula-
tions. Here, we use the potential

VEiC(:ulomb(q) _ e.ei 1
RPA(g,0) €2 ¢ eRM(q,0)

k k
K— 35+ K+ 35—
— arctan ;q — arctan -2z
A A

(A8)

for the imaginary part of the RPA dielectric function modu-
lated by a complex frequency. The remaining integration over

Vei(q) =

(B2)

q has to be performed numerically.

APPENDIX B: EXPRESSIONS FOR THE BORN
COLLISION FREQUENCY

One of the most prominent approximations for the collision
frequency is the Born collision frequency [21]

m Eon'Qz *° 1
o) = i [ g Viasia)
6m2e’n.m, Jo W

x [e¥2(q, w) — e®™ (g, 0)], (B1)

and the static structure factor we calculate from our DFT-
MD simulations. Equation (B1) is computed by directly
calculating its real part and subsequently performing the
Kramers-Kronig [85,86] transformation to arrive at the imag-
inary part.

APPENDIX C: TEMPERATURE DETERMINATION
VIA LAPLACE TRANSFORM

We employ the recently proposed temperature diagnostic
based on a two-sided Laplace transform [79] to infer the
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FIG. 10. The left panel shows the scattering intensity and the in-
strument function from Ref. [77]. The right panel shows the inferred
electron temperature according to Ref. [79].

temperature from experiment performed by Doppner et al.
The left panel of Fig. 10 shows the scattering data and the
instrument function, while the right panel shows the inferred
temperature according to the procedure described in Ref. [79].
The x axis denotes the energy up to which the two-sided
Laplace transform is performed. A convergence is observed
beyond 40 eV and the electron temperature is determined
to be 19 + 1.5eV. This value agrees within error bars with
the electron temperature of 18 eV, originally determined by
Doppner et al. We, therefore, exclude the electron temperature
from the fitting procedure for this experiment.

APPENDIX D: CRYSTAL LOCAL FIELD EFFECTS

The expression for LR-TDDFT in Eq. (9) is only valid
for homogeneous systems. For a heterogeneous system, the
formula is expressed in a basis of reciprocal lattice vectors
[87,88]. To get macroscopic information on the dielectric
function, the dielectric matrix in the basis of reciprocal lat-
tice vectors must be inverted leading to additional local field

—— Without CLFE ~ ++++- With CLFE
T T T T T T
25 T =12 eV, 1
iy =1.8¢g/cm?
é 50 14 g/ ’ 1
S . k=342 A1
S 15
=, :
3 1.0
= k= 1.47 A1
805
k=049 A1
0.0 ; . : : n n
—50 0 50 100 150 200 250 300
90 T =150 eV,
: 3
= p =40 g/cm
=
g 1sf
o)
-
<
—10f
3 k=412 A-!
~
S 05F
98]
k=137 A-!
0.0F |

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
hw [eV]

FIG. 11. The upper and lower panels show the DSFs computed
from LR-TDDFT shown in Figs. 6 and 7, respectively. The solid lines
denote the results without inclusion of CLFE, while the dotted lines
represent calculations including CLFE.

effects. These contributions are referred to as crystal local
field effects (CLFEs) [89] which are not connected to the
local field corrections discussed in Secs. IIB and IIC. In
Fig. 11, we show the DSFs without CLFEs from Secs. [V B
and IV C compared to the corresponding results with CLFEs.
It is apparent that these effects are negligible in the regime
considered in this work.
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