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Cosmic rays and random magnetic traps
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The spatial distribution of cosmic ray (CR) particles in the interstellar medium (ISM) is of major importance
in radio astronomy, where its knowledge is essential for the interpretation of observations, and in theoretical
astrophysics, where CRs contribute to the structure and dynamics of the ISM. Local inhomogeneities in
interstellar magnetic field strength and structure can affect the local diffusivity and ensemble dynamics of the
CR particles. Magnetic traps (regions between magnetic mirrors located on the same magnetic line) can lead to
especially strong and persistent features in the CR spatial distribution. Using test particle simulations, we study
the spatial distribution of an ensemble of CR particles (both protons and electrons) in various magnetic field
configurations, from an idealized axisymmetric trap to those that emerge in intermittent (dynamo-generated)
random magnetic fields. We demonstrate that both the inhomogeneity in the CR sources and the energy losses
by the CR particles can lead to persistent local inhomogeneities in the CR distribution and that the protons and
electrons have different spatial distributions. Our results can have profound implications for the interpretation of
the synchrotron emission from astronomical objects, and in particular its random fluctuations.

DOI: 10.1103/PhysRevE.107.065206

I. INTRODUCTION

Cosmic rays (CRs) are widely recognized to play a vi-
tal role in galaxies and serve as an important observational
probe, especially in radio astronomy [1,2]. They contribute
to the interstellar medium (ISM) pressure equally with the
gas, magnetic fields, and turbulent flows [3], making them
an important factor affecting both the global distribution of
the interstellar gas (such as the disk thickness) and the local
structure of the ISM. Furthermore, they can play a crucial
role in driving systematic gas outflows (winds and fountains)
from spiral galaxies [4–6] and thus contribute to the regulation
of star formation and galactic evolution [7]. The intensity
of synchrotron emission depends on both the number density
of CR electrons and the magnetic field, so the interpretation
of observations of synchrotron emission requires detailed un-
derstanding of their spatial distributions [8].

While the microphysics of particle propagation in the
galactic magnetic fields has been studied extensively, a clearer
understanding of the ensemble dynamics and local spatial dis-
tribution is required to obtain a comprehensive picture of CRs
in the ISM. However, the spatial distribution of CR particles
at scales comparable to or smaller than the scale of the inter-
stellar turbulence has received rather little attention, as most
studies have been focused on CR diffusion and confinement
in galaxies. Most of the interpretations of synchrotron radio
emission rely on the assumption that the CR and magnetic
field energy densities or pressures are equal to each other at

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

any position (the equipartition assumption) [9], and references
therein].

The local magnetic field structure controls the particle
dynamics, and one of the most interesting spatial features
affecting CR propagation is the magnetic trap [10–12]: a field
structure formed between magnetic mirrors (converging mag-
netic lines) lying on the same magnetic line. Such magnetic
traps can be visualized as a region of a relatively weak field
flanked by two regions of a stronger field. The propagation
and distribution of charged particles (either relativistic or non-
relativistic) in complex magnetic fields are a central theme
in plasma physics and astrophysics, with deep connections to
the magnetohydrodynamics of complex fluids. Our approach
to deriving the particle number density from simulations of
individual particle trajectories, and discussion of the associ-
ated statistical challenges and biases, may be useful in broader
contexts of general physics and biophysics.

A particle of appropriate energy and pitch angle, moving
along the field line with its magnetic moment conserved adi-
abatically, bounces between the mirror points when inside a
magnetic trap. A detailed description of the principle behind
magnetic mirroring is discussed under the trajectories of indi-
vidual charged particles in basic plasma physics texts [13,14].
The particles can escape from such traps due to field line
wandering [15], pitch angle scattering from magnetic field
variations at scales smaller than the trap (for example, for
traps in random fields), and stochastic scattering [16]. The
trapping time scales and scattering of a single particle from
an ideal magnetic trap have been studied extensively [17].
For an ideal axisymmetric magnetic bottle (i.e., a trap formed
between two magnetic mirrors), the particle is expected to be
trapped for long times once the initial pitch angle satisfies the
trapping conditions. However, deviation from perfect mag-
netic moment conservation can cause stochastic scattering

2470-0045/2023/107(6)/065206(19) 065206-1 Published by the American Physical Society

https://orcid.org/0000-0002-4563-2277
https://orcid.org/0000-0001-7551-3511
https://orcid.org/0000-0001-6774-9372
https://orcid.org/0000-0001-6200-4304
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.065206&domain=pdf&date_stamp=2023-06-13
https://doi.org/10.1103/PhysRevE.107.065206
https://creativecommons.org/licenses/by/4.0/


THARAKKAL, SNODIN, SARSON, AND SHUKUROV PHYSICAL REVIEW E 107, 065206 (2023)

from the field lines [18,19], and this can in turn prevent a
single particle from being trapped long enough to produce a
significant inhomogeneity in the overall particle distribution.
Such local features in inhomogeneous magnetic fields can
also affect the local CR diffusivity, depending on the Larmor
radius of the particles and the length scale of the field varia-
tions [10,20–22].

For an ensemble of particles with a certain (e.g., isotropic)
distribution in the angle between their velocities and the
local magnetic field direction (the pitch angle), understand-
ing the existence and evolution of a magnetic trap signature
in the spatial distribution of CR in the ISM is a challenging
task. The confinement of an isotropic plasma in a magnetic
trap has been extensively studied in application to various
environments from laboratory plasmas to astrophysical sys-
tems. However, most such studies focus on the behavior of
individual particles rather than their statistical ensemble. For
example, Chirikov [16] discusses the long-term trapping of a
single particle in an idealized trap and the role of stochastic
particle scattering.

Studies of magnetic mirror machines ([23] and references
therein) discuss the range in momentum space under which
plasma can be trapped in a magnetic trap and state that
isotropic plasma cannot be trapped indefinitely. Most of these
works study the loss parameters of the plasma and the in-
jection conditions required to sustain the plasma trapping for
the feasibility of these mirror machines. The problem we try
to address builds on this and aims to quantify the difference
in number densities resulting from magnetic trapping in the
context of astrophysical magnetic fields with more realis-
tic injection models. The problem of containing a statistical
ensemble of particles in random magnetic traps has been
studied analytically by previous authors. The analytical solu-
tions (e.g., [24–26]) model the adiabatic focusing of charged
particles in an inhomogeneous field by looking at the solutions
to Sturm-Liouville operators. They study the one-dimensional
solutions of the Vlasov equation, where the distribution func-
tion depends on the coordinate parallel to the mirror axis,
pitch angle, and time, with the diffusion process modeled as
pitch angle scattering. They consider the competition between
focusing and scattering and the resulting diffusion function.
In this study, we take a step back to study the number density
variations resulting from mirroring. We do not assume any
analytical forms for the focusing, nor do we include pitch
angle scattering. Our model is aimed at obtaining the number
density distribution arising as a result of the focusing effect of
converging field lines.

Among studies of the propagation of charged particles
in weakly inhomogeneous fields we mention Balebanov and
Semashko [17], Ripperda et al. [27], and Xu and Lazarian [28]
as most relevant in the present context. The effect of magnetic
structures such as a magnetized molecular cloud, and the
corresponding inhomogeneity in the CR particle distribution,
is discussed by Silsbee et al. [11]. Our previous test particle
simulations with emphasis on their spatial distribution [29]
addressed the distribution of CR protons in random magnetic
fields (both Gaussian and spatially intermittent) and their trap-
ping, and found no correlation between particle distribution
and magnetic field strength, thus refuting the equipartition as-
sumption when applied at the scales comparable to or smaller

than the correlation scale of the magnetic field. Moreover, the
trapping of the CR particles causes their number density to be
larger between the magnetic mirrors, facilitating an anticorre-
lation between the CR and magnetic field energy densities.

Apart from trapping between magnetic mirrors, the CR
particle distribution can be affected by closed magnetic field
lines around elliptic (O-type) magnetic neutral points, which
should be abundant in a random magnetic field: such a closed
magnetic loop can be either over- or underpopulated by the
charged particles depending on their sources and pitch-angle
scattering (which allows the particles to move across the
magnetic field). We do not discuss here the effects of elliptic
magnetic null points on the CR distribution, but focus on the
trapping of CR particles between magnetic mirrors.

We explore the spatial particle distribution in a selection of
magnetic field configurations (including random ones) and for
homogeneous and nonhomogeneous CR source distributions,
to identify and analyze the effect of magnetic traps on both
protons and electrons. The latter lose energy to synchrotron
and inverse Compton emissions, which affects their spatial
distribution and enhances the trapping [30].

The text is structured as follows. In Sec. II we describe
the magnetic field configurations used to study the mirroring
in static magnetic fields. Section III introduces the governing
equations and physical processes involved in the propagation
of both CR protons and electrons. In Sec. III A we present
the numerical setup, discussing particle injection, boundary
conditions, and physical scales involved in the simulations.
The results are presented in Sec. IV for both CR protons and
electrons.

II. PARTICLE TRAPPING AND MAGNETIC
FIELD MODELS

The evolution of the distribution of CR particles is studied
for two spatial configurations of the particle source. In the first
case the particles are drawn from a statistically homogeneous
random distribution, and in the second case the particle source
is a spherical shell surrounding the trapping region, as appro-
priate for the ISM given that the particles spread from discrete
sources such as supernova remnants. The inhomogeneity of
the CR sources is especially important in this context since
the Liouville theorem precludes the development of any inho-
mogeneities in a perfectly statistically homogeneous system,
provided the scale of the magnetic field variation is larger
than the Larmor radius of the particles and the scattering of
the particles (in particular, the pitch-angle scattering) can be
neglected. In fact, the Liouville theorem does not preclude
the existence of particles that are trapped for an infinitely
long time in a static magnetic field, although the set of the
initial positions of such particles in the six-dimensional phase
space has measure zero [30]. However, trapping for a finite but
arbitrary long time is consistent with the Liouville theorem.
When particles are injected through a face of a cubic region
V with velocity directions confined to a solid angle �ω, their
average number density n̄ within V has an upper limit [30]
n̄ � n0��/�ω , where n0 is the particle number density at
the injector and �� (� �ω) is the solid angle subtended by
the particle velocities within V .

Constraints on the distribution of an ensemble of particles
in static magnetic fields implied by the Liouville theorem
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FIG. 1. The cross section of the axisymmetric magnetic trap of
Sec. II A through the symmetry axis, with the magnetic field strength
in µG color coded.

are relaxed in many realistic situations. In particular, the
Liouville theorem does not apply when the magnetic field
varies on scales smaller than the Larmor radius. The particle
deflections by random magnetic fields at sub-Larmor scales
lead to a diffusion term in the Fokker-Planck equation ob-
tained by averaging of the kinetic equation for the particle
distribution function over a scale comparable to the particle
Larmor radius. The phase-space volume occupied by particles
in such a diffusive system can decrease with time, leading to
an inhomogeneous distribution. As mentioned above, another
factor affecting the consequences of the Liouville theorem is
the fact that CR particle injection is nonhomogeneous and/or
nonisotropic. The CR particles are not “created” uniformly
at any position in the ISM but rather spread from discrete
sources [31]. The trapping of CR as they penetrate into molec-
ular clouds is discussed by Silsbee et al. [11]. Moreover, the
particle energy losses, especially strong for the CR electrons,
lead to further violation of the conditions of the Liouville
theorem [30].

We consider two types of magnetic trap. An idealized,
axisymmetric trap introduced in Sec. II A is used to assess
the efficiency of the particle trapping and the sensitivity of
the particle distribution in space to the form of their source,
particle energy, and, in the case of relativistic electrons, en-
ergy losses. Our conclusions are further tested by simulations
of particle trapping in a magnetic dipole (see the Appendix).
The case of a more realistic trap is discussed in Sec. II B,
where we use a realization of a random magnetic field gen-
erated by the fluctuation dynamo in a random flow and focus
on one of the local regions where the number density of test
particles has a strong maximum suggesting efficient trapping.
Such magnetic traps can be expected to occur in random
magnetic fields, and Seta et al. [29] have shown that they
are equally widespread in both Gaussian random magnetic
fields and spatially intermittent, strongly non-Gaussian fields
produced by the fluctuation dynamo.

Interstellar random magnetic fields vary on a time scale
of order 106 yr at the integral scale (of order 100 pc), much
longer than the inverse Larmor frequency of CR particles
in a very wide range of energies. As we show below, the
spatial distributions of the CR particles settle into station-
ary states on the relatively long timescale of order 104 yr
(which is, however, much shorter than the confinement time
of the CR particles in galaxies, � 107 yr). Therefore, the time
variation of the magnetic field can be neglected, and static
(time-independent) magnetic configurations can be used for
our purposes.

The dimensionless parameter that controls the particle be-
havior is the ratio of the Larmor radius rL to the length scale
of B, so our arguments and results can be rescaled straightfor-
wardly to other particle energies and magnetic field strengths
and scales.

A. Axisymmetric trap

An axially symmetric magnetic trap used to explore gen-
eral aspects of the CR particle distribution in space has the
magnetic field components given in cylindrical coordinates
(r, φ, z) by

Br = −B0
b

�2
z f (r)e−z2/�2

, (1a)

Bφ = 0 , (1b)

Bz = B0[0.015 + (1 − ar2)e−r2/R2
(1 − be−z2/�2

)], (1c)

where

f (r) = R2

r
[e−r2/R2

(ar2 + aR2 − 1) − aR2 + 1],

and the parameters R, a, b, and � control the length scales of
the field variation and the positions of the magnetic mirrors.
(Starting from the chosen analytic form of Br , this field is
obtained by requiring solenoidality in axisymmetric cylin-
drical geometry.) As illustrated in Fig. 1, two maxima in
the magnetic field strength are located on the z axis, and
their separation (i.e., the length of the trap) is controlled by
the parameter �, while the radial scale of B depends on a
and R. Having in mind applications to the ISM of spiral
galaxies, we adopt for � and R values comparable to the
integral scale of the interstellar random magnetic fields, � =
R = 16 pc (see Sec. II B for the motivation of the scale length
choice).

The field structure is further determined by the factors a =
(0.03 pc)−2 and b = 0.25. The positions along the z axis at
which particles are reflected depend on the particle energy.
In the simulations presented below, we adopt B0 = 100 µG
giving the range 8 � B � 92 µG for the field strength within
the computational domain, with the root-mean-square (r.m.s.)
field strength of Brms = 42 µG.

B. Magnetic trap in a random field

Magnetic traps occur in virtually any random magnetic
field as regions between magnetic mirrors where magnetic
lines converge repeatedly towards a magnetic line that serves
as the backbone of the trap. Seta et al. [29] discuss the trapping

065206-3



THARAKKAL, SNODIN, SARSON, AND SHUKUROV PHYSICAL REVIEW E 107, 065206 (2023)

FIG. 2. The three-dimensional structure of the magnetic lines of
the random magnetic trap of Sec. II B, with the field strength relative
to its r.m.s. value color coded.

of charged particles in an intermittent random magnetic field
produced by the fluctuation dynamo and a Gaussian random
magnetic field with the same power spectrum, and show
that both types of random magnetic field produce numerous
traps.

An example of such a trap in an intermittent magnetic field
is shown in Fig. 2. This magnetic field is obtained as a solution
of the induction equation with a time-dependent, multiscale
velocity field with chaotic trajectories [32,33].

The dynamo action produces a non-Gaussian random mag-
netic field represented by magnetic filaments and ribbons
even when the velocity field realizations have Gaussian statis-
tics [3]. The magnetic structure shown in Fig. 2 is from a
region where the CR proton distribution has a strong local
maximum in the simulations of Seta et al. [29], and we discuss
here in detail the behavior of the statistical ensembles of CR
protons and electrons in this particular trap, including the
long-term evolution of the spatial particle distributions. We
note once more that the occurrence of magnetic traps does not
rely on the magnetic intermittency: this is a generic feature of
random magnetic fields.

The dynamo simulations [33] which produced the mag-
netic structure of Fig. 2 were performed on a 5123 grid in
a periodic box of the dimensionless size (edge length) 2π

corresponding to the physical size comparable to the integral
scale of the interstellar turbulence, 100 pc [34]. In our simula-
tions, we use the same unit length, L = 100 pc/(2π ) = 16 pc.
The field strength within the computational domain ranges
from 0.025 µG to 89 µG while the r.m.s. field strength is
Brms = 5 µG.

Here we comment on this variability of magnetic field
strength in our simulations. The ISM is turbulent in nature,
and one of the main candidates for driving the turbulence is
supernovae [35,36], where the flows are highly supersonic.
The fluctuation dynamo driven by such turbulent flows [37]
along with shock compression can result in highly inhomoge-
neous and intermittent magnetic fields [33,38]. The random
magnetic field we use in our simulations, generated by a
kinematic dynamo, has highly inhomogeneous structures and
emulates a more realistic magnetic field configuration in the
ISM.

III. BASIC EQUATIONS AND TEST
PARTICLE SIMULATIONS

When the particle energy losses and gains can be neglected,
the dimensionless equations of motion of a particle with elec-
tric charge q (q = −e for an electron) and rest mass m moving
at velocity v in a magnetic field B have the form

d p′

dt ′ = α

γ
p′ × B′ , (2)

dx′

dt ′ = β

γ
p′ , (3)

where x′ = x/L, p′ = p/mc, t ′ = t/t0, and B′ = B/B0 are the
dimensionless coordinates, momentum, time, and magnetic
field, respectively, and

α = qB0t0
mc

, β = ct0
L

.

Here p is the relativistic momentum and the associated
Lorentz factor is γ = E/(mc2) =

√
1 + (p/mc)2 with E the

particle energy, and p = |p|.
Charged particles gyrate around a magnetic line under the

influence of the Lorentz force, and its motion is characterized
by the Larmor radius, frequency, and angle θ between the
magnetic field and velocity vectors (the pitch angle) [14],

rL = γ mcv

|q|B = E

|q|B , ωL = c

rL
, cos θ = v · B

vB
, (4)

where v = |v| and B = |B|. The time unit corresponding to
the unit length L = 16 pc is t0 = 2πL/c ≈ 300 yr. A suitable
unit for the interstellar magnetic field strength is B0 = 5 µG,
and the particle energy with the Larmor radius L in mag-
netic field B0 is about E0 = 106 GeV(rL/1 pc)(B0/1 µG) �
108 GeV.

Equation (2) is applicable to CR protons since their energy
losses can be neglected. The energy losses of CR electrons to
synchrotron emission and inverse Compton scattering are not
negligible, and the electron energy evolves as [1]

dE

dt
= −κE2 , (5)

where

κ = 1

1.2 × 1010 yr GeV

[(
B

1 µG

)2

+ w

0.25 eV cm−3

]
,

with w the energy density of the ambient radiation. (We
include only losses to the synchrotron emission in our sim-
ulations.) As a result, the electron Lorentz factor in Eqs. (2)
and (3) decreases with time, and the rate of the decrease varies
with the magnetic field strength along the particle trajectory.
We note that the electron energy losses due to the inverse
Compton scattering from the present-day cosmic microwave
background are equivalent to those in a magnetic field of
3.2 µG in strength, weaker than the interstellar magnetic fields
in nearby galaxies. Exact theoretical formulation requires the
synchrotron loss coefficient to depend on the pitch angle.
Here we make use of the isotropy of the injected particles,
to effectively average over the angular dependencies. The
inclusion of pitch angle would enhance the energy losses as
particles near the mirroring regions. Hence our model will
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give a conservative lower limit to the effect energy losses have
on mirroring and to the resultant inhomogeneity in the particle
distribution.

Magnetic mirroring is associated with the conservation of
the particle magnetic moment,

μ = mv2
⊥

2B
, (6)

an adiabatic invariant (here v⊥ = v sin θ is the particle speed
perpendicular to B), which changes only slightly if the par-
ticle propagates through a weakly inhomogeneous field, i.e.,
if the magnetic field varies only at scales much larger than
the particle’s Larmor radius. To be reflected at a magnetic
mirror, the particle has to have a sufficiently large pitch angle:
particles that travel from a region with magnetic field strength
B towards a mirror with magnetic field strength Bm avoid
the reflection if they are within the loss cone θ < θm, where
sin2 θm = B/Bm.

Magnetic field variations at scales smaller than rL cause the
particles to scatter off the guiding field line [18]. Interstellar
magnetic fields have a wide range of scales extending down to
108 cm [39,40], and variations of the magnetic moment play
a role in the CR propagation [19].

A. Numerical implementation

The particle trajectories are integrated numerically us-
ing the eighth-order Runge-Kutta method (DOP853, using
the Dormand and Prince coefficients) with an adaptive time
step [41]. We select error parameters for the method so that
the particle energy in our simulations is conserved to the
eighth significant digit when energy losses are neglected. In
the discussion of isolated traps, either axisymmetric or from
the random field, the size of the computational domain is
2L = 32 pc, while the sizes of the magnetic traps that we
consider is about L; the traps are placed at the center of the
domain. We also conduct simulations for a full realization of
a multiscale random field where the computational domain is
100 pc in size and contains many magnetic traps.

The axisymmetric magnetic field of Sec. II A can be eval-
uated at any position of a moving particle. The random
magnetic field of Sec. II B is specified on a three-dimensional
grid with 0.16 pc spacing and is interpolated locally to the
current particle position using trilinear interpolation.

B. Particle injection

As argued in Sec. II, a realistic modeling of the spatial CR
distribution in a magnetic trap requires special attention to
the spatial form of their injection region. When particles are
injected uniformly, isotropically and continuously, the parti-
cle distribution in a magnetic field that only varies at scales
exceeding the Larmor radius must remain homogeneous as
t → ∞ according to the Liouville theorem. However, CR
particles are not injected uniformly but rather have discrete
sources (mainly, supernova remnants). Therefore, apart from
simulations with a uniform injection of particles, designed to
confirm that our results are consistent with the Liouville theo-
rem, we consider the physically more relevant results obtained
when the particles are injected in a spherical shell around a
magnetic trap with the inner and outer radii of 2L/3 and L,

respectively. In both cases, the particles are introduced with
an isotropic distribution of their pitch angles and at random
positions within the injection region.

To explore steady-state particle distributions, particles that
leave the computational domain via its boundaries, or (in the
case of electrons) lose their energy to insignificant values,
have to be reintroduced into the system to keep the total num-
ber of particles approximately constant as the system evolves.
We use two alternative approaches for this particle reintro-
duction. In one approach we apply a reflection condition at
the boundaries, whereby the particle velocity is reversed as
it crosses the boundary (see the Appendix for details). In an
alternative approach, we reintroduce particles at a random
position within the injection region. In order to assess the
effect of the reinjection method on the results, in some simula-
tions we do not reintroduce the lost particles, so that the total
number of particles decreases with time in those simulations.

For CR electrons with their energy losses, we also consider
how their energy spectrum evolves as they propagate, and we
consider two types of injection energy spectrum: one where
the particles are all injected at the same energy, and one with
a power-law injection energy spectrum.

In the former case, all the electrons are injected with same
energy E = Emax chosen such that their Larmor radius, corre-
sponding to the r.m.s. magnetic field in the trap, is comparable
to the trap size. We also specify a minimum energy Emin: when
a particle energy decreases below Emin, the particle is removed
and reinjected with the energy E = Emax. The magnitude of
Emin is selected to avoid the particle Larmor radius based on
the r.m.s. field strength decreasing below 0.1 of that corre-
sponding to Emax, i.e., Emin = Emax/10.

For analysis, we bin the particles into M energy intervals
of equal width, �E = (Emax − Emin)/M, and the results are
presented with the particle energy E referring to the bin center.

In the case of the spectral energy injection, the energy of
an injected particle is drawn at random from the probability
distribution proportional to E−s in Emin < E < Emax to ob-
tain the injection spectrum with the spectral index s; we use
s = −3/2. The values of Emax and Emin are determined as
above, and the particle position is evolved until its energy
reduces to Emin. For the analysis of the spatial particle dis-
tribution, they are binned into M unequal energy intervals,
with the ith interval (1 � i � M) of width �Ei = NEs

i /M, to
obtain similar numbers of particles in each energy bin (here
N is the total number of particles in the simulation). The
energy [Ei(Ei + �Ei )]1/2 is used to represent the particles
in the energy range Ei < E < Ei + �Ei. Unless stated other-
wise, these parameters were chosen as (N, Emax, Emin, M ) =
(421 875, 106 GeV, 105 GeV, 5) with N kept a constant in
each simulation, but some results are obtained with three and
five times larger values of N for both protons and electrons,
and in some cases we do not reinject particles: then N de-
creases with time.

C. The number density of particles

For each particle in an ensemble, we computed its trajec-
tory and sampled its position at times separated by an interval
T specified below. In the case of electrons, the energy bin to
which the particle belongs was also recorded. The magnitude
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of T was chosen to ensure that the magnetic fields at the
particle positions at times t and t + T are sufficiently differ-
ent; in practice, the two positions are typically more than two
Larmor radii apart (in the case of a random magnetic field,
the separation of those positions could be chosen to exceed
the integral scale of the field). To ensure that the positions
obtained for different particles are compatible, the sampling
time interval T in physical units was chosen to be equal for
all particles, T = 516 yr, with or without energy losses. Thus,
the set of particle positions at any given discrete time jT , with
integer j, can be considered as a snapshot of the spatial distri-
bution of a large number of particles launched simultaneously.
The particle positions were mapped into a cubic grid with
753 volume elements within the computational domain (so
the size of a volume element is about (0.4 pc)3). The particle
number density n at a position x was obtained by dividing
the total number of particles in the grid element containing
x by its volume, and then smoothing with a Gaussian kernel
(half-width of 0.85 pc). The number of particles involved in
the simulation was 753, with 100 position values recorded for
each of them. The effective total number of particles involved
in most of the calculations of the particle number density is
100 × 753 ≈ 4 × 107, and the mean number of particles per
the grid volume element is 100. As discussed below, the total
number of particles involved is sufficiently large to justify our
conclusions.

The number density of particles obtained through the sam-
pling of their trajectories in a finite domain is subject to a
bias discussed in the Appendix since longer trajectories con-
tribute more strongly to the resulting value of n than shorter
trajectories. This effect is pronounced for regular magnetic
field configurations where the length of magnetic lines that
fit into a finite simulation domain can vary significantly from
one line to another. As explained there, we compensate this
bias by using the reflecting boundary conditions where the
particle velocity is reversed when it reaches the boundary.
In the case of a random magnetic field, most magnetic lines
have similar length when the computational domain is big
enough. Therefore, useful results can also be obtained using
the alternative boundary conditions, whereby particles that
leave the domain are reinjected at random interior positions
within the injection region.

Populating the magnetic field lines with a sufficient number
of particles to obtain statistically meaningful results for the
particle number density is challenging, especially in a random
magnetic field and when the injection is inhomogeneous. A
delicate task here is to obtain enough magnetic field lines
connected to the inhomogeneous source so that particles can
propagate to the magnetic trap in the interior. In the case of a
simple field structure, its larger scale of variation renders this
task easier, compared to the case of the random field which
lacks a large-scale mean field. In order to study the effect of
inhomogeneous injection on mirroring structures in random
fields, we define a spherical shell around the trap in such a way
that there are field lines connecting both these regions. (The
spherical-shell region does not represent any specific source
or sources, but rather represents a “bath” of sources, external
to the internal region being studied.) Appropriate radii of the
spherical-shell injection region were adopted after a few trials.
The spherical geometry of the source allows for the maximum

number of magnetic field lines connecting the source and
the trap. We expect the results to be similar in the case of
other inhomogeneous source conditions, if enough particles
are populated and propagated along the field lines connect-
ing the trap and the source. To demonstrate the consistency
of the results obtained, we also consider a test case for the
isolated random trap with a point source in the middle of the
box,(x, y, z) = (0, 0, 0) pc.

IV. RESULTS

The degree of inhomogeneity in the particle distribution is
characterized by


 = 〈n〉2

〈n2〉 , (7)

where the angular brackets denote the volume average. For a
perfectly homogeneous system, 
 = 1. The smaller is 
, the
stronger is the inhomogeneity; in the extreme case of isolated,
uniform clouds with sharp boundaries, 
 represents their frac-
tional volume. The magnitude of n depends on the number
of particles involved in the simulation and the sampling rate
of their trajectories, and can be scaled to any desired value
[e.g., 10−9 particles cm−3 for the average number density of
the galactic CRs, versus the mean number of 100 particles per
(0.4 pc)3 in our simulations]. We present our results in terms
of the relative number density n/〈n〉; together with 
, this
quantity is independent of the normalization and characterizes
the trap.

A. Proton distribution in the axisymmetric trap

We use the axisymmetric trap of Sec. II A to clarify and
quantify the sensitivity of the results to the simulation param-
eters (such as the total number of particles, the sampling of
their trajectories, and the duration of the simulation) as well
as to verify the effects of the shape of the injection region
on the particle distribution. Since these aspects of the particle
behavior are largely independent of the energy losses, we
consider only protons in this case. The trajectory of a single
proton trapped in the axisymmetric magnetic trap is shown in
Fig. 3(a): at this particle energy, it is reflected at z = ±7.5 pc
and drifts along the azimuth because of the radial variation of
the magnetic field strength. Correspondingly, the pitch angle
varies periodically and nearly linearly between its extrema
with the reflections that occur when θ = 90◦ [Fig. 3(b)], while
the magnetic moment only varies by 5% without any signs
of a systematic trend [Fig. 3(c). Figure 3(d) shows a three-
dimensional perspective view of the axisymmetric trap, with z
aligned vertically. The different shades of translucent grey to
blue show isosurfaces of increasing magnetic field strength.
The gold isosurface shows one value of the resulting number
density of CRs. [See also Fig. 4(b).]

Figure 4 illustrates the effect of the form of the injec-
tion region on the relative number density distribution. For
a homogeneous and isotropic particle injection [Fig. 4(a)],
the relative density variations of order 20% are consistent
with the relative statistical noise of (Ñ )−1/2 expected for the
binned data with Ñ < 100 particles per spatial bin. A slight
increase in the relative number density at the ends of the
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FIG. 3. A proton with rL = 0.24 pc trapped in the axisymmetric magnetic bottle of Sec. II A: (a) the trajectory, the evolution of (b) the pitch
angle, (c) the magnetic moment, and (d) the isosurface of the particle number density n/〈n〉 = 0.5 (brown) at t = 1.4 × 105 for a spherical-shell
injection with the magnetic field lines and isosurfaces |B|/Brms = 1.4, 1.8 and 2.2 (blue, with Brms the r.m.s. field strength).

trap (z = ±7.5 pc) is an artifact of the reflecting boundary
conditions given that more particles reach the boundary along
the magnetic field than across it. The negligible inhomo-
geneity in the particle distribution in this case is consistent
with the implications of the Liouville theorem within sta-
tistical errors (confirmed using numerical experiments with
randomly placed particles). We have verified that simulations
over longer times and involving a larger number of particles
result in weaker density variations in the case of the homoge-
neous, isotropic particle injection.

In the case of the inhomogeneous injection in a spherical
shell [Fig. 4(b)], the variation in n/〈n〉 is significantly stronger
(corresponding to 
 ≈ 0.8; see below). The injection region is
visible as the annulus with a higher n. Our preliminary results
indicate that the asymptotic value of 
 is sensitive to the shape
of the injection region, and injection through one face of the
cubic domain or at a single point is likely to lead to stronger
inhomogeneities.

The variation in the magnetic field strength along magnetic
lines is weaker for the lines that pass near to the trap axis

FIG. 4. The relative number density n/〈n〉 of protons with rL = 2.4 pc (color coded) in the cross section of the axisymmetric trap at y = 0
(integrated over |y| � 6.4 pc) at t = 6944 yr: (a) homogeneous injection with reflecting boundaries and (b) injection in a spherical shell with
open boundaries and reinjection. The isocontours of |B| are shown with red lines, and the regions used to compute 
 (shown in Fig. 5 and
discussed in the text) are within the inner frames. The white contours outside the inner frames represent the isosurfaces of the relative number
density in the injection region.
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FIG. 5. The evolution of the inhomogeneity measure 
 for protons (rL = 0.786 pc based on the r.m.s. field strength) injected into the
axisymmetric trap (a) homogeneously (with no subsequent reinjection) and (b) in the spherical shell (with reinjection). The values of 
 were
computed for a cubic region outlined in Fig. 4. The insets show the probability density of n/〈n〉 at t = 8680 yr, obtained as a histogram and
using the Gaussian kernel density estimate (solid line).

(compared to those further off-axis) since the loss cone is
wider for particles that move along a stronger magnetic field.
This explains the reduction of the particle number density near
the trap axis visible in Fig. 4(b). [This effect is not evident in
Fig. 4(a), as in that case particles are reinjected in this region.]

To demonstrate that the inhomogeneity in the particle dis-
tribution is not a short-term transient or an artifact of the
limited number of particles N in the simulation, we con-
sider the evolution of the inhomogeneity measure 
 with
time for various values of N . For the time dependence, we
calculate n and 
 as described at the end of Sec. III until
a current time t (0 < t � 102T ), with the particle positions
at all earlier times included in the calculation. The smaller
is t , the smaller is the effective number of particles used to
calculate n.

As shown in Figs 5 and 6, 
 increases with t (and thus
the degree of inhomogeneity decreases) as the number of

particles involved in the calculations increases (so that the
statistical noise becomes weaker). It is notable, however, that
for the homogeneous injection 
 evidently tends to unity as t
increases, whereas 
 tends to a smaller value in the case of the
spherical-shell injection. The insets in Figs 5(a) and 5(b) show
the probability density distribution of the particle number
density.

With the log-linear axes, the log-normal and exponential
distributions in Fig. 5 are represented by a parabola and
straight line, respectively. The insets show that the probability
density of n is sensitive to the form of the injection, with
an approximately log-normal distribution in the case of the
homogeneous injection and a more complicated one, with
pronounced high-density features around n/〈n〉 = 2, in the
case of the spherical-shell injection. Moreover, the probability
density extends to significantly larger values of n/〈n〉 when
the injection is not homogeneous.

FIG. 6. The dependence of inhomogeneity measure 
 on time for the proton distribution in an axisymmetric trap for various values of
the total particle number, N = P (dotted, the same as shown in Fig. 5), N = 3P (dashed), and N = 5P (solid), where P = 753 = 421 875, for
(a) homogeneous injection and (b) injection in a spherical shell. Note the difference in the values of 
 at large t between (a) and (b). The
computed values of 
 are shown with continuous curves, and the corresponding fits 
 = c − dt−γ described in the text and Table I are shown
with markers.
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FIG. 7. The quality of the fit 
 = c − dt−γ with parameters from
Table I for (a) the axisymmetric trap and (b) trap in the random
magnetic field (Sec. IV B). The computed values of 
 are shown
with crosses for homogeneous injection and circles for injection in
a spherical shell; the fits for t � 520 yr are represented with straight
dashed lines.

To confirm that the asymptotic value of 
 is unity for
the homogeneous injection while 
 �= 1 as t → ∞ and/or
N → ∞ for injection in a spherical shell, we fitted the time
variation of the computed values of 
 with the form 
 =
c − dt−γ . The best-fit parameters c, d , and γ are shown in
Table I. The quality of the fits is illustrated in Fig. 7 where
we plot ln[(c − 
)/d] vs ln t . For a perfect fit, this is a

TABLE I. Variation of the inhomogeneity parameter 
 in the
axisymmetric trap with time t and the total number of particles N
involved in the simulations, specified as a multiple of P = 753 =
421 875, for the homogeneous and spherical-shell injection regions.
Presented are the fitted parameters c, d , and γ of the approxima-
tion 
 = c − dt−γ , with t in years. The particle Larmor radius is
rL = 0.786 pc; energy losses are neglected.

Homogeneous Spherical shell

N P 3P 5P P 3P 5P
c 0.998 0.998 0.998 0.84 0.82 0.81
d 1.0 1.2 1.3 0.7 0.9 1.3
γ 2.0 2.1 2.3 1.4 1.5 1.9

straight line with the slope −γ , and the quality of the fit is
remarkably good. It is notable that the fits are better when
obtained excluding smaller values of t where the number of
particles involved is lower and short-term transients may not
have died away yet. In the case of spherical-shell injection
into the random field, convergence is slightly less monotonic,
resulting in the relatively larger deviations from the fit at large
t ; but the misfit remains very small. It is reassuring that γ

increases as N increases, so that 
 converges faster to the
asymptotic values for larger N at t increases, as shown in
Fig. 6: 
 ≈ 1 for the homogeneous injection and 
 ≈ 0.8
for the spherical-shell injection. Although d also increases as
N increases, the effect of this is outweighed by the increase
in γ , so the convergence is not affected. Table I confirms
that the number of particles in our simulations is sufficiently
large to represent their distribution at large times, since the
fit parameter c varies little with N , and as noted above the
combined variation in γ and d act to make convergence faster
as N increases. We observe confidently the convergence of 


to its asymptotic values.
We note that even in the case of homogeneous and isotropic

particle injection when the Liouville theorem applies, it would
be difficult to achieve the asymptotic state with 
 = 1 in any
finite simulation because of the unavoidable inhomogeneities
resulting from the finite spatial resolution. Our fits to the
dependence of 
 to t and N allow us to assess the asymptotic
state that is realized.

B. Protons in the isolated random trap

As discussed in Sec. II, random magnetic fields have nu-
merous magnetic traps [29]. In Sec. II B we have isolated a
region with one of the highest particle concentrations in a
random magnetic field generated by the fluctuation dynamo
to explore it in finer detail here. Despite the high efficiency of
this trap, we have no reasons to consider it to be too unusual.
This magnetic trap is a realization of a random magnetic field
and is by far more realistic than the axisymmetric trap dis-
cussed above. Despite the complexity (it has three identifiable
magnetic mirrors), the particle trajectories near the maxima of
the magnetic field strength have the form typical of that near
a magnetic mirror [29].

The magnetic field in this trap is represented by a wide
range of scales including those smaller than the Larmor radius
of the particles in the simulation. This affects the particle mag-
netic moment, which, however, varies little for long enough to
allow multiple reflections before a particle escapes from the
trap. On the other hand, the magnetic field varies over length
scales large enough to trap particles within the energy range
considered.

Figure 8 presents the particle distribution in the random
trap for the homogeneous injection with particle reinjection
[Fig. 8(a)] and for the injection in a spherical shell with
reinjection in Fig. 8(b). The radii of the spherical shell were
carefully chosen to ensure that the magnetic lines connect the
injection region with the magnetic trap.

As with the axisymmetric trap and in accordance with the
Liouville theorem, the homogeneous injection with homoge-
neous reinjection of particles lost through the boundaries does
not produce any systematic spatial variation in the particle
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FIG. 8. As in Fig. 4 but for protons with rL = 1.2 pc in the cross section of the random trap at x = 0 (integrated over |x| � 6.4 pc) at
t = 6944 yr: (a) homogeneous injection with reinjection of the particles lost through the boundaries and (b) injection in a spherical shell with
reinjection.

number density. The reinjection affects profoundly the particle
distribution in space: the particles are still reflected at the
magnetic mirrors and trapped.

Without the reinjection, when the particles are lost through
the boundaries and their number decreases as the simulation
progresses, the particle spatial distribution remains nonuni-
form at all times. The Liouville theorem does not preclude
this because the particle losses correspond to a sink term in
the equation for the particle distribution function. As with the
axisymmetric trap, the inhomogeneous injection [Fig. 8(b)]
produces significant density variation.

Figure 9 shows the variation of the inhomogeneity parame-
ter with time, similarly to Fig. 5. As in the axisymmetric trap,

 → 1 as t increases in the case of homogeneous injection,
whereas 
 tends to a value of about 0.5 for the spherical-shell
injection. Also as in the axisymmetric trap, the probability
density of n/〈n〉 is close to log-normal in the former case. The
probability density under the spherical-shell injection is dif-
ferent from that in the axisymmetric trap; although both have a
similar structure, the case of the random trap has a pronounced
exponential tail. We also note that the range of variation in
n/〈n〉 is much wider in the case of inhomogeneous injection,
confirming that it reflects systematic density variations in con-
trast to statistical fluctuations within a narrow range that occur
when the particles are injected homogeneously; these features
are common to the axisymmetric and random traps and appear
to be generic.

We conclude that persistent inhomogeneity in the particle
distribution develops when their injection is inhomogeneous
(such as injection in a spherical shell) or the particles are not
reinjected in the trapping region. This has been demonstrated
with a simple, axisymmetric trap (Sec. IV A) and a complex
trap in a realization of a random, intermittent magnetic field
(Sec. IV B). As the number of particles and/or the duration of
the simulation increase, the degree of inhomogeneity tends to

 ≈ 0.8 in the former and 
 ≈ 0.4 in the latter case.

Figure 10 presents the number density distribution in the
isolated random trap for a different inhomogeneous source
condition, whereby particles are injected from a point source

at the center of the box. For rL = 1.2 pc the particles span
significant distances, and in different cross sections we see
multiple points of maxima. Figure 10 shows significant
maxima in the region 0 � y � 5 pc and −9 � z � 1 pc. The

FIG. 9. The evolution of the homogeneity measure 
 in the
random magnetic trap for the same parameters as in Fig. 8: (a) ho-
mogeneous injection with reinjection and (b) injection in a spherical
shell with reinjection. The insets show the probability density of
n/〈n〉 at t = 6857 yr, as in Fig. 5, with the parabolic and linear
variations representing the log-normal and exponential distributions,
respectively.

065206-10



COSMIC RAYS AND RANDOM MAGNETIC TRAPS PHYSICAL REVIEW E 107, 065206 (2023)

FIG. 10. As in Fig. 8(b), in the cross section of the random trap
integrated over 5 � x � 6 pc at t = 6944 yr, but for injection from a
point source at the center of the box.

structure of the inhomogeneity in this region is similar to the
mirroring structure shown in Fig. 12(a). This demonstrates
that the conclusions drawn from the spherical-shell case are
consistent for other inhomogeneous source conditions, which
would, however, require larger number of particles evolved
for longer times to obtain statistically significant signatures
for the whole box.

C. CR electrons: The effects of energy losses

As noted above, when particles lost through the bound-
aries are not reinjected, the distribution of the protons is
inhomogeneous even when they are injected homogeneously
and isotropically. Energy losses to the synchrotron radia-
tion and inverse Compton scattering affect CR electrons of
any given energy in a similar manner, so their spatial dis-
tribution is expected to be inhomogeneous even when they
are injected continuously, homogeneously, and isotropically.
Indeed, Fig. 11 shows the distributions of the electrons of
various energies (specified via the Larmor radius based on the
r.m.s. magnetic field strength) in the axisymmetric trap. When
all the particles are injected at the same energy, a particle
inhomogeneity develops in the region where the field strength
is maximum, and the energy loss is the strongest even when
the particles are injected uniformly. In the lowest energy bin
[Fig. 11(c)], this produces the minimum in n/〈n〉 around x = 0
where the field is the strongest. The consequences of the en-
ergy losses are similar to those of an inhomogeneous injection
[compare Figs 11(c) and 4(b)]. However, the particle trapping
is still evident as it produces local maxima in n/〈n〉 along
the z axis at y = 0. Particles of lower energies [Figs. 11(b)
and 11(c)] partially fill the region around y = 0: these are
the particles lost from the energy bin shown in Fig. 11(a).
The minima in n/〈n〉 at y = 0 near the top and bottom of the
frames are enhanced (in comparison with those in the proton
distribution) by the stronger energy losses at those positions
(where the magnetic field is stronger). Figures 11(d) and 11(f)
and 11(g) and 11(i) show the electron distributions for the
case of the power-law injection energy spectrum for homo-
geneous and spherical-shell injection regions, respectively. In
Figs. 11(d)–11(f) we see maxima of number density being

generated along the magnetic field lines defining the mirroring
region. As we move from higher to lower energy bins, the
maxima shift towards the center of the box, due to the change
in trapping conditions as the Larmor radius decreases with
energy, with the stronger magnetic fields in the central regions
trapping the lower energy particles more efficiently.

The interplay between the particle trapping and energy
losses is even more remarkable in the case of the random
trap where the magnetic field strength has local maxima not
only at magnetic mirrors but at other locations too. Similarly
to Fig. 11, Fig. 12 shows the number density distribution
for the electrons in various energy bins. The number den-
sity for homogeneous injection with reinjection from a delta
energy source [Figs. 12(a)–12(c)], and for power-law in-
jection [Figs. 12(d)–12(f)], has multiple maxima with two
distinct regions in all energy bins, corresponding to the mir-
roring regions. For spherical-shell injection with reinjection
from a power-law source [Figs. 12(g)–12(i)], the maxima
are in slightly different locations, closer to the mirroring
regions, because the source particles populate the magnetic
field lines differently from the case of homogeneous injection
[Figs. 12(d)–12(f)]. As for the axisymmetric trap, inhomo-
geneities in the particle distribution become more pronounced
at lower energies. When the electrons are injected with a
power-law energy spectrum with a negative spectral index
[Figs. 12(d)–12(f)], most particles are injected at lower en-
ergies, and, in the case of the homogeneous injection, this
overwhelms the inhomogeneities that develop while the par-
ticles propagate. This distorts inhomogeneity measures such
as 
, making them less informative. Therefore, we present 


only for the case of the spherical-shell injection. Figure 13
shows the evolution of 
 for the electrons and, for compar-
ison, the protons injected within a spherical shell into the
isolated random trap with the power-law energy spectrum
E−3/2. (The particular choice of the energy spectra, which is
flatter than the more commonly adopted s = −2, is to ensure
that the number of particles in the higher energy bins remains
statistically significant to study the evolution of number den-
sities. From test runs the s = −2 case shows similar trends
in lower energy bins, with enhanced loss rate for particles
in the higher energy bins. The results discussed hereafter
focus on features with conservatively well-resolved density
distributions.) In this case, the particles are reinjected when
they are lost through the boundaries of the computational
domain or when they reach the minimum energy. The spatial
distributions of both the protons and electrons are significantly
inhomogeneous, with 
 remaining smaller than unity, asymp-
totically 
 ≈ 0.75 for both protons and electrons.

D. Particle distribution in a full realization
of a random magnetic field

As discussed above, a generic random magnetic field (ei-
ther Gaussian or intermittent) contains numerous magnetic
traps, one of which is described in Sec. II B. In this section we
discuss the distributions of the CR protons and electrons in
a realization of the intermittent random magnetic field gener-
ated by the fluctuation dynamo, of which the trap of Sec. II B
is a small part. The particle distributions in such a magnetic
field depend on the details of the injection and reinjection
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FIG. 11. The relative number density n/〈n〉 (color coded) of CR electrons of various energies in the cross section of the axisymmetric
trap at x = 0 (integrated over |x| � 6.4 pc) at t = 6944 yr. In the upper row, the particles are all injected homogeneously (with reinjection)
with the energy corresponding to the Larmor radius rL = 0.62 pc, and the distributions shown are for the particles with decreasing energies:
(a) rL = 0.62 pc, (b) 0.38 pc, and (c) 0.19 pc. Panels (d)–(f), respectively, show similar distributions for the same particle energies and for
the homogeneous injection, but for the case of the power-law energy injection spectrum E−3/2. Panels (g)–(i) show the case similar to that in
(d)–(f) but for the particles injected (and reinjected) in the spherical shell.

(such as the shape of the injection region) and energy losses
in a manner similar to the case of isolated magnetic traps
discussed above. For the homogeneous injection, we use peri-
odic boundary conditions which essentially act as reinjection.
In the case of the inhomogeneous particle source, we reinject
the particles in a spherical shell when they are lost through
the boundaries or because of energy losses. The boundaries
of the injection region in this case are fixed as rmin = 24 pc
and rmax = 50 pc, with the full length of the periodic domain
being 100 pc.

Figure 14 shows the distribution of electrons injected from
the inhomogeneous source (spherical shell) with the E−2 en-
ergy spectrum at the injection. The variation of 
 with time
confirms the persistence of numerous local inhomogeneities.

As with the isolated traps, the particle distribution becomes
increasingly homogeneous with time for both electrons and
protons injected from a homogeneous source, similarly to the
cases shown in Figs. 11(d)–11(f) and 12(d)–12(f).

Figure 15 shows the local maxima of B, np, and ne in a part
of the domain (as indicated by the white frame within Fig. 14).
The maxima in the particle distributions in the corners of the
cube shown are due to particle diffusion from the spherical-
shell injection region. It is notable that the maxima in the
particle number density are unrelated to those of the magnetic
field strength, as quantified by their low cross-correlation
coefficients in Table II. Moreover, the proton [Fig. 15(b)]
and electron [Fig. 15(c)] distributions are rather different,
especially regarding their higher maxima, even though their
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FIG. 12. As in Fig. 11 but for the random trap with the electron distributions shown for the particles with decreasing energies, rL = 0.69,
0.45, and 0.23 pc (based on the r.m.s. magnetic field strength, with the maximum energy on the left). The two upper rows show homogeneous
injection (with reinjection) of particles with (a–c) the same energy and (d–f) the power-law injection energy spectrum E−3/2. The lower row
(g–i) shows injection in the spherical shell (with reinjection) with the power-law injection energy spectrum E−3/2.

cross-correlation coefficient (discussed below) is significant.
The maxima in the electron distribution at the energy shown
(rL = 0.23 pc), which are at different locations from those for
the protons, are populated by particles that have lost some of
their energy earlier and thus responded to different features
in the magnetic field than the protons. The energy ranges we
explore, and the energy loss coefficient κ we use, cause the
particle to completely lose its energy within the timescales
of the simulation. This makes it difficult to explore the evo-
lution of spectra in energy space. Theoretical models of the
evolution of spectra in uniform magnetic fields show a spectral
steepening by a power of 1. We do not see any such spectral
steepening in our simulations. Our understanding is that while
our simulation setup is suitable for exploring the spatial distri-
bution of CR particles, the numerical limitations in choosing

the minimum energy and the resolution in the energy space do
not allow us to study the full scope of the spectral evolution.

V. RELATIVE DISTRIBUTIONS OF PROTONS,
ELECTRONS AND MAGNETIC FIELD

Many interpretations of the radio-astronomical observa-
tions of galactic and extragalactic magnetic fields and CRs
rely on the assumptions that CR and magnetic field energy
densities are equal (or proportional) to each other and, in ad-
dition, that the CR electrons (which produce the synchrotron
emission observed) and protons (which dominate the CR en-
ergy density) have identical spatial distributions (see, e.g.,
Sec. 4.5 of Ref. [3]). Our results suggest strongly that both
assumptions are not justified (see also Ref. [29]). The relation

065206-13



THARAKKAL, SNODIN, SARSON, AND SHUKUROV PHYSICAL REVIEW E 107, 065206 (2023)

FIG. 13. The evolution of the measure of inhomogeneity 
 for
the electrons (solid) and protons (dash-dotted) injected into an iso-
lated random trap from a spherical-shell source with the power-law
energy spectrum E−3/2, shown for the lowest-energy bin correspond-
ing to rL = 0.23 pc. The particles are reinjected when they are lost
through the boundaries or when they reach the minimum energy.
(The difference in 
 for the protons from that in Fig. 9 is due to
the fact that here the particles are injected with the power-law energy
spectrum.)

between the distributions of the particles and magnetic field
can be characterized with the cross-correlation coefficient for
the constituents A and B,

C(A,B) = 〈AB〉 − 〈A〉 〈B〉
σAσB

, (8)

FIG. 14. The relative number density (color coded) of CR elec-
trons of various energies in the cross section of the full realization of
the random magnetic field at x = 0 (integrated over 20 � x � 32 pc)
at t = 6944 yr for the inhomogeneous injection with reinjection (the
form of the injection shell is visible as the annular maximum in the
particle density). The particles are injected with the energy drawn
from the power-law energy spectrum E−3/2, and the Larmor radius
corresponding to the energy bin shown here is rL = 0.45 pc. The
white frame shows the position of the region shown in Fig. 15.

TABLE II. The cross-correlation coefficients between the mag-
netic field energy density B2 and the CR proton and electron number
densities, np and ne, respectively, the latter at the lowest energy cor-
responding to rL = 0.16 pc, in the random magnetic trap of Sec. II B
(upper part) and the full realization of the random magnetic field
(Sec. IV D, lower part), for the two forms of the injection region,
homogeneous (left) and injection in a spherical shell (right). The 1σ

errors of the cross-correlation coefficients are of order 10−3 or less.

Homogeneous Spherical shell

Isolated random trap
B2 np ne B2 np ne

B2 1 −0.02 0.001 1 −0.01 0.12
np −0.02 1 −0.01 −0.01 1 0.86
ne 0.001 −0.01 1 0.12 0.86 1

Random magnetic field
B2 np ne B2 np ne

B2 1 0.003 −0.004 1 0.001 0
np −0.003 1 0.005 0 1 0.93
ne −0.004 0.005 1 0.001 0.93 1

where angular brackets denote the spatial averaging and σA
and σB are the standard deviations of A and B, respectively
(e.g., σ 2

A = 〈A2〉 − 〈A〉2). The cross-correlation coefficients
are shown in Table II for both the single trap taken from a
random magnetic field (Sec. II B) and the whole realization
of that field (Sec. IV D). The results presented are for the
electrons of the lowest energy, but they vary little with the
particle energy.

The distributions of the CR particles are uncorrelated with
the magnetic field strength, irrespective of the choice of the
injection region, and despite the fact that the electrons are
sensitive to the magnetic field strength through their energy
losses. The distributions of the CR protons and electrons are
uncorrelated in the case of homogeneous injection (when both
distributions are nearly uniform) but exhibit a significant cor-
relation when injected inhomogeneously (in a spherical shell,
when their inhomogeneities are persistent). The correlation
coefficient of the proton and electron distributions in this case
slightly increases with the total number of particles involved
in the simulation.

Figure 16 shows the joint probability distributions of the
particle number density and magnetic field strength for the
case of the full realization of the random magnetic field
discussed in Sec. IV D. The form of the joint probability
distributions is sensitive to the form of the injection region.
For a homogeneous source the particles tend to be localized in
regions where the magnetic field strength is close to its r.m.s.
value; these are just typical regions in the domain and this
tendency does not suggest any causal connections between
the magnetic field and particle distributions. The situation is
different in the case of the spherical-shell injection shown in
Figs. 16(c) and 16(d): here the particles tend to stay in regions
of weaker magnetic field.

Not only are the spatial distributions of the CR electrons
and protons uncorrelated with the magnetic field strength, but
even more notably, the particle and magnetic field strength

065206-14



COSMIC RAYS AND RANDOM MAGNETIC TRAPS PHYSICAL REVIEW E 107, 065206 (2023)

FIG. 15. The isosurfaces of (a) the magnetic field strength, at B/Brms = 3.5 and 6.5, and the time-integrated (for t � 6344 yr) number
densities of (b) protons, at np/〈np〉 = 2 and 8, and (c) electrons, at ne/〈ne〉 = 2 and 8, in the full realization of the random magnetic field of
Sec. IV D. The particles are injected in a spherical shell at the periphery of the domain (visible in Fig. 14 as the circular region of a high number
density). To avoid the overcrowding of the isosurfaces, this figure shows the inner part of the domain 27 pc � (x, y, z) � 87 pc indicated with
the yellow frame in Fig. 14. The particle concentrations in the corners are a signature of the particle source. Despite the overall similarity in
the distributions of the protons and electrons, they are clearly distinct from each other and from the spatial distribution of the magnetic field
strength.

spatial distributions are statistically independent, for both ho-
mogeneous and inhomogeneous particle injections. That is,
the joint probability density p(B, n) (with n for either protons
or electrons) is close to the product of the individual proba-
bility densities, p(B) and p(n). We demonstrate this using the

diagnostic

X =
∫

[p(B, n) − p(B)p(n)]2 dB dn∫
p2(B, n) dB dn

, (9)

FIG. 16. The joint probability density of the particle number density and the magnetic field strength in a random magnetic field: with
homogeneous injection for (a) protons and (b) electrons and with spherical-shell injection for (c) protons and (d) electrons.
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where the integration extends over all values of the variable
available (in practice, we use binned data and the integrals
reduce to sums). For statistically independent variables, X =
0. The probability density distributions for n/〈n〉 (both the
protons and electrons) and magnetic field B/〈Brms〉 were cal-
culated for the values of these ratios in the range from 0.005
to 3.5 and collected into ten bins of equal widths. Both the
proton and electron distributions in the full realization of the
random magnetic field (e.g., Fig. 14) have X ≈ 10−4 for ho-
mogeneous injection and 10−3 when the particles are injected
in the spherical shell. This indicates that both particle distri-
butions are very close to being statistically independent of the
magnetic field. We note that statistical tests for the statistical
independence are efficient only for continuous random vari-
ables, and their usefulness is affected by data binning, which
is unavoidable in the case of numerical results obtained at
finite spatial and temporal resolutions [42]. The arguments for
the statistical independence provided above are subject to the
same limitations, but they are simple, transparent and remain
stable when the data are binned differently.

To summarize, the spatial distributions of the CR par-
ticles are not only uncorrelated but also even statistically
independent of the magnetic field strength for both protons
and electrons. This is the consequence of the fact that the
distribution of particles with a relatively small Larmor radius
is controlled not by the field strength but by its structure, in
particular by magnetic traps which can occur in either weak
or strong magnetic field regions. This conclusion is even more
striking in the case of the CR electrons since their distribution
is indeed affected by the local magnetic field strength because
of their energy losses to synchrotron emission. And, yet, the
magnetic mirroring appears to dominate the distribution of the
electrons.

A. Implications for synchrotron intensity

The intensity of the synchrotron emission I of an astronom-
ical object depends on the number density of CR electrons ne

and the magnetic field strength B⊥ in the plane perpendicular
to the line of sight s (see, e.g., Ref. [3] for details),

I ∝
∫ L

−∞
neBα

⊥ ds , (10)

where α depends on the energy spectrum of the CR elec-
trons, s is the position along the line of sight with s = L
at the observer, and α = 2 can be adopted as a reason-
able approximation. In practice, Eq. (10) involves volume
integration over the beam cylinder. The integral can be
identified with the spatial average which, using the ergodic
assumption, can be replaced with the ensemble average,
leading to

I ∝
∫∫ ∞

0
p(ne, B2

⊥) dne dB2
⊥

=
∫ ∞

0
p(ne) dne

∫ ∞

0
p(B2

⊥) dB2
⊥ , (11)

where p(ne, B2
⊥) is the joint probability distribution of the

CR electron number density and B2
⊥ while p(ne) and p(B2

⊥)
are the corresponding marginal distributions, and the second

equality follows from the statistical independence of ne and
B2 established above. The statistical independence of ne and
B extends to ne and the powers of B⊥. Reverting back to spatial
averages, the synchrotron intensity reduces to the product of
two line-of sight integrals,

I ∝
∫ L

−∞
ne ds

∫ L

−∞
B2

⊥ ds . (12)

Each of these integrals is arguably easier to estimate or
constrain than the original integral, which can facilitate signif-
icantly the interpretation of radio astronomical observations in
terms of the CR and magnetic field properties.

We have demonstrated that ne and B2 are statistically
independent in the case of a random magnetic field. Corre-
spondingly, the splitting of the integral (10) into the product
of two simpler integrals, as in Eq. (12), is possible at those
spatial scales and particle energies where the CR electron
Larmor radius rL is comparable to the magnetic field scale,
i.e., mostly at the turbulent scales in the ISM. In particular,
this implies that the widely used assumption of the local,
pointwise equipartition between CR and magnetic energy den-
sities [9] is inapplicable at those scales.

An important factor, inaccessible with the test-particle sim-
ulations used above, is the possibility that the CR pressure
drives plasma motions that modify the magnetic field. This
can introduce connections between the CR and magnetic field
distributions and statistical properties. This aspect of the CR
propagation is largely unexplored. Another effect that can pro-
duce such connections is the large-scale dynamics of the ISM
such as the Parker instability. However, simulations of the
saturated states of the Parker instability have not revealed such
a correlation [43]. From their analysis of the synchrotron fluc-
tuations at a scale of order 100 pc in spiral galaxies, Stepanov
et al. [44] also suggest that the equipartition assumption is
inapplicable. These authors also find that the distributions
of the CR electrons and magnetic field strength are slightly
anticorrelated at those scales. Such a connection might be a
consequence of the dynamical effects of CRs on the interstel-
lar magnetic fields.

FIG. 17. The trajectory of a particle of the Larmor radius rL =
0.8 pc (based on the r.m.s. magnetic field strength of 5 µG) bouncing
between the mirrors located near the poles of a magnetic point dipole.
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VI. CONCLUSIONS

Through test particle simulations, we have demonstrated
that CR particle trapping between magnetic mirrors, which are
abundant in random magnetic fields, leads to persistent inho-
mogenities in the spatial distributions of both CR protons and
electrons when the particles are injected inhomogeneously
(but isotropically) and due to energy losses. When the par-
ticles are injected uniformly and isotropically, the Liouville
theorem precludes any significant, persistent inhomogeneities
in the particle distribution provided, in particular, that the
particle Larmor radius exceeds the scales at which the mag-
netic field varies (which may or may not be true in the ISM,
depending on the particle energy).

There are several consequences of the particle trapping,
beyond their inhomogeneous spatial distribution. In particular,
the probability distribution of the particle number density
n is close to being lognormal when the particles are in-
jected homogeneously and isotropically (and thus their spatial
distribution remains homogeneous), whereas it is more com-
plicated (developing an exponential tail at large values of n;
see Figs. 5 and 9) when the effect of the particle trapping on
their spatial distribution is significant. The number densities
of either protons or electrons are uncorrelated with the mag-
netic field strength B. Moreover the particle number densities
are statistically independent of B for both homogeneous and
inhomogeneous injections. The particle distributions in space
are controlled not by the strength of the magnetic field but
rather by its structures, in particular, by magnetic traps where
n can be larger between magnetic mirrors, where the magnetic
field is weaker.

The spatial distributions of protons and electrons are mu-
tually correlated when they are injected inhomogeneously.
The particle trapping and its effect on the distribution of CR
particles with respect to the magnetic field distribution has im-
plications for the interpretation of observations of synchrotron
emission produced by CR electrons in random magnetic fields
discussed in Sec. V A. We find no evidence to support the
assumption of the equipartition between CRs and magnetic
energy densities at the turbulent scales.

We believe that our conclusions, based on simulations
of particles of relatively high energies (due to numerical

constraints on the spatial and temporal resolution of the sim-
ulations), also apply to particles with energy of the order of
1 GeV that dominate the observable synchrotron emission of
galaxies. Particle mirroring cannot be captured by the stan-
dard fluid descriptions of CRs used in magnetohydrodynamic
simulations of the ISM. These kinetic effects remain to be
included into CR propagation models at turbulent scales.
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APPENDIX: SAMPLING OF PARTICLE TRAJECTORIES
AND NUMBER DENSITY ESTIMATES

In addition to the examples of magnetic traps presented in
Secs. II A and II B, we also considered particle trapping in a
point-dipole magnetic field aligned with the z axis, given in
Cartesian coordinates by⎛⎝Bx

By

Bz

⎞⎠ = 3M

r5

⎛⎝ xz
yz

z2 − 1
3 r2

⎞⎠, (A1)

where r is the spherical radius and M is the dipole mo-
ment. The magnetic field is defined in a cubic region of
dimensionless edge length 2π , and the particles are injected
either at random positions uniformly distributed throughout
the region or in the spherical shell, as discussed in Sec. III A.
We consider particles of a constant energy corresponding to
the Larmor radius rL = 0.8 pc (with the dimensionless length
2π corresponding to 100 pc) for the magnetic field strength
of 3.36 µG at the equator, (z, r) = (0, 5.35) pc. The typical
particle trajectory is shown in Fig. 17. The particles gyrate

FIG. 18. The relative number density n/〈n〉 (color coded) of CR protons in the cross section of the dipole trap at x = 0 (integrated over
|x| � 6.4 pc) at t = 200 yr for (a) homogeneous injection with reflective boundary condition, (b) homogeneous injection with reinjection, and
(c) injection and reinjection in a spherical shell. The particle Larmor radius is rL = 0.8 pc.
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FIG. 19. The relative number density of particles in a uniform magnetic field (A2) in the case of homogeneous injection with (a) homoge-
neous reinjection of particles lost through the boundaries of the computational domain and (b) reflecting boundary conditions. The sampling
bias produces spurious inhomogeneity in the particle distribution in (a).

around the field lines, drift in azimuth φ, and are reflected
near the poles where the magnetic field satisfies the mirroring
conditions for their energy and pitch angle. This example,
where the intuitive expectations for the particle distribution
are available, is useful to identify—and avoid—a bias in the
particle number density estimates associated with the particle
injection algorithms.

Figure 18 illustrates the particle distribution in the dipole
trap for various injection schemes. The difference is signifi-
cant, and, apart from the difference in the injection algorithm,
the fact that the particle number density is obtained by sam-
pling particle trajectories as described in Sec. III C contributes
to it: longer trajectories contribute more to n than the shorter
ones.

The sampling bias is best understood in the case of a
uniform, inclined magnetic field in a cubic region, e.g.,

Bx = By = Bz , (A2)

where the field lines through the central region are longer than
those in the corners which are not connected by magnetic
lines. Since the particle trajectories follow the field lines, the
central locations are visited by particles injected uniformly
at a larger set of locations. With particle losses through the
region boundaries and their reinjection at random positions,
the central regions therefore have a higher measured density.
Figure 19 shows the distribution of particles uniformly in-
jected and reinjected into the magnetic field (A2).

To avoid the bias, we use reflecting boundary conditions
whereby the particle velocity is reversed in direction to bring
the particle back into the region as it reaches the face of
the cubic computational domain. As shown in Fig. 19, this
results in an appropriately uniform particle distribution. The
bias is much less significant in random magnetic fields where
all or most magnetic lines have similar lengths spanning the
simulation domain and there is more freedom in the choice of
the boundary conditions.
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