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Investigation on the near-field cutoff effect in a subwavelength plasma shell
with near-zero permittivity
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Although the plasma-induced receiving and radiating near-field cutoff phenomena in the subwavelength
regime are found of crucial importance in electromagnetic (EM) signal transmissions and plasma property
studies, their mechanisms to a large extent remain unclear and undistinguished. In this paper, in the perspective
of field and energy transfer, it is demonstrated that the cutoff in the near-field regime is completely different
from that in the geometric optical regime. Results show that, for the receiving mode, epsilon-near-zero (ENZ)
plasmas can be treated as a nearly ideal EM fluid, and thus, EM waves are restricted into the plasma channel.
For the radiating mode, on the other hand, it is the destructive interference between the electric dipole fields of
the antenna and the ENZ plasma that results in vanishing far-field radiation. As an important supplement to the
existing cutoff theories, our results not only offer clearer physical insights into the near-field cutoff effect but
also provide a helpful reference for cutoff-related practical applications in various frequency bands.

DOI: 10.1103/PhysRevE.107.065204

I. INTRODUCTION

As a counterpart of noble metals in the visible light regime,
nonmagnetized low-temperature gaseous plasmas have shown
great potential in the microwave regime for advanced elec-
tromagnetic (EM) manipulation, including waveguides [1,2],
filters [3,4], antennas [5,6], and invisible cloaks [7], and have
attracted increasing attention in the past two decades. One of
the research highlights is to extend the characteristic scale
of interaction between plasmas and EM waves into the sub-
wavelength regime, where the smallest length scale of the
plasma is less than the typical EM wavelength. In this regime,
EM properties of plasmas become quite distinct from that
of the bulk. Take cutoff phenomena as an example in EM
signal transmissions and plasma property studies. In general,
the dispersion relation of high-frequency optical EM waves
propagating in unmagnetized plasmas is given by [8]

ω2 = ω2
pe + k2c2, (1)

where ω is the angular frequency of the EM wave, ωpe is the
plasma frequency, k is the wave number in plasmas, and c
is the speed of light in vacuum. It can be seen easily that,
for overdense plasmas, namely, ωpe >ω, k2 becomes negative,
resulting in the EM wave amplitude decaying exponentially
in a distance of ∼ 1/|k|. The wave is then reflected by the
surface of plasmas. Therefore, ω = ωpe is also known as the
cutoff frequency, and the corresponding electron density is
called the critical density. The cutoff condition is thus given
by k = 0. The physical insight of such a cutoff is very clear.

*Corresponding author: nieqiuyue@hit.edu.cn

For ωpe <ω, the wave energy, characterized by the frequency
ω, is partially used to excite the plasma oscillation, char-
acterized by ωpe, while the rest can still propagate in the
plasma with a wave number k. For ωpe =ω, the wave energy is
totally used to excite the plasma oscillation with nothing left
for further propagation. For ωpe >ω, however, in addition to
the plasma oscillation, the wave can still penetrate the over-
dense plasma in an exponentially decayed evanescent form,
as ∼ e−|k|x. Nevertheless, the skin depth (∼ 1/|k|) is much
less than the typical spatial length of the plasma and thus
approximately ignored. For spatially nonuniform plasmas, in
the geometric optical approximation where the spatial scale is
much longer than the EM wavelength, the cutoff condition is
also characterized by k = 0, where k = dS/dx, with x along
the transmission direction and S the eikonal function. The
physical insight of the cutoff in such nonuniform plasmas
is the same as that in the approximately uniform plasmas,
as discussed above. The cutoff phenomena have then been
widely investigated in various fields, such as plasma density
diagnosis [9–11], radar detection [12,13], and wireless com-
munication [14]. Nevertheless, in the subwavelength regime,
the geometric optical approximation is no longer valid, and
particularly the skin depth is on the same order or even much
longer than the plasma size. The wave propagation is thus
no longer vanished in the overdense region (ωpe >ω) but
penetrated through the subwavelength plasma. New features
may then appear. For example, an EM wave can partially
pass through an overdense plasma slab with a thickness
that is thinner than the electron skin depth [15]. Also, it
has been demonstrated that EM waves can perfectly tunnel
through subwavelength channels with near-zero permittivity
[epsilon-near-zero (ENZ)] [16,17]. Moreover, for enclosed
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FIG. 1. Schematics of a uniform subwavelength plasma shell in
the (a) receiving mode [the x−z cross-section of a three-dimensional
(3D) model with y = 0 ], and (b) radiating mode [the r−z cross-
section of a simplified two-dimensional (2D) axisymmetric model
with ϕ = 0 ].

subwavelength plasmas where the near-field effect plays an
important role, e.g., a plasma shell, cutoff can be reshaped due
to the existence of localized modes, referred to the near-field
cutoff effect hereafter. As a result, receiving and radiating
efficiencies of an electrically small antenna (ESA) modulated
by a subwavelength plasma shell exhibit a Fano-like line
shape [5,18–22] as ωpe increases. Particularly, experimental
results have shown that, different from the cutoff effect in the
geometric optical regime where the wave is almost vanished in
the entire ωpe >ω region, the receiving and radiating efficien-
cies in the near-field scenarios only reach a local minimum
at ω= ωpe [5,9,18,21,22]. Concerning the mechanisms of the
near-field cutoff effect, existing analyses are mainly based on
the geometric optical approximation, which is invalid in sub-
wavelength circumstances. Although electric circuit models
[23,24] may provide a macroscopic picture of the near-field
cutoff effect, clearer and deeper physical insight is still de-
sirable. Also, the difference between receiving and radiating
near-field cutoffs remains unexplored. Therefore, the focus of
this paper is to make a comprehensive and in-depth investiga-
tion on the mechanisms of near-field cutoff effect, particularly
from the perspective of field and energy transfer.

II. SIMULATION MODEL

In this paper, a uniform but subwavelength plasma shell,
as shown in Fig. 1, is applied to investigate the mechanism of
the near-field cutoff by full-wave finite element simulations
(COMSOL Multiphysics [25], version 5.6). Here, the inner
and outer radii of the plasma shell are rin and rout, respectively,
and the background medium, inside and outside the shell, is
air. Also, the relative complex permittivity of plasma is given
by (a time dependence of oscillation, e jωt , is assumed)

εp(ω,ωpe) = 1 − ω2
pe

ω2 + ν2
− i

ω2
peν

ω(ω2 + ν2)
= ε′

p − iε′′
p , (2)

where v is the collision frequency. Note that the plasma
shell operates in two modes, namely, receiving [Fig. 1(a)]
and radiating modes [Fig. 1(b)]. For the former, the x−z
cross-section of a three-dimensional (3D) model (y = 0) is
schematically shown in Fig. 1(a), where the plasma is illu-
minated by an incident plane wave, propagating along the x
axis with a z-polarized electric component. To evaluate the
receiving characteristics, we defined the receiving gain (Grec)
based on the norm of electric field at the center of the shell
[E(0,0,0), as indicated by the red star in Fig. 1(a)]:

Grec = 20log10

( |Ewp(0, 0, 0)|
|Enp(0, 0, 0)|

)
, (3)

where the subscript wp designates with the plasma shell, and
np means without the plasma shell. For the latter, considering
cylindrical symmetry, the r−z cross-section (ϕ = 0) of a sim-
plified two-dimensional (2D) axisymmetric model is shown
in Fig. 1(b), in which the plasma oscillation is excited by a
coaxially fed ESA located at the center of the shell. Moreover,
the arm length, radius, and feed gap of the ESA are la, ra, and
ga, respectively. Like Grec, radiating gain (Grad) is defined as

Grad = 20log10

( |Ewp(λ/4, 0)|
|Enp(λ/4, 0)|

)
, (4)

where λ is the wavelength of EM waves in vacuum. Note that
the testing point (λ/4,0), as marked by the red star in Fig. 1(b),
situates at the far field of the ESA (by λ/4 > λ/2π ).

III. RESULTS AND DISCUSSION

Without loss of generality, we studied a typical case in
microwave communication with the frequency of the incident
EM wave and the operating frequency of the ESA both setting
as 1 GHz, and the plasma is weakly collisional with v = 0.1
GHz. Additionally, the plasma shell is of subwavelength with
rin = 1 cm and rout = 2 cm (rout/λ1GHz = 1

15 � 1). As for the
ESA, la = 0.3 cm, ra = la/20, ga = la/100, and averaged in-
put power is 1 W. On this basis, receiving (Grec) and radiating
(Grad) gains under different normalized plasma frequencies
(ωpe/ω1GHz) varying from 0 to 1.1 are shown in Fig. 2. It
can be observed that Grec and Grad perfectly coincide with
each other, consistent with the reciprocity theorem of passive
media. Moreover, different from the cutoff effect of bulky
plasmas, Grec and Grad simultaneously reach a local minimum
or exhibit an antiresonance line shape around ωpe/ω1GHz = 1.

A. Receiving mode

The physical insights of receiving and radiating features
of near-field cutoffs are then analyzed. For the receiving
mode, the distributions of electric field (E) and time-averaged
Poynting flux (Pav), where plasma frequency is less than
(ωpe/ω1GHz = 0.8083), near (ωpe/ω1GHz = 1.0022), or larger
than (ωpe/ω1GHz = 1.0665) the cutoff frequency, are shown
in Figs. 3 and 4, respectively. For E, it can be observed in
Fig. 3(b) that the electric field is mostly distributed in the
plasma shell when ωpe/ω1GHz = 1.0022, which gives rise to
the cutoff in the receiving mode. By contrast, in the vicinity
a bit far from the cutoff frequency, the electric field partially
crosses through the inner boundary of the plasma shell and
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FIG. 2. Receiving (Grec) and radiating (Grad) gains under differ-
ent ωpe/ω1GHz(0 � ωpe/ω1GHz � 1.1).

gets into the central air region, and thus, the cutoff is under-
mined, as shown in Figs. 3(a) and 3(c). The cutoff picture
is much clearer for Pav distribution. Specifically, the flux is
squeezed into the plasma shell with no leaking to the central
region, in the cutoff of ωpe/ω1GHz = 1.0022 [Fig. 4(b)]. To
the other cases a bit away from the cutoff, the energy flux
partially leaks into the central region to break the cutoff.
Of particular interest is that the streamline of Pav exhibits a
detour effect in the plasma shell to create a cloaking effect
for the central region, when ωpe/ω1GHz = 1.0022, as shown in
Fig. 4(b). The flux detour effect is clearly reduced in the other

FIG. 3. Distributions of electric field E in the x−z plane for
the receiving mode with (a) ωpe/ω1GHz = 0.8083, (b) ωpe/ω1GHz =
1.0022, and (c) ωpe/ω1GHz = 1.0665.

FIG. 4. Distributions of the time-averaged Poynting flux Pav in
the x−z plane for the receiving mode with (a) ωpe/ω1GHz = 0.8083,
(b) ωpe/ω1GHz = 1.0022, and (c) ωpe/ω1GHz = 1.0665.

two cases of ωpe/ω1GHz = 0.8083 and 1.0665, as shown in
Figs. 4(a) and 4(c).

Further, considering that the simulation model is sym-
metric along the y direction, we defined the t- (time-)
and y-averaged complex Poynting vector in the x−z plane,
namely, P̃(x−z), by the y-averaged electric (Ẽ) and magnetic
(H̃) fields, written as

P̃(x−z) = Ẽ × H̃∗

2
, (5)

where Ẽ = ∫
y Edy and H̃ = ∫

y Hdy. Then the divergence and

curl of P̃(x−z) in the plasma shell are given by

∇ · P̃(x−z) = −ω

2
ε0ε

′′
p |Ẽ|2 + iω

2
(ε0εp

′|Ẽ|2 − μ0|H̃|2), (6)

∇ × P̃(x−z) = 1
2 [(H̃∗ · ∇)Ẽ − (Ẽ · ∇)H̃∗ + Ẽ(∇ · H̃∗)

− H̃∗(∇ · Ẽ)]. (7)

It should be noted that the real (ε′
p) and imaginary (ε′′

p ) parts
of the relative plasma permittivity vanish when ωpe/ω1GHz ∼
1, where the plasma is then equivalent to an ENZ medium.
In such a situation, since ε′′

p → 0, Re(∇ · P̃(x−z) ) → 0. Also,
according to Eq. (7), ∇ × P̃(x−z) = 0 due to the following
three reasons [26]: (1) the ENZ plasma is passive, and thus,
∇ · Ẽ = 0 and ∇ · H̃ = 0 (excluding boundaries); (2) as Ẽy =∫

y Eydy = 0, by Ẽ = x̂Ẽx+ẑẼz and H̃ = ŷH̃y, then (H̃∗ · ∇)Ẽ

must be vanished; and (3) by Ẽ = ∇H̃y × ŷ/(iωε0εp), H̃y in
the ENZ plasma shell should be a constant to prevent the
divergence of the electric field, and thus, (Ẽ · ∇)H̃∗ also
makes no distribution to the curl of P̃(x−z). Based on the above
discussion, the ENZ plasma can be approximately regarded
as an ideal EM fluid [26], where P̃(x−z) and Ẽ are parallel and
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FIG. 5. Three-dimensional (3D) scattering patterns, in the norm
of the electric far field, for the radiating mode, with (a) ωpe/ω1GHz =
0.8083, (b) ωpe/ω1GHz = 1.0022, or (c) ωpe/ω1GHz = 1.0665.

perpendicular to the streamlines, respectively, by fluid dynam-
ics. As a result, when an ENZ plasma is surrounded by two
relatively harder EM walls (air), Pav tends to be restricted in
the plasma shell and naturally represents a detour distribution.

B. Radiating mode

For the radiating mode, 3D scattering patterns of the norm
of the electric far field, where the normalized plasma fre-
quency ωpe/ω1GHz = 0.8083, 1.0022, or 1.0665, less than,
near, or larger than unity, respectively, are shown in Fig. 5.
Obviously, the radiating efficiency is omnidirectionally sup-
pressed at the cutoff [Fig. 5(b)] in comparison with those
around the cutoff frequency [Figs. 5(a) and 5(c)].

Additionally, the relation between the radiating gain (Grad,
in orange) and the reflection coefficient (S11, in blue) of
an ESA and its effective input impedance under different
ωpe/ω1GHz(0 � ωpe/ω1GHz � 1.1) are presented in Figs. 6(a)
and 6(b), respectively. It can be clearly seen in Fig. 6(a) that,
different from Grad with a minimum at ωpe/ω1GHz ∼ 1, S11
constantly decreases with a rising ωpe/ω1GHz of 0 to 1.1. In
other words, the far-field radiating power experiences a cutoff,
while more EM energy flows out of the feeding source. On
the other hand, in Fig. 6(b), one can see that real [Re(Zin), in
blue] and imaginary [Im(Zin), in orange] parts of the effective
input impedance are positively and negatively proportional to
ωpe/ω1GHz, respectively. It is mainly the increase of Re(Zin)
that optimizes the matching between an ESA and the trans-
mission line. Next, in the perspective of field interference, we
utilized the multipole expansion method [27,28] to analyze the
contributions of the antenna and plasma to far-field radiation.
Note that only the electric dipole (ED) element is considered
in this paper since the size of the plasma shell is sufficiently
small compared with the operating wavelength of the ESA (by
rout/λ1GHz = 1

15 � 1). Correspondingly, the ED moments of

FIG. 6. (a) The radiating gain (Grad, in orange) and the re-
flection coefficient (S11, in blue); (b) real [Re(Zin), in blue)
and imaginary [Im(Zin), in orange] parts of the effective input
impedance of an electrically small antenna (ESA) under different
ωpe/ω1GHz(0 � ωpe/ω1GHz � 1.1).

the plasma (Pp) and the antenna (Pa) are expressed as

Pp
r,ϕ,z = 1

iω

∫∫∫
plasma

J p
r,ϕ,zdV , (8)

Pa
r,ϕ,z = 1

iω

∫∫
antenna

Ja
r,ϕ,zdS, (9)

where J p
r,ϕ,z = iωε0(εp − 1)Er,ϕ,z is the induced current den-

sity of plasma (ε0 is the vacuum electric permittivity, and E is
the electric field), and Ja

r,ϕ,z is the surface current density along
the ESA. On this basis, individual ED contributions of antenna
(EDa) and plasma (EDp), as well as the total ED (EDt ), to
far-field radiation can be obtained by

EDa = k4
0

12πε2
0cμ0

(∣∣Pa
r

∣∣2 + ∣∣Pa
ϕ

∣∣2 + ∣∣Pa
z

∣∣2)
, (10)

EDp = k4
0

12πε2
0cμ0

(∣∣Pp
r

∣∣2 + ∣∣Pp
ϕ

∣∣2 + ∣∣Pp
z

∣∣2)
, (11)

EDt = k4
0

12πε2
0cμ0

(∣∣Pp
r + Pa

r

∣∣2 + ∣∣Pp
ϕ + Pa

ϕ

∣∣2 + ∣∣Pp
z + Pa

z

∣∣2)
,

(12)
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FIG. 7. Electric dipole (ED) contributions of antenna (EDa, the
dark blue line) and plasma (EDp, the dark green line), as well as total
ED (EDt , the red line), when 0 � ωpe/ω1GHz � 1.1.

where k0, c, and μ0 denote the wave number, speed of
light, and magnetic permeability in vacuum. Then EDa, EDp,
and EDt under different ωpe/ω1GHz(0 � ωpe/ω1GHz � 1.1)
are shown in Fig. 7. It can be observed that EDp (dark green)
is positively proportional to ωpe/ω1GHz, while EDa (dark
blue) is nearly independent of ωpe/ω1GHz. Interestingly, when
ωpe/ω1GHz ∼ 1, EDa and EDp are equal in quantity, while EDt

(red) goes to zero.
It should also be noted that, since the ESA is z polarized,

the intensities of ED moments of the ESA and plasma in the
z direction are then dominant over other directions. To further
reveal the mechanism of the vanishing EDt at ωpe/ω1GHz ∼ 1,
we analyzed the real and imaginary parts of Pa

z and Pp
z un-

der different ωpe/ω1GHz(0 � ωpe/ω1GHz � 1.1), with results
shown in Figs. 8(a) and 8(b). One can find that, in the vicinity
of the cutoff frequency, the absolute values of the real parts of
Pa

z and Pp
z [Fig. 8(a)] are much greater than their imaginary

parts [Fig. 8(b)]. In addition, it can be seen in Fig. 8(a) that
−Re(Pa

z ) and Re(Pp
z ) intersect at ωpe/ω1GHz ∼ 1, where the

real parts of Pa
z (solid dark blue) and Pp

z (red) are equal in
intensity but with opposite signs. As a result, the far-field
radiation is greatly eliminated, as EDt → 0, shown by the red
line in Fig. 7, due to the destructive interference of ED fields
of the antenna and plasma. In this case, the whole system can
be regarded as a nonradiating source [28].

So far, the physical insights of near-field cutoff effects
on receiving and radiating have been discussed. However,
it should be noticed that the significance of our results is
not limited to the theoretical aspect. More broadly, the the-
ory developed here can be applied for explaining practical
near-field cutoff situations of receiving and/or radiating and
can offer helpful guidance to designing related state-of-the-
art micro/nano-optical devices. For instance, Kim et al. [29]
proposed a technique of electron density diagnosis based on
the transmission cutoff of microwave perturbations in plasma,
called the wave cutoff method. In the experiment, the length
and diameter of the radiating monopole antenna are 5 and 0.1
mm, respectively, and the gap between radiating and detecting

FIG. 8. In the band of 0 � ωpe/ω1GHz � 1.1, (a) the real part of
Pa

z (the solid dark blue line, with −Re(Pa
z ) in dashed dark blue), and

the real part of Pp
z (the red line), and (b) the imaginary parts of Pa

z

(the purple line) and Pp
z (the dark green line).

antennae is several millimeters. In terms of the working fre-
quency, ranging from 10 kHz to 3 GHz, the cutoff in this case
is a typical subwavelength problem. In addition, considering
the existence of an ionic sheath between the plasma and the
metallic antenna, which can be approximately regarded as a
layer of vacuum [30], the wave cutoff method is equivalent to
the radiating near-field cutoff. In comparison with Kim’s [29]
theory that an EM wave is reflected at the cutoff frequency,
our explanation is more consistent with the antiresonance
transmission line shape observed in experiments.

IV. CONCLUSIONS

To conclude, we have in this paper systematically revealed
and distinguished the mechanisms of receiving and radiating
near-field cutoff effects based on a subwavelength plasma
shell model. It is shown that, for the receiving mode, the ENZ
plasma shell resembles a nearly ideal EM fluid where, at the
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cutoff, time-averaged power flow is mainly transmitted via
the plasma shell. As a result, the EM energy that penetrates
the internal air space is substantially reduced. In contrast,
for the radiating mode, since the ED moments of the antenna
and the ENZ plasma in the dominant direction are almost
equal in intensity but antiphase, their destructive interference
leads to vanishing far-field radiation. Our results may of-
fer opportunities in implementing plasma-based filters, EM
shielding devices, and nonradiating sources in the microwave

regime and be readily extended to other frequency bands (e.g.,
terahertz or optical regime) for similar applications.
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