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Formation of multiple BGK-like structures in the time-asymptotic state
of collisionless Vlasov-Poisson plasmas
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The time-asymptotic state of a finite-amplitude perturbation in a collisionless and Maxwellian plasma is
typically represented as a steady state of two nonlinearly superposed, counterpropagating Bernstein-Greene-
Kruskal (BGK) modes. Using high-resolution Vlasov-Poisson simulations, we show that the plasma evolves
self-consistently into a time-asymptotic state of multiple vortexlike structures that gradually fill the phase space
and reduce filamentation. This occurs without the need for external forcing or the presence of an energetic plasma
population. This finding suggests that the time-asymptotic regime of the plasma is rather akin to a nonlinear
superposition of multiple BGK-like modes associated with nearly constant phase-speed waves. The electric field
and the space-averaged particle distribution function exhibit a power-law broad spectrum, which is consistent
with an energy cascade towards smaller scales in both position and velocity spaces.
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I. INTRODUCTION

Finite-amplitude spatial perturbations or external forcing
in a collisionless plasma can lead to undamped, solitary, and
nonlinear states in which resonant particles become trapped in
potential wells. This is observed as localized vortices or holes
in the phase space of particles, which can last for long periods
of time [1–5]. In particular, this situation is found during the
nonlinear Landau damping of Langmuir waves, in which an
initial electrostatic perturbation on an unmagnetized electron
plasma leads to a saturated state where electrons are trapped
by the electrostatic potential around the phase speed of the
perturbed wave mode [1,6–8]. Similar phenomena have been
found in observational research as trapping of electrons along
the magnetic field lines in near-Earth environments [9–15], in
experimental research dedicated to Landau damping and par-
ticle trapping [16–18], in electron beam injection into low-β
plasma columns [19], and in simulations of collisionless elec-
tron plasmas with Maxwellian [1,20–22] and non-Maxwellian
distribution functions [3,4,23,24].

Phase-space vortices in electrostatic plasmas are exact
solutions of the one-dimensional Vlasov-Poisson system of
equations known as Bernstein-Greene-Kruskal (BGK) states
[25–28]. For a BGK state to be stable the distribution function
of the trapped particles must not be monotonically decreasing
[29], and the background distribution supporting particle trap-
ping must have less than three maxima [30]. These conditions
allow the propagation of stable phase-space holes for long
times in plasmas with single-maximum distributions, such as
Maxwellian distributions [30].
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The long-time stability of one-dimensional BGKs are af-
fected by numerical diffusive effects caused by the finite
resolution of the position and velocity grids, modifying the
phase-space structures observed in Vlasov-Poisson simula-
tions [31–33]. Also, multiple one-dimensional phase-space
holes are unstable to the growth of sidebands, which disrupt
the state by merging the holes when the wavelength of the
perturbations is smaller than the length of the spatial domain
[34–36]. Indeed, it has been observed that multiple neigh-
boring BGK structures evolve toward a time-asymptotic state
consisting of a single stable hole in long-term Vlasov-Poisson
simulations [37].

The formation of multiple regions of particle trapping in
the distribution function can be approximately represented as
a nonlinear superposition of individual BGK modes, where
the electrostatic potentials are linearly superposed and the
distribution function is built in a piecewise way [38,39]. This
approximation is supported by Vlasov simulations [35,40–42]
and by theoretical works [2,7,43,44]. However, this nonlinear
superposition does not capture all structures formed in the
distribution function [40,41].

This work addresses a long-standing academic question
about the long-time evolution of the nonlinear Landau damp-
ing problem. To date, there are two known paradigms describ-
ing the time-asymptotic state of one-dimensional Maxwellian
electron plasmas undergoing nonlinear Landau damping. One
of them states that the time-asymptotic state corresponds to a
nonlinear superposition of two individual counterpropagating
BGK states [1]. In this case, the phase space develops stable
vortical structures after Landau damping stops [20], with the
space-averaged distributions exhibiting characteristic plateaus
at velocities around the BGK’s phase velocities [1,3,32,35].
The second paradigm states that the time-asymptotic state
is akin to a nonlinear superposition of multiple BGK states
[2,43].

Our results suggest that the physical picture of the time-
asymptotic state of collisionless Vlasov-Poisson plasmas is far
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richer than the standard view of two stable BGK modes only,
thus rather akin to the framework of multiple BGK-like states
[2]. Indeed, it is shown that multiple small phase-space holes
occur in a wide range of velocities below the Langmuir phase
speed, |v| < vL. Each hole is associated with electron plasma
waves (EPWs) whose phase speeds are similar to the prop-
agation speed of the corresponding holes. The electric field
reaches a time-asymptotic state characterized by a power-law
energy spectrum, indicating an energy cascade process. In
addition, the space-averaged distribution function exhibits a
piecewise power-law velocity spectrum, showing a reduction
in phase-space filamentation, suggesting that the development
of small-scale electron holes is self-similar and intermittent.

II. VLASOV-POISSON NUMERICAL SIMULATIONS

The propagation of high-frequency oscillations in colli-
sionless and unmagnetized plasmas is studied in terms of the
one-dimensional Vlasov-Poisson system of equations:

∂ f

∂t
+ v

∂ f

∂x
+ e

m

∂φ

∂x

∂ f

∂v
= 0 , (1)

∂2φ
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= 4πe

(∫ ∞

−∞
dv f − n0

)
, (2)

where f = f (x, v, t ) is the electron phase-space distribution
function; φ = φ(x, t ) is the electrostatic potential; and −e,
m, and n0 are the charge, mass, and density of electrons,
respectively. The ions are considered as a motionless neutral-
izing background with density ni = n0, and periodic boundary
conditions are assumed in x.

To solve Eqs. (1) and (2), an FFT pseudospectral code
was written in the Julia programming language [45]. A semi-
Lagrangian splitting scheme is employed [46], with spectral
interpolation in the Fourier transformed phase space. The
time advance is performed using an optimized second-order
symplectic integrator [47]. Spectral interpolation introduces
an exponential error that decreases with the number of nodes
[48,49], so that less error is achieved for the same number
of nodes compared to, for example, polynomial-spline in-
terpolation. A Gaussian-like filter of the form e−36(ν/νmax )36

[50] is used to smooth out abrupt variations of the velocity
distribution function at small velocity scales, where ν is the
conjugate variable of v and νmax is the maximum allowed
value of ν. Although not shown here, the Vlasov code has
been successfully tested on several problems, e.g., Manfredi
[1], Raghunathan and Ganesh [3], Galeotti and Califano [32],
Rupp et al. [20], Califano et al. [33], among others.

The initially single-mode perturbed electron phase-space
distribution is

f (x, v, 0) = f0(v)[1 + ε cos(k1x)], (3)

where ε and k1 are the amplitude and wave number of the per-
turbation, respectively, and f0(v) the unperturbed Maxwellian
distribution function,

f0(v) = n0√
2πvth

exp

(
− v2

2v2
th

)
, (4)

where vth = √
kBT/m is the electron thermal speed, kB the

Boltzmann constant, and T the electron temperature.

Simulations are performed with a box-length L = 2π/k1,
and velocity domain |v|/vth < 7.7; phase space is discretized
into Nx = 211 = 2048 and Nv = 217 = 131 072 grid points in
the space and velocity components, respectively; the time
step is ωp 	t = 0.05, with a maximum time simulation run
of ωptmax = 14 000, where ωp =

√
4πe2n0/m is the electron

plasma frequency; and perturbation parameters are ε = 0.04
and k1vth/ωp = 0.4. The effects of changing the velocity grid
resolution 211 � Nv � 217 on the formation of phase-space
holes are shown in later sections.

III. NONLINEAR LANDAU DAMPING

Figure 1(a) shows the time evolution of the first Fourier
mode of the electrostatic potential in a long-time simula-
tion. Initially, two counterpropagating Langmuir waves are
excited with frequencies ωL/ωp � ±1.285 and phase speeds
|vL/vth| � 3.213. The energy decreases monotonously with
damping rate γL/ωp � −0.06608, which is consistent with
linear Landau theory up to a time ωpt < 30. Then Landau
damping is arrested at ωpt1 � 50 and the amplitude of the per-
turbed mode grows until its saturation at a time ωpt2 � 125.
After t > t2 and until the end of the simulation, the electro-
static potential oscillates irregularly around a finite amplitude
eφ∗/kBT � 0.01, suggesting that the plasma has achieved a
time-asymptotic state [2,6].

Trapping of electrons is observed several time-steps after
saturation ttrap > t2. Indeed, Figs. 1(b)–1(e) show the forma-
tion of a vortex centered at v = vL that closes completely
at ωpttrap = 150. Due to the symmetry of the distribution
function, another vortex is also formed at v = −vL. These
structures (hereafter referred to as Langmuir vortices) cor-
respond to highly localized deficits or holes in the electron
phase-space density that rotate due to resonant interaction
with the self-consistent electric potential [5].

Inside the vortex, inward spiral arms are formed due to
the nearly parabolic electrostatic potential at the center of
the trapping region. This sets a nearly constant bouncing
frequency for the trapped electrons [51–54], where electrons
closer to the center tend to exhibit coherent motion. Com-
bined with the motion of particles with different velocities,
this creates a region of bunched electrons that introduces
short-wavelength fluctuations in the electrostatic potential.
Toward the borders of the trapping region, the bouncing
frequency for electrons varies depending on their location
and the motion is less coherent [53]. These structures rep-
resent strongly trapped electrons undergoing Langmuir wave
resonance.

The observed dynamics in Figs. 1(b)–1(g) is also consistent
with the development of the bunching instability shown by
Hara et al. [52]. Once the instability has saturated, filamenta-
tion spreads particles within the hole. The process replicates
itself several times during the simulation and becomes quasis-
tationary from ωpt � 1300. Figures 1(f)–1(g) show that the
Langmuir vortices and the spiraling arms are persistent until
the end of the simulation.

Similar structures have been observed in electron beam-
plasma configurations exhibiting instability, in electron beams
interacting with a trapping wave [55–58], and in the context
of particle trapping generated by an external chirp-drive as
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FIG. 1. (a) Log-log time evolution of the envelope of the first Fourier mode of the electrostatic potential. The dashed gray line corresponds
to the linear Landau damping prediction. Several times of interest are marked. [(b)–(e)] Electron phase-space snapshots during the formation
of the Langmuir electron-hole near v = vL at times around t = t2 and [(f)–(g)] during the quasistationary state t � t3. The color bar represents
the fluctuations δf (in units of n0/vth) of the distribution function with respect to the unperturbed Maxwellian f0.

shark-like structures within the regions of trapping [4,21].
Studies on the trajectories of beam electrons in a trapping
potential show that particles may be classified into a sea of
particles with chaotic trajectories uniformly distributed and
groups of bunched electrons oscillating coherently [57,59,60]
with stable trajectories around the structures [61].

IV. FORMATION OF SMALL-SCALE
PHASE-SPACE VORTICES

Figure 2(a) shows the electrostatic potential φ = φ(x, t )
filtered to low frequencies |ω/ωp| < 0.6. The superposition
of counterpropagating Langmuir waves of the same amplitude
and phase-speed results in a standing wave with localized
positive potential at x = L/2 with enhanced amplitude after
ωpt > 1000 that seems to be persistent until the end of the
simulation. Then, after ωpt3 = 1180 two pairs of solitary and
localized electrostatic waves start to propagate with velocities
|v1/vth| � 0.06 and |v2/vth| � 0.014. After t > t5, various

modes start to grow, propagating with different but constant
phase speeds.

Figure 2(b) shows that at t = t3 a completely closed vortex
centered at x = L/2 and v = 0 has formed, as expected from
the symmetry in the velocity space and the beating of the
waves propagating in the opposite directions. Then distur-
bances in the filamentary structure of the velocity distribution
around ±v1 and ±v2 evolve into completely closed vortices
at ωpt4 = 1800, as shown in Fig. 2(c). The position-averaged
distribution function δ f = 〈 f 〉x − f0, is shown as white lines
in Figs. 2(b)–2(g). In particular, at t = t4 this quantity exhibits
deviations from the regular oscillations seen at t = t3 specially
at v = 0, v1, and v2. This is a signal that trapping is occurring
there, and that these vortices may also be characterized as
BGK-like structures [20,59,62].

Note that the velocities of the vortices in Fig. 2(c) are ap-
proximately equal to |v1| � 	v1/2 and |v2| � 	v2/2, where
	v1/vth � 0.12 and 	v2/vth � 0.03 are the velocity gaps
between the spiral arms rotating inside the Langmuir vortices
shown in Fig. 1(f). Although not shown here, as far as we have
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FIG. 2. (a) Electrostatic potential φ = φ(x, t ) filtered to low frequencies |ω/ωp| < 0.6. [(b)–(g)] Fluctuations δ f = f − f0, in units of
n0/vth, of the electron phase-space distribution for velocities around v = 0 and for 0 < x < L. Solid white lines are the spatially averaged
fluctuations of the distribution function δ f (v) = ∫

dxδf (x, v).

checked, this pattern also occurs for different values of the
perturbation amplitude ε. This suggests that the vortices with
velocities v1 and v2 result from nonlinear coupling between
the spiral arms inside the Langmuir holes.

At times between ωpt6 = 2800 and ωpt7 = 3750,
Figs. 2(d)–2(e) show that vortices of different scale sizes start
to fill the electron phase space. This resembles the description
for phase-space turbulence in electrostatic plasmas [63–66].
At longer times t > t7, Figs. 2(f)–2(g) shows that some of
the vortices have disappeared, possibly by coalescence with
other holes. The hole at v = 0 is still present at the end
of the simulation run, while the holes at v1 and v2 look
indistinguishable from the remaining holes.

V. ELECTRON DENSITY ω-k SPECTRUM

Figure 3 (left) shows snapshots of the full phase-space
electron density at several times up to ωpt = 3750. In addition
to the vortices discussed before in Figs. 1 and 2, another pair
of counterpropagating holes are visible at v = ±1.07vth �
±vL/3, and v = ±1.61vth � ±vL/2, as shown in Fig. 3(e)
at ωpt5 = 2000. At the times between t5 and t6, vortices of
different sizes and localized perturbations in the distribution
function appear at several specific velocities within the range
0.2 � |v/vth| � 2.1, some of them satisfying |v| � vL/n with
2 � n � 9. Then, at times ωpt > 2800, Figs. 2(g) and 2(i)
show that localized perturbations eventually evolve to form
small-scale holes at velocities greater than the thermal speed,
eventually filling the whole phase space. Although not shown
here, most of these vortices are eventually dissipated by coa-
lescence or numerical dissipation. However, we still observe
the presence of small-scale vortices scattered in phase space
at the end of the simulation run at ωpt = 14 000, just as
described for Fig. 2(g).

Figure 3 (right) shows snapshots of the electron density
ω-k spectrum at the same times as in Fig. 3 (left). The Fourier
spectrum in time is calculated with moving windows so
that ti − 600/ωp < t < ti. At t = t3, a signal with frequency
ω = 0 and spectrum between 0 < vthk/ωp < 4 can be seen in
Fig. 3(b), which is consistent with the formation of a standing
wave, and the formation of a stationary hole in phase space
as described before. Then Fig. 3(d) shows that two branches
of EPWs are excited at a time t = t4. Their phase speeds
|v/vth| � 0.015 and |v/vth| � 0.06 are approximately equal
to the velocities v1 and v2 of the four phase-space vortices
appearing around v = 0 in Fig. 2(b).

At t = t5, Fig. 3(f) shows the excitation of EPW modes
of phase speeds |v/vth| � 1.07 � vL/3 and |v/vth| � 1.59 �
vL/2, which is consistent with the holes shown in Fig. 3(e). At
longer times, Fig. 3(h) shows that the density spectrum is pop-
ulated by several discrete EPW branches with phase speeds
starting from v/vth � 1 towards v = 0. This is correlated with
the velocity of several of the holes in phase space with veloc-
ities 0.23 � |v/vth| � 1.2 and other structures with velocities
1.2 � |v/vth| � 2.8 shown in Fig. 3(g). At t = t7, the density
spectrum in Fig. 3(j) is populated by a large number of EPW
branches, resembling the spectrum of spontaneous thermal
fluctuations of electrostatic waves [67].

VI. QUASISTATIONARY STATE

Figure 4(a) shows snapshots of the electric field energy
spectrum at three different times, all of them exhibiting a
power-law wave-number spectrum |Ek|2 ∝ kα . Figure 4(b)
shows the evolution of the α index. This index varies be-
tween −6 < α < −3 when the phase space is being filled
by small-scale electron holes at times 400 � ωpt � 3000. In
particular, when the central holes are being formed, a peak
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FIG. 3. (Left) Electron phase-space fluctuations δ f = f − f0, normalized to n0/vth and (right) ω-k spectrum of the normalized electron
density δnkω/n0 calculated in time windows defined by ti − 600/ωp < t < ti, at the times t3 through t7 indicated in Fig. 1. The arrows in panels
(e) and (g) represent the velocities vL/n where some of the vortices are formed, with n = {1, . . . , 9}.

αpeak � −4 is found around ωpt ∼ 1200. Then α decreases
when further structures are developed in the range |v| � vL.
At ωpt ∼ 4000, α sets into a quasistationary state reaching
the average value αasymp = −4.8074. In this state, the phase
space is mostly filled with small-scale electron holes. The
development of this power-law spectrum suggests that the
electric field fluctuations exhibits self-similarity, meaning that
the fluctuations at different scales differ only by a scaling
factor. This process involves nonlinear interactions between

the nearest modes of the electric field. Although not shown
here, the electric field autocorrelation also shows a power-law
wave-number spectrum, suggesting that there is an energy
cascade process. Due to Gauss’s law, the charge density also
exhibits a power-law spectrum, so the spatial electron density
fluctuations also exhibit self-similarity.

Figure 5 shows snapshots of the velocity spectrum of
the space-averaged phase-space distribution fluctuations δ f =
〈 f 〉x − f0. A sharp peak at ν = ν0, which corresponds to the
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FIG. 4. (a) Snapshots of the electric field energy spectrum at
ωpt = 200, 3750, and 14 000. Curves are displaced vertically for
illustrative purposes. These spectra follow a power law of the form
|Ek |2 ∝ kα . (b) Time evolution of the index α. The gray line is the
instantaneous value of α, and the red line is its smoothed pattern.

velocity scale of the filamentation in the distribution func-
tion, can be seen in Figs. 5(a)–5(c). Since ν0 increases as
time passes, filamentation evolves towards smaller scales in
velocity space. In addition, the amplitude of the peak in ν0

decreases with time, which means that filamentation is being
dissipated.

After ωpt = 3750, Figs. 5(d)–5(f) show that the spec-
trum peak amplitude is reduced and becomes comparable to
other fluctuations, meaning that filamentation is indistinguish-
able from other fluctuations in the phase-space distribution
function. Then a piecewise power-law spectrum of |δ fν |2 is
formed, exhibiting a break-point at ν = ν0 which separates a
nearly flat spectrum |δ fν |2 ∝ ν−α with α ≈ 0 for ν < ν0, and
a steeper spectrum |δ fν |2 ∝ ν−β with β > α at smaller scales
ν > ν0. At this stage, the distribution function becomes filled
with small-scale electron holes, suggesting that the power
contained by the filamentation is transferred to the develop-
ment of small-scale electron holes.

This finding complements the physical picture usually
provided for filamentation, where the process is described
to continue to unbounded small scales [68–72]. That is,
the filamentation evolves toward small scales, but it is
self-consistently reduced by the development of small-scale
vortices across the distribution. Possibly, small-scale holes
could not have been developed if fluctuations were not trans-
ported via filamentation. Thus, integration schemes using
aggressive velocity filters [68,69,72] hide part of the physics
shown in this paper by eliminating the filamentation process
early in the simulations.

Figure 6(a) plots the time evolution of ν0. Before
ωpt < 3750, the velocity scale of the filamentation ν0 grows
in time with a nearly constant rate ν0 ≈ 0.4ωpt/vth. Then

FIG. 5. Fourier transform of the space-averaged distribution
function versus the conjugate of the velocity, ν. Snapshots at six
different times are shown. In panels (a)–(c), filamentation is clearly
observed as a peak in the |δ fν |2 spectrum at ν = ν0. After ωpt � 3750
[(d)–(f)], filamentation has smoothed, and |δ fν |2 exhibits a break-
point at ν = ν0 separating a nearly flat spectrum |δ fν |2 ∝ ν−α with
α � 0 for ν < ν0, and a steeper spectrum |δ fν |2 ∝ ν−β with β > α

for ν < ν0.

filamentation becomes indistinguishable from other fluctua-
tions at ωpt = 3750. At this point, ν0 can be identified as the
break point in the velocity spectrum of |δ fν |2. It can be seen
that ν0 decreases monotonously and asymptotically approach-
ing to ν0vth � 300 for ωpt > 3750. Figure 6(b) shows the
evolution power-law indices α and β of the velocity spectrum
|δ fν |2 ∝ ν−α for ν < ν0, and |δ fν |2 ∝ ν−β for ν > ν0. At all
times, α ≈ 0 meaning that a nearly equal amount of kinetic
energy per mode is stored at velocity scales ν < ν0. On the
other hand, β quickly decreases between 3750 < ωpt < 6000
and then reaches a quasistationary state around β � 1.

FIG. 6. (a) Time evolution of the velocity scale ν0 shown in
Fig. 5. For ωpt < 3750, ν0 represents the velocity scale of the
filamentation in phase space. For ωpt > 3750, ν0 represents the
break-point in ν above which the velocity spectra in |δ fν |2 steepens.
(b) Time evolution of the power-law spectral indices of |δ fν |2 ∝ ν−α

for ν < ν0 and |δ fν |2 ∝ ν−β for ν > ν0.
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FIG. 7. Electron phase-space snapshots at ωpt7 = 3750 for low velocities near v = 0. Different numbers of nodes Nv are used:
(a) Nv = 2048, (b) 4096, (c) 8192, (d) 16 384, and (e) 131 072.

The results from Figs. 3–6 suggest that the phase-space
distribution becomes self-similar, i.e., that the small-scale
electron holes formed across the distribution follow scal-
ing laws both in the space and velocity domains. As time
advances, the large-scale structures in the velocity domain
inherit this feature, suggesting that there are nonlinear in-
teraction processes occurring toward structures wider in
velocity space. This self-similarity feature is probably of lo-
cal character, meaning that intermittency is happening in the
development of the small-scale electron holes.

VII. EFFECTS OF THE GRID RESOLUTION

The vortices observed in phase space depend critically on
the grid resolution used to numerically resolve the plasma
evolution, in particular on the number of nodes Nv in velocity
space. Figure 7 shows snapshots of the phase space near v = 0
at ωpt = 3750 for five different simulation runs with differ-
ent velocity-grid resolutions Nv . Although the central hole is
formed in all cases, Figs. 7(a)–7(c) show that there is a lack
of small-scale structures for values of Nv < 8192, such as the
spiraling arms or even the smaller holes formation, compared
to cases with higher Nv values as in Figs. 7(d)–7(e). Simu-
lations with small Nv cannot resolve fine structures in phase
space because the size of the structures reaches the grid size
earlier in the simulations. In this situation, some structures do
not form or their development is numerically diffusive.

The variations due to changes in the resolution can be
quantified with the numerical evolution of invariants of the
Vlasov equation. In Fig. 8, we show the time evolution of the
invariant I3 and the entropy S, defined by

I3 =
∫

dx dv f 3 , (5)

S = −
∫

dx dv f ln f . (6)

Although not shown, the relative error of the total energy
in all cases is of the order of 10−7, and no significant changes
are observed by changing the number of nodes in the physical
space, Nx. Figure 8 shows that a low resolution in velocity
space leads to an abrupt increment of the entropy, and an
abrupt decrement of the I3 invariant at earlier stages of the
simulation. This is because fluctuations of the distribution
function f reach scales close to the velocity-grid resolu-

tion. Consequently, numerical dissipation is introduced, and
structures of the distribution cannot be solved appropriately.
Therefore, the presented results corroborate the conclusion
of Galeotti and Califano [32], in which the time-asymptotic
state is dependent on the dissipation caused by the numerical
grid resolution. Even if the value of Nv is much higher, de-
viations from invariance in both S and I3 are found. In this
regard, Fig. 8 suggests that deviations cannot be completely
eliminated but at least delayed by increasing the velocity grid
resolution Nv .

VIII. EFFECTS OF THE PERTURBATION AMPLITUDE

Last, the effects of the perturbation amplitude ε on the
formation of the first holes around the center of the distri-
bution function are studied. Figure 9 shows the times tc, in
red, at which the central hole (v = 0) is fully formed as in
Fig. 2(b) for different values of ε. Similarly, the first secondary
holes that appear after the central hole as in Fig. 2(c) are
also tracked. The corresponding times ts are shown with blue
error bars in Fig. 9. The holes are considered as fully formed
when their spiraling arms with δ f > 0 coincide for the first
time in position space. The error bar size for tc and ts de-
pends on the sampling ratio of the distribution function around
the time of their formation. Simulations consider Nv = 8192
for ε > 0.04, Nv = 16 384 for 0.03 < ε < 0.04, Nv = 32 768
for 0.0166 < ε < 0.03, Nv = 65 536 for 0.016 < ε < 0.0166,

FIG. 8. Time evolution of (a) the entropy and (b) the invariant I3

of simulations run with different resolution in velocity domain.
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FIG. 9. Times tc and ts in which the central hole at v = 0 and
the secondary holes around it appear, respectively, as a function of
the perturbation amplitude ε. Solid lines show a power-law fit of the
corresponding data. Dashed lines indicate the critical amplitudes for
each curve.

Nv = 131 072 for 0.0135 < ε < 0.016, and Nv = 262 144 for
0.0094 < ε < 0.0135. The number of nodes in velocity space
is increased because the vortices of interest are formed at
longer times for lower values of the perturbation amplitude
ε. In addition, finer and finer structures develop in velocity
space, eventually reaching the grid resolution. Thus, Nv is
increased to avoid early numerical dissipation of these vor-
tices. We checked that different values of Nv do not alter the
time in which the central electron holes start to form. Here all
the simulations use Nx = 512, without significant differences
from other values of Nx.

Figure 9 shows that both times tc and ts satisfy a power-
law dependence on the perturbation amplitude as ti ∝ (ε −
εi )μi , where εi represents a critical amplitude above which
slow holes with v ≈ 0 can appear. For the central vortex,
it is found that εc = 0.005 ± 0.002 and μc = −1.4 ± 0.1.
For the secondary holes growing from the central hole, εs =
0.007 ± 0.002 and μs = −1.3 ± 0.1. This suggests that the
formation of the central and secondary holes in the distribu-
tion function may be identified as a second-order transition
process [73]. That is, depending on the initial amplitude per-
turbation ε, the phase-space state switches from a phase with
pure filamentation to another phase where the filamentation is
reduced to form small-scale vortices in phase space.

IX. CONCLUSIONS

The problem of the time-asymptotic state of a collisionless,
initially perturbed Maxwellian distributed electron plasma
with immobile ions has been revisited. High-resolution
Vlasov-Poisson simulations show the generation of small-
scale vortices in phase space other than the already known
vortices formed by Landau resonance. Spiraling arms are
formed within the Langmuir vortices, corresponding to
strongly trapped electrons bouncing within the trapping po-
tential. Then, phase-space vortices are formed near velocities
v ≈ 0 of the phase-space electron distribution function.

As the plasma evolves, the phase space of electrons is
successively filled with small-scale holes below the Langmuir
phase speed, with some holes satisfying a simple relation-
ship v = vL/n, where vL is the Langmuir phase speed, and
n is an integer number. In this process, the energy stored by
the filamentation is transferred toward ever smaller scales in

velocity space. This process reduces the filamentation while
small-electron holes are formed across the distribution. This
indicates that the filamentation has scale bounds in veloc-
ity space, rather than continuing indefinitely toward smaller
scales [68–72]. The small-scale electron holes seem to per-
sist for long times, and we associate them as small-scale
BGK-like states. Accordingly, the physical picture of the
time-asymptotic behavior of the perturbed Maxwellian elec-
tron plasma is far more complex than the typical description
of a state consisting of only two counterpropagating elec-
tron holes with velocities near the Langmuir phase speed
[1,3,35,36,40,41]. This is more consistent with the notion of
multiple small-amplitude BGK-like states [2,39,43].

It is worth noticing that a state consisting of multiple
BGK-like structures has already been reported in Maxwellian
electron plasmas induced by chirping of an external elec-
trostatic forcing [4]. There the reduction of the frequency
displaces the resonance zone toward the center of the distribu-
tion function, yielding persisting phase-space holes. However,
the state of multiple BGK-like structures reported in this paper
is created self-consistently from the initial perturbation of a
single mode, without the need for an external forcing [4] nor
the presence of an energetic population of particles, such as
electron beams [51,52,59,61].

The small-amplitude electron holes are probably grown
due to nonlinear wave-wave coupling between spiraling arms
inside the Langmuir holes, satisfying a beating condition
ωk = ωk− + ω. Then a wave coupling cascade between
electron plasma waves (EPWs) starts to fill the ω-k power
spectrum. Whenever a hole appears, a branch of EPWs with
phase speed equal to the velocity of the holes is excited. After
the distribution function is filled with small-scale electron
holes, the energy spectrum of the electric field and of its
autocorrelations are found to obey a power-law dependency
on the wave number. This suggests that nonlinear interactions
occur between the closest modes so that an energy cascade
process is in play.

The velocity spectrum of the space-averaged distribution
function exhibits a piecewise power law, with a flat spec-
trum at large velocity scales, a steepened spectrum for small
velocity scales, and a break-point that separates both scales.
Thus, fluctuations in the velocity distribution function exhibit
self-similarity. As time advances, small-scale electron holes
start to localize, suggesting the presence of intermittency, and
rendering the self-similarity as local. As the filamentation
becomes negligible and small-scale electron holes are formed
across the phase space, it is observed that the slope of the
electric field energy spectrum acquires a quasisteady behavior.

Also, the time at which the slowest phase-space electron
holes are formed follow a power-law function of the initial
amplitude perturbation ε, suggesting that a process similar to
a critical phenomenon is occurring. Thus, there exists a critical
amplitude perturbation εi, below which the phase-space fila-
mentation is reduced indefinitely until it reaches the numerical
cell size and above which the filamentation is smoothed to
form small-scale electron vortices in phase space.

The findings of this research correspond to an extension
of the common interpretation of the time-asymptotic state
of nonlinear Landau damping in a one-dimensional setting
consisting of only two counterpropagating electron holes. An
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interesting question is if this time-asymptotic state could be
attained in 2D or 3D simulations. For example, electron holes
are observed to propagate stably in multidimensional magne-
tized plasma simulations [74–76].

This study also highlights the need for high-resolution sim-
ulations and algorithms with low numerical dissipation. This
is particularly important when addressing time-asymptotic
states, because small-scale structures that seem to be relevant
in the evolution of the system may not be appropriately re-
solved. The use of lower resolution, at least in the velocity
dependency, leads to an abrupt increment in theoretically in-
variant quantities (e.g., the entropy and the cubic I3 invariant)
earlier in the simulation. Thus, simulations with low reso-
lution in the velocity space may dissipate the formation of
structures in phase space, preventing the plasma from reach-
ing the state observed in our simulations.

The dissipation is intrinsically caused by the numerical
scheme chosen to solve the Vlasov-Poisson system. For ex-
ample, polynomial-splines of second [3] and third order [1,32]
have an error of order O(N−n−1

v ), where n is the order of
the interpolation [77–79]. The integration scheme used in this
research has spectral interpolation in the velocity dependency,
which leads to an error of exponential order decreasing with
Nv [48,49], thus reducing significantly the dissipation by nu-
merical interpolation.

Last, high-order modes must be retained when address-
ing the velocity dependency in Fourier space. Accordingly,
it is advised to consider large integer n when using veloc-
ity filters of the form e−2n(ν/νmax )2n

[50,80]. This allows the
conservation of the 2n − 1 moments of the distribution func-
tion [68,72,81,82], including the density and flux of particles.
Values of n close to unity introduce strong damping in high-
velocity modes, and although they may allow the conservation
of the lower moments of the distribution function, they rule
out the small-scale vortices observed in this research. In this
regard, Cheng and Knorr [80] advised not to use too-large val-
ues of n, because their numerical experiments indicate that the
distribution function acquires negative values with increasing
n. However, we used a large resolution in velocity space and
the problems found by Cheng and Knorr [80] do not occur.

ACKNOWLEDGMENTS

This work has been partially supported by ANID, Chile,
through the FONDECyT Grants No. 11180947 and No.
1191351 (R.E.N.) and No. 1161700 (J.A.A.); CONICyT-PAI
No. 79170095 (R.E.N.); and National Doctoral Scholar-
ships No. 22182152 and No. 21202472 (H.A.C.), and No.
22182344 and No. 21202616 (J.A.G.).

[1] G. Manfredi, Phys. Rev. Lett. 79, 2815 (1997).
[2] C. Lancellotti and J. J. Dorning, Phys. Rev. Lett. 81, 5137

(1998).
[3] M. Raghunathan and R. Ganesh, Phys. Plasmas 20, 032106

(2013).
[4] P. Trivedi and R. Ganesh, Phys. Plasmas 24, 032107 (2017).
[5] I. Hutchinson, Phys. Plasmas 24, 055601 (2017).
[6] A. Ivanov, I. H. Cairns, and P. Robinson, Phys. Plasmas 11,

4649 (2004).
[7] C. Lancellotti and J. J. Dorning, Phys. Rev. E 68, 026406

(2003).
[8] H. Xu, Z.-M. Sheng, X.-M. Kong, and F.-F. Su, Phys. Plasmas

24, 022101 (2017).
[9] Y. Tong, I. Vasko, F. S. Mozer, S. D. Bale, I. Roth, A. V.

Artemyev, R. Ergun, B. Giles, P.-A. Lindqvist, C. T. Russell, R.
Strangeway, and R. B. Torbert, Geophys. Res. Lett. 45, 11513
(2018).

[10] A. Lotekar, I. Vasko, F. Mozer, I. Hutchinson, A. Artemyev,
S. Bale, J. W. Bonnell, R. Ergun, B. Giles, Y. V. Khotyaintsev
et al., J. Geophys. Res. Space 125, e2020JA028066 (2020).

[11] K. Steinvall, Y. V. Khotyaintsev, D. B. Graham, A. Vaivads,
P.-A. Lindqvist, C. Russell, and J. Burch, Geophys. Res. Lett.
46, 55 (2019).

[12] F. S. Mozer, O. V. Agapitov, B. Giles, and I. Vasko, Phys. Rev.
Lett. 121, 135102 (2018).

[13] C. Norgren, M. André, A. Vaivads, and Y. V. Khotyaintsev,
Geophys. Res. Lett. 42, 1654 (2015).

[14] D. B. Graham, Y. V. Khotyaintsev, A. Vaivads, and M. Andre,
J. Geophys. Res. Space 121, 3069 (2016).

[15] J. Holmes, R. Ergun, D. Newman, N. Ahmadi, L. Andersson,
O. Le Contel, R. Torbert, B. Giles, R. Strangeway, and
J. Burch, J. Geophys. Res. Space 123, 9963 (2018).

[16] J. R. Danielson, F. Anderegg, and C. F. Driscoll, Phys. Rev. Lett.
92, 245003 (2004).

[17] R. N. Franklin, S. M. Hamberger, and G. J. Smith, Phys. Rev.
Lett. 29, 914 (1972).

[18] K. Saeki, P. Michelsen, H. L. Pécseli, and J. J. Rasmussen, Phys.
Rev. Lett. 42, 501 (1979).

[19] B. Lefebvre, L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett,
P. Pribyl, S. Vincena, F. Chiang, and J. Judy, Phys. Rev. Lett.
105, 115001 (2010).

[20] C. F. Rupp, R. A. López, and J. A. Araneda, Phys. Plasmas 22,
102306 (2015).

[21] P. Trivedi and R. Ganesh, Phys. Plasmas 23, 062112 (2016).
[22] F. Valentini, V. Carbone, P. Veltri, and A. Mangeney, Phys. Rev.

E 71, 017402 (2005).
[23] F. Valentini, Phys. Plasmas 12, 072106 (2005).
[24] R. A. López, R. E. Navarro, S. I. Pons, and J. A. Araneda, Phys.

Plasmas 24, 102119 (2017).
[25] I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev.

108, 546 (1957).
[26] H. Schamel, Phys. Scr. 20, 336 (1979).
[27] H. Schamel, Phys. Plasmas 19, 020501 (2012).
[28] H. Schamel, Phys. Plasmas 22, 042301 (2015).
[29] S. Pankavich and R. Allen, Eur. Phys. J. D 68, 363 (2014).
[30] G. Manfredi and P. Bertrand, Phys. Plasmas 7, 2425 (2000).
[31] R. L. Morse and C. Nielson, Phys. Rev. Lett. 23, 1087 (1969).
[32] L. Galeotti and F. Califano, Phys. Rev. Lett. 95, 015002 (2005).
[33] F. Califano, L. Galeotti, and A. Mangeney, Phys. Plasmas 13,

082102 (2006).
[34] M. Shoucri, Laser Part. Beams 35, 706 (2017).
[35] M. Brunetti, F. Califano, and F. Pegoraro, Phys. Rev. E 62, 4109

(2000).
[36] S. K. Pandey and R. Ganesh, Phys. Scr. 96, 125616 (2021).

065203-9

https://doi.org/10.1103/PhysRevLett.79.2815
https://doi.org/10.1103/PhysRevLett.81.5137
https://doi.org/10.1063/1.4794320
https://doi.org/10.1063/1.4978560
https://doi.org/10.1063/1.4976854
https://doi.org/10.1063/1.1785789
https://doi.org/10.1103/PhysRevE.68.026406
https://doi.org/10.1063/1.4975020
https://doi.org/10.1029/2018GL079044
https://doi.org/10.1029/2020JA028066
https://doi.org/10.1029/2018GL080757
https://doi.org/10.1103/PhysRevLett.121.135102
https://doi.org/10.1002/2015GL063218
https://doi.org/10.1002/2015JA021527
https://doi.org/10.1029/2018JA025750
https://doi.org/10.1103/PhysRevLett.92.245003
https://doi.org/10.1103/PhysRevLett.29.914
https://doi.org/10.1103/PhysRevLett.42.501
https://doi.org/10.1103/PhysRevLett.105.115001
https://doi.org/10.1063/1.4933022
https://doi.org/10.1063/1.4953603
https://doi.org/10.1103/PhysRevE.71.017402
https://doi.org/10.1063/1.1947967
https://doi.org/10.1063/1.5004688
https://doi.org/10.1103/PhysRev.108.546
https://doi.org/10.1088/0031-8949/20/3-4/006
https://doi.org/10.1063/1.3682047
https://doi.org/10.1063/1.4916774
https://doi.org/10.1140/epjd/e2014-50170-y
https://doi.org/10.1063/1.874081
https://doi.org/10.1103/PhysRevLett.23.1087
https://doi.org/10.1103/PhysRevLett.95.015002
https://doi.org/10.1063/1.2215596
https://doi.org/10.1017/S0263034617000775
https://doi.org/10.1103/PhysRevE.62.4109
https://doi.org/10.1088/1402-4896/ac25a1


CARRIL, GIDI, NAVARRO, AND ARANEDA PHYSICAL REVIEW E 107, 065203 (2023)

[37] A. Ghizzo, B. Izrar, P. Bertrand, E. Fijalkow, M. Feix, and M.
Shoucri, Phys. Fluids 31, 72 (1988).

[38] M. Buchanan and J. J. Dorning, Phys. Rev. Lett. 70, 3732
(1993).

[39] M. Buchanan and J. Dorning, Phys. Rev. E 50, 1465 (1994).
[40] L. Demeio and P. F. Zweifel, Phys. Fluids B 2, 1252 (1990).
[41] L. Demeio, Transp. Theory Stat. Phys. 30, 457 (2001).
[42] E. Fijalkow and L. Nocera, J. Plasma Phys. 71, 401 (2005).
[43] C. Lancellotti and J. Dorning, J. Math. Phys. 40, 3895 (1999).
[44] C. Lancellotti and J. Dorning, Transp. Theory Stat. Phys. 38, 1

(2009).
[45] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, SIAM

Rev. 59, 65 (2017).
[46] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo,

J. Comput. Phys. 149, 201 (1999).
[47] R. I. McLachlan and P. Atela, Nonlinearity 5, 541 (1992).
[48] B. Fornberg and D. M. Sloan, Acta Numer. 3, 203 (1994).
[49] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Springer,

Berlin, 2001)
[50] J. T. Parker and P. J. Dellar, J. Plasma Phys. 81, 305810203

(2015).
[51] T. M. O’Neil, J. Winfrey, and J. Malmberg, Phys. Fluids 14,

1204 (1971).
[52] K. Hara, T. Chapman, J. W. Banks, S. Brunner, I. Joseph, R. L.

Berger, and I. D. Boyd, Phys. Plasmas 22, 022104 (2015).
[53] S. Brunner, R. Berger, B. Cohen, L. Hausammann, and

E. Valeo, Phys. Plasmas 21, 102104 (2014).
[54] I. Y. Dodin, P. F. Schmit, J. Rocks, and N. J. Fisch, Phys. Rev.

Lett. 110, 215006 (2013).
[55] T. O’neil and J. Winfrey, Phys. Fluids 15, 1514 (1972).
[56] A. Bouchoule and M. Weinfeld, Phys. Rev. Lett. 36, 1144

(1976).
[57] M.-C. Firpo, F. Doveil, Y. Elskens, P. Bertrand, M. Poleni, and

D. Guyomarc’h, Phys. Rev. E 64, 026407 (2001).
[58] N. Carlevaro, M. V. Falessi, G. Montani, and F. Zonca, J. Plasma

Phys. 81, 495810515 (2015).
[59] J. Tennyson, J. Meiss, and P. Morrison, Physica D 71, 1 (1994).

[60] D. Farina and R. Pozzoli, Phys. Rev. E 70, 036407 (2004).
[61] J. Adam, G. Laval, and I. Mendonca, Phys. Fluids 24, 260

(1981).
[62] Y. Hou, M. Chen, M. Yu, B. Wu, and Y. Wu, Phys. Plasmas 22,

122101 (2015).
[63] T. H. Dupree, Phys. Fluids 25, 277 (1982).
[64] T. H. Dupree, Phys. Fluids 26, 2460 (1983).
[65] R. H. Berman, D. J. Tetreault, and T. H. Dupree, Phys. Fluids

28, 155 (1985).
[66] H. Schamel, D. Mandal, and D. Sharma, Phys. Plasmas 24,

032109 (2017).
[67] P. H. Yoon, Phys. Plasmas 14, 064504 (2007).
[68] A. J. Klimas and A. F. Viñas, J. Plasma Phys. 84, 905840405

(2018).
[69] A. F. Viñas and A. J. Klimas, J. Comput. Phys. 375, 983 (2018).
[70] N. Besse and E. Sonnendrücker, J. Comput. Phys. 191, 341

(2003).
[71] L. Einkemmer and C. Lubich, SIAM J. Sci. Comput. 40, B1330

(2018).
[72] A. J. Klimas and W. M. Farrell, J. Comput. Phys. 110, 150

(1994).
[73] H. E. Stanley and G. Ahlers, Introduction to Phase Transitions

and Critical Phenomena (Oxford University Press, New York,
1973).

[74] M. Wu, Q. Lu, C. Huang, and S. Wang, J. Geophys. Res. Space
115, A10245 (2010).

[75] I. H. Hutchinson, J. Plasma Phys. 84, 905840411 (2018).
[76] I. H. Hutchinson, Phys. Rev. E 99, 053209 (2019).
[77] A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek,

J. Comput. Phys. 179, 495 (2002).
[78] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174

(1984).
[79] T. Arber and R. Vann, J. Comput. Phys. 180, 339 (2002).
[80] C. Z. Cheng and G. Knorr, J. Comput. Phys. 22, 330 (1976).
[81] A. J. Klimas, J. Comput. Phys. 68, 202 (1987).
[82] A. J. Klimas, A. F. Viñas, and J. A. Araneda, J. Plasma Phys.

83, 905830405 (2017).

065203-10

https://doi.org/10.1063/1.866579
https://doi.org/10.1103/PhysRevLett.70.3732
https://doi.org/10.1103/PhysRevE.50.1465
https://doi.org/10.1063/1.859265
https://doi.org/10.1081/TT-100105932
https://doi.org/10.1017/S0022377804003368
https://doi.org/10.1063/1.532932
https://doi.org/10.1080/00411450903081313
https://doi.org/10.1137/141000671
https://doi.org/10.1006/jcph.1998.6148
https://doi.org/10.1088/0951-7715/5/2/011
https://doi.org/10.1017/S0962492900002440
https://doi.org/10.1017/S0022377814001287
https://doi.org/10.1063/1.1693587
https://doi.org/10.1063/1.4906884
https://doi.org/10.1063/1.4896753
https://doi.org/10.1103/PhysRevLett.110.215006
https://doi.org/10.1063/1.1694117
https://doi.org/10.1103/PhysRevLett.36.1144
https://doi.org/10.1103/PhysRevE.64.026407
https://doi.org/10.1017/S0022377815001002
https://doi.org/10.1016/0167-2789(94)90178-3
https://doi.org/10.1103/PhysRevE.70.036407
https://doi.org/10.1063/1.863354
https://doi.org/10.1063/1.4936267
https://doi.org/10.1063/1.863734
https://doi.org/10.1063/1.864430
https://doi.org/10.1063/1.865176
https://doi.org/10.1063/1.4978477
https://doi.org/10.1063/1.2741388
https://doi.org/10.1017/S0022377818000776
https://doi.org/10.1016/j.jcp.2018.09.014
https://doi.org/10.1016/S0021-9991(03)00318-8
https://doi.org/10.1137/18M116383X
https://doi.org/10.1006/jcph.1994.1011
https://doi.org/10.1029/2009JA015235
https://doi.org/10.1017/S0022377818000909
https://doi.org/10.1103/PhysRevE.99.053209
https://doi.org/10.1006/jcph.2002.7071
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1006/jcph.2002.7098
https://doi.org/10.1016/0021-9991(76)90053-X
https://doi.org/10.1016/0021-9991(87)90052-0
https://doi.org/10.1017/S002237781700054X

