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Thresholdless stochastic particle heating by a single wave
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Stochastic heating is a well-known mechanism through which magnetized particles may be energized by low-
frequency electromagnetic waves. In its simplest version, under spatially homogeneous conditions, it is known
to be operative only above a threshold in the normalized wave amplitude, which may be a demanding requisite in
actual scenarios, severely restricting its range of applicability. In this paper we show, by numerical simulations
supported by inspection of the particle Hamiltonian, that allowing for even a very weak spatial inhomogeneity
completely removes the threshold, trading the requirement upon the wave amplitude with a requisite upon the
duration of the interaction between the wave and particle. The thresholdless chaotic mechanism considered here
is likely to be applicable to other inhomogeneous systems.
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I. INTRODUCTION

Stochastic heating by electrostatic or electromagnetic
waves is a well-known mechanism often invoked as the cause
of the energization of magnetized particles. By itself, it may
be produced by waves whose frequencies are above or below
the particle cyclotron frequency, by monochromatic or broad
wave spectra. Actually, chaotic would be a more appropriate
adjective than stochastic, since randomness is not a mandatory
requisite. In the following we will consider the scenario of a
single plane wave below the cyclotron frequency; this mech-
anism has been theoretically studied in several papers [1–21],
and compared with measurements coming from astrophysical,
laboratory, and high-temperature fusionistic plasmas [22–34].
Its paradigmatic version consists of a particle embedded in
a homogeneous magnetic field, which interacts with a single
monochromatic wave propagating perpendicularly to the field
itself. Electrostatic waves, such as lower hybrid, drift waves,
or electromagnetic waves such as whistlers and obliquely
propagating Alfvén waves, are often considered. The model
admits a one-dimensional Hamiltonian formulation for a par-
ticle of charge q and mass m, embedded in a magnetic field of
intensity B aligned along the direction z, which interacts with
a plane wave of wave number k and frequency ω propagating
along x. In dimensionless form

H = p2

2
+ x2

2
− A sin(x − ωt ). (1)

In (1) lengths are normalized to k, and time and frequen-
cies to the cyclotron frequency � = qB/m. The expression
of the normalized wave amplitude A depends on the kind
of wave considered. For an electrostatic wave, e.g., it writes
A = (k/�) × (F/B), where F is the component of the wave
electric field perpendicular to B.
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When ω � 1 one naively expects adiabatic behavior, with
the particle adapting to the instantaneous phase of the wave.
On the contrary, an analysis of the system (1) has shown
that, whatever the smallness of ω, the particle experiences
nonadiabatic behavior with chaotic motion, nonconservation
of the magnetic moment, and irreversible transfer of en-
ergy, provided that A fulfils the threshold condition A � 1
[20]. The rationale is that, above the threshold, a separa-
trix curve oscillating at frequency ω appears in the particle
phase space. Particle orbits are shown to cross quasiperi-
odically these slowly pulsating separatrices. Since the orbit
along the separatrix has an infinite period—effectively much
longer than the pulsation one—each separatrix crossing can-
cels adiabatic invariance. This case is an instance of the
neoadiabatic theory developed in the 1980s–1990s [35–39]
(and also Refs. [1,40,41]). Below the threshold for the appear-
ance of the separatrix, if one looks at the particle degrees of
freedom, they may still suffer fluctuations apparently resem-
bling heating in the presence of the wave train, but when the
latter vanishes the particle energy lands back to its original
value (see, e.g., Fig. 3 of Ref. [20]). This kind of apparent
transient heating is sometimes referred to as “pseudoheating”
in the literature [42].

The chaotic mechanism has found widespread applica-
tions, yet the need for a finite threshold puts severe constraints
on its validity. Just to cite two examples, where stochastic
heating might be a potential player, but the expected wave
amplitude appears too small, we mention electron heating at
the Earth’s magnetosphere [43,44], and ion heating during
magnetic reconnection in toroidal laboratory devices [45–51].

So far, Hamiltonian Eq. (1) has almost always been studied
under the hypothesis of a perfectly homogeneous environ-
ment, which is unrealistic [of course, the existence of any
wave entails some sort of inhomogeneity; for the scope of this
work, a homogeneous system is one where the parameters
A, k, ω appearing in Eq. (1) remain constant]. We are aware
of a few exceptions: Gell and Nakach [52] and Albert [53]
studied the effect of a sheared magnetic field upon particle
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FIG. 1. Upper row: Time traces of x2, p2. Lower row, left plot: Time traces of the total energy E = H (blue curve). The fast oscillations are
due to the wave. The particle is initialized with a very small energy, hence oscillations are almost symmetrical with respect to zero energy. With
time, the particle acquires a finite average amount of energy. Right plot: Time trace of 1 − x/L. Initial conditions are x(0) = 0, p(0) = 0.1,
frequency ω(0) = 1/40, L = 100, A = 1/6. Temporal shaping is made with � = 20π , ts = 5 × �, tmax = 12 × 103, te = tmax − 5 × �.

energization by waves; Ryabova and Shklyar addressed the
effect of the longitudinal variation of the magnetic field [54].
All cases were not in the low-frequency regime though. It was
observed that accounting for some sort of inhomogeneity does
lower the threshold for the occurrence of chaotic motion. The
purpose of this paper is to show that, under more realistic
conditions than present in Hamiltonian (1), the threshold con-
dition on A is not actually required. Heating may take place
at any value of the wave amplitude; the underlying physical
mechanism is still the same: Adiabaticity breakup is forced
by the appearance of a separatrix in phase space, which is
crossed by the particle. However, the separatrix appears grad-
ually, thus adiabatic dynamics holds in the first stage of the
particle evolution, and the crossover to nonadiabatic dynamics
is gradual and may be relatively slow. This work shows by
numerical analysis and analytical inspection of Eq. (1) that
even a small spatial inhomogeneity in ω, whose length scale
is much larger than the Larmor radius, changes radically the
behavior of the system, removes the threshold, and allows for
a nonadiabatic behavior to appear at any value of the wave
amplitude.

II. NUMERICAL INVESTIGATIONS

Within the framework of Eq. (1) any spatial inhomogene-
ity may appear under the form of a spatial dependence in
the wave frequency ω, wave number k, amplitude A, or a
combination of all. In this section we will allow just for a
weak spatial dependence in ω, taken as linear for simplicity:
ω(x) = ω(0)(1 − x/L) with |x/L| � 1. For instance, were the

case of an Alfvén wave, one could think of a plasma density
with a mild variation along the x direction. The cases of
variable k, A are not interesting, and will be dealt with in the
concluding remarks section.

We investigate the particle trajectories by integrating in
time Hamilton equations of motion. For greater accuracy
symplectic algorithms were employed, either the partitioned
Runge-Kutta algorithm built into Mathematica software or
that described in Ref. [55]. In order to avoid spurious high-
frequency forcings, we switch on and off the wave through a
shape function A → A f (t ), where f (t ) is the double-sigmoid
function f (t ) = 1/4{1 + tanh[(t − ts)/�)] × [1 + tanh[(te −
t )/�]}. Numerical integration runs between 0 and tmax>te>ts.
The interaction time is te − ts and � a typical rise timescale,
being careful to choose � � 2π�−1. The figures below show
some samples of our results. Figure 1 plots time traces for
the coordinates x2, p2, the total energy E of Eq. (1), and
the inhomogeneity parameter 1 − x(t )/L as well as f (t ). The
parameters employed are given in the figure caption. We see
that the particle remains throughout the whole simulation
quite close to its initial position: |x|/L steadily increases but
remains �0.5%; despite this there is a clear change in the
particle motion visible after t = 5000–6000 time units, with
a net variation of its average energy.

The heating effect can be clearly assessed in Fig. 2, which
shows a few time traces of the particle energy E with varying
A and L. We observe a net energy gain for subthreshold
amplitude and moderate inhomogeneity parameter L (black
curve). As expected, the energy gain diminishes as homo-
geneity is restored (red curve). If we raise the wave amplitude
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FIG. 2. Time traces of the energy E for different conditions.
Black curve, L = 100, A = 1/4; red curve, L = 1000, A = 1/4;
cyan curve, L = 1000, A = 5/4. In all cases ω(0) = 1/40, x(0) = 0,
p(0) = 1/4. The dashed orange curve is the modulation function
f (t ) employed, with ts = 20 × Twave, te = 50 × Twave, � = 5 × Twave,
Twave = 2π/ω(0).

above the threshold (cyan curve), however, heating still oc-
curs.

III. EMERGENCE OF CHAOTIC DYNAMICS

The previous numerical part showed that subthreshold en-
ergization does occur. Here, we show why.

First of all, we rewrite Eq. (1) with the help of the auxiliary
parameter q(t ) = 1 + ω(0)t/L:

H = p2

2
+ x2

2
− A sin[q(t )x − ω(0)t]. (2)

Then we make a change to the new canonical variables (X, P)
through the generating function F (X, p, t ) = −X p/q. One
can see that X = qx, P = p/q, and the new Hamiltonian K
writes

K = (qP)2

2
+ X 2

2q2
− A sin[X − ω(0)t] − XP

q

dq

dt
. (3)

This way, the x dependence from the argument of the trigono-
metric term has been removed, making the expression of the
Hamiltonian closer to that of the original homogeneous prob-
lem. Finally, introducing the new time τ through dτ = q2dt
we arrive at the equations of motion

dτ X = P + X

q3

dq

dt
,

dτ P = − X

q4
− P

q3

dq

dt
+ A

q2
cos[X − ω(0)t (τ )]. (4)

We remind that we are considering an initial-value problem,
hence only t � 0 makes sense. When ω(0)t/L � 1, q → 1,
and any sign of inhomogeneity disappears from within
Hamiltonian (2). Hence, the classical A = 1 threshold holds.
Instead, when ω(0)t/L � 1, q � 1, t ≈ [3τ (L/ω(0) )2]1/3

evolves slowly with τ . We discard all but the lowest-order
terms in 1/q in Eq. (4) (recalling that dq/dt is a mild function
of time: dq/dt → 0, t → 0; dq/dt → ω(0)/L, t → ∞) and
arrive at the equations of motion for a pendulum with slowly

FIG. 3. Contour plot of the Hamiltonian H ′ [Eq. (3)] at four
different times, from ω(0)t/L � 1 to �1. At the latter times, the
separatrix is present.

varying parameters—and therefore slowly varying separatrix:

dτ X = P,

dτ P = A

q2
cos[X − ω(0)t (τ )]. (5)

It is worth noting that, as t and q go to infinity, X may grow
unbounded, whereas x and ω(x) stay bounded and fairly close
to their initial values (see Fig. 1).

Qualitatively, we may summarize the typical fate of an or-
bit as follows. The particle starts its trajectory as unperturbed
by the wave (since A � 1): a pure Larmor rotation. After a
time ω(0)t/L ≈ O(1), as shown in Fig. 3, a separatrix devel-
ops in the phase space of the Hamiltonian. The particle first
crosses the separatrix, remaining trapped in the corresponding
potential well, then crosses it a second time, becoming passing
again. These two events are genuinely nonadiabatic, hence the
particle energy changes during them.

Figure 4 visualizes our conclusions: It plots the average
energy gained by the particle as a function of the duration
of the interaction with the wave. For the parameters em-
ployed ω(0)t/L > 1 when t > 4000 time units. Numerically,
we find a transition to finite energy gains for t ≈ 5000. Equiv-
alently, one could have set fixed the interaction time �t and
varied ω(0): An appreciable energy gain occurs as long as
ω(0)�t/L > 1. We have checked numerically this claim, too.

We emphasize a difference with the case ω = const, A > 1:
In this latter case there is a pulsation of the separatrix ampli-
tude, while in the present one the separatrix moves in p in
phase space after emerging. Furthermore, this scenario works
regardless of A and L, which proves the universality of our
numerical findings.
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FIG. 4. Mean energy E gained by the particle—averaged
over 600 independent initial conditions— vs the interaction time
�t = te − ts, with A = 1/5, L = 100, and ω(0) = 1/40.

By increasing the energy, one progressively pushes the
trajectories farther from the origin—and therefore from the
separatrix, but only orbits encompassing the phase-space
region swept by the separatrix are involved in the adiabatic-
nonadiabatic transition. Thus, if we pick initial conditions
from a thermal distribution, we get that the high-energy tail
of the distribution is not affected by this mechanism: Hotter
particles are less heated, on average.

IV. SIMULTANEOUS PARALLEL
AND PERPENDICULAR HEATING

So far, we considered just the case of particle energiza-
tion along the direction perpendicular to the magnetic field.
However, there is experimental evidence that parallel heating
may occur simultaneously with a perpendicular one [48]. That
paper speculated that parallel heating was a product of energy
mixing along all axes by particle collisions, hence ultimately
only perpendicular heating was active. However, no conclu-
sive evidence was found, hence it is suggestive to consider the
possibility that one and the same mechanism is responsible for
heating both degrees of freedom.

Models for stochastic heating usually deal only with per-
pendicular degrees of freedom, although some exceptions
exist (see, e.g., Ref. [56]). Among the several ways of in-
troducing chaotic dynamics in the parallel direction, we
considered two: Either we added to the Hamiltonian a sin-
gle plane wave traveling along B with the same frequency
as the perpendicularly propagating one, Ax sin[x − ω(x)t] +
Az sin[kzz − ω(x)t], or a single wave propagating obliquely,
A sin[x + kzz − ω(x)t] (with obvious meanings of the sym-
bols). The dynamics of x and z is thus coupled. We carried
out investigations for both scenarios but report here explicit
results only for the second case. Qualitative conclusions do
not differ in the former case, although quantitatively (i.e.,
the amount of energy delivered to the particle for given
conditions, and the balance between the parallel and the per-
pendicular degrees of freedom) marked differences may be
found. As a general rule, the larger the ratio between the
parallel and perpendicular wave number (kz in our units), the
larger is the ratio between the temperature increment along

FIG. 5. Histograms of the final particle kinetic energy along the
perpendicular direction (Kx) and parallel direction (Kz) normalized
to initial kinetic energy K0. 200 independent runs were performed
randomly varying the initial coordinate z in the interval (0, 2π ).
The other parameters used are A = 0.1, ω(0) = 0.05, L = 25, kz = 1,
d = 24π/ω(0), ts = 5d , te = 25d , x(0) = 0, vx (0) = 0.01, vz(0) =
0.01.

the parallel and the perpendicular direction, but investigating
in detail these differences is outside the scope of the present
work and will be left to further studies. Figure 5 shows the
histogram of the kinetic energy distribution along the per-
pendicular and parallel directions: The average final kinetic
energy is about three times the initial energy along the per-
pendicular direction, and about 20 times along the parallel one
(recall that the total energy along the perpendicular direction
is twice the kinetic energy though). We do not repeat here the
analytical study of the Hamiltonian done in the previous sec-
tion, but the nature of the transition to nonadiabatic dynamics
is similar.

V. CONCLUDING REMARKS

Summarizing, we have studied a less explored scenario for
stochastic (chaotic) particle heating. The conclusion we draw
is that, at odds with present wisdom, heating by low-frequency
waves does not necessarily require a threshold upon the wave
amplitude.

Within the framework of Eq. (1), inhomogeneity may
affect either the wave frequency, its amplitude, the wave num-
ber, or several of these parameters at once. In the present study
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we investigated just the first possibility, since it is the only
one which produces nontrivial consequences. Altering ω in-
troduces a coupling between temporal and spatial coordinates.
This is clearly spotted after the canonical transformations
which lead to Eq. (4): In the Hamiltonian different phase space
quantities appear weighted by different powers of the param-
eter q(t ). This is the reason why, eventually, the topology of
the system changes, developing a separatrix. The change of k
or of A does not bring any such coupling.

Broadening a distribution function by a separatrix sweep-
ing phase space slowly may be relevant to other inhomoge-
neous physical systems. It is for instance for the motion in
a Langmuir wave whose phase velocity is slowly oscillating
with space.

It is clear that this paper contains a proof of concept. How
much of the present mechanism may be relevant to a real
scenario is still to be assessed. It is possible, nonetheless, to
get rid of the simplest objections. (I) The precise shape of
the spatial inhomogeneity is secondary, since we have seen
that the particle experiences only relatively small excursions
around its starting position, hence the linearization of the
actual profile around this point should be always accurate
enough. (II) The shape of the wave spectrum is not important
either. This point was addressed in detail in our previous work
[20]: As far as the heating mechanism is concerned, dealing
with a monochromatic rather than a broadband spectrum does
not add qualitative differences. However, the relevant dimen-
sionless parameter is ω(0)/L, t � 1. It entails that the particle
must be interacting with the wave for very long times in order
for the heating to be effective. In our previous simulations
it was some thousands of cyclotron periods. The conditions
chosen were fairly demanding and could be easily loosened,

yet by construction (ω(0) must be less than the Larmor fre-
quency and L larger than the Larmor radius), hence t must be
substantially larger than the cyclotron period.

This constraint raises two further questions. (III) Are such
scenarios of prolonged heating realistic? It has to be scruti-
nized case by case in astrophysical situations, where guide
magnetic fields are weak, whereas it does not appear to be a
serious issue in laboratory plasmas. For instance, it might be
an interesting exercise to try and apply the present mechanism
to ion heating in the presence of Alfvén waves produced by the
plasma dynamics itself [57,58]. (IV) Over these long times,
as competing mechanisms involving energy transfer to/from
particles may appear, which ones mask or somehow interfere
with the present one? We conceive of two such mechanisms:
Particle-particle collisions thermalize the particle population.
They act on the shape of the particle energy distribution but
are not expected to interfere with the heating mechanism
itself. Second, over long times—and therefore long distances
traveled along the guide magnetic field—the braided struc-
ture of the magnetic field may become relevant, and produce
perpendicular (with respect to the dominant component) dif-
fusion. A quantitative assessment of the role of this further
mechanism is beyond the scope of the present work, but
we may speculate that diffusion, leading to enhanced motion
along the direction of inhomogeneity, is likely to produce an
effect equivalent to a reduced scale L.
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[34] M. M. Martinović, K. G. Klein, J. C. Kasper, A. W. Case, K. E.
Korreck, D. Larson, R. Livi, M. Stevens, P. Whittlesey, B. D. G.
Chandran et al., Astrophys. J. Suppl. Series 246, 30 (2020).

[35] D. L. Bruhwiler and J. R. Cary, Physica D 40, 265 (1989).
[36] Y. Elskens and D. F. Escande, Nonlinearity 4, 615 (1991).
[37] Y. Elskens and D. F. Escande, Physica D 62, 66 (1993).
[38] A. J. Lieberman and M. A. Lichtenberg, Regular and Stochastic

Motion, 2nd ed. (Springer, New York, 1992), Chap. 5.7.
[39] A. Bazzani, Nuovo Cimento A 112, 437 (1999).
[40] A. V. Artemyev, A. I. Neishtadt, and L. M. Zelenyi, Chaos 21,

043120 (2011).
[41] A. Neishtadt, Nonlinearity 32, R53 (2019).

[42] C. B. Wang and C. S. Wu, Phys. Plasmas 16, 020703 (2009).
[43] K. Stasiewicz, Mon. Not. R. Astron. Soc. 496, L133 (2020).
[44] O. Pezzi and A. Settino (private communication).
[45] S. Gangadhara, D. Craig, D. A. Ennis, D. J. Den Hartog, G.

Fiksel, and S. C. Prager, Phys. Plasmas 15, 056121 (2008).
[46] V. Tangri, P. W. Terry, and G. Fiksel, Phys. Plasmas 15, 112501

(2008).
[47] G. Fiksel, A. F. Almagri, B. E. Chapman, V. V. Mirnov, Y. Ren,

J. S. Sarff, and P. W. Terry, Phys. Rev. Lett. 103, 145002 (2009).
[48] R. M. Magee, D. J. Den Hartog, S. T. A. Kumar, A. F. Almagri,

B. E. Chapman, G. Fiksel, V. V. Mirnov, E. D. Mezonlin, and
J. B. Titus, Phys. Rev. Lett. 107, 065005 (2011).

[49] S. T. A. Kumar et al., Phys. Plasmas 20, 056501 (2013).
[50] M. S. Cartolano, D. Craig, D. J. Den Hartog, S. T. A. Kumar,

and M. D. Nornberg, Phys. Plasmas 21, 012510 (2014).
[51] Y. Ren, A. F. Almagri, G. Fiksel, S. C. Prager, J. S. Sarff, and

P. W. Terry, Phys. Rev. Lett. 107, 195002 (2011).
[52] Y. Gell and R. Nakach, Phys. Fluids 23, 1646 (1980).
[53] J. M. Albert, J. Geophys. Res. 105, 21191 (2000).
[54] N. A. Ryabova and D. R. Shklyar, Phys. Lett. A 97, 194

(1983).
[55] R. I. McLachlan and P. Atela, Nonlinearity 5, 541 (1992).
[56] B. D. G. Chandran, D. Verscharen, E. Quataert, J. C. Kasper,

P. A. Isenberg, and S. Bourouaine, Astrophys. J. 776, 45 (2013).
[57] S. Spagnolo et al., Nucl. Fusion 51, 083038 (2011).
[58] A. Kryzhanovskyy, D. Bonfiglio, S. Cappello, M. Veranda, and

M. Zuin, Nucl. Fusion 62, 086019 (2022).

065201-6

https://doi.org/10.1111/j.1365-2966.2010.17249.x
https://doi.org/10.1209/0295-5075/102/49001
https://doi.org/10.1088/0004-637X/782/2/81
https://doi.org/10.3847/0004-637X/820/1/47
https://doi.org/10.1063/1.4976713
https://doi.org/10.3847/2041-8213/aa9887
https://doi.org/10.3847/1538-4357/ab23f4
https://doi.org/10.3847/1538-4365/ab527f
https://doi.org/10.1016/0167-2789(89)90067-5
https://doi.org/10.1088/0951-7715/4/3/002
https://doi.org/10.1016/0167-2789(93)90272-3
https://doi.org/10.1007/BF03035855
https://doi.org/10.1063/1.3657916
https://doi.org/10.1088/1361-6544/ab2a2c
https://doi.org/10.1063/1.3068472
https://doi.org/10.1093/mnrasl/slaa090
https://doi.org/10.1063/1.2884038
https://doi.org/10.1063/1.2998829
https://doi.org/10.1103/PhysRevLett.103.145002
https://doi.org/10.1103/PhysRevLett.107.065005
https://doi.org/10.1063/1.4804958
https://doi.org/10.1063/1.4861254
https://doi.org/10.1103/PhysRevLett.107.195002
https://doi.org/10.1063/1.863184
https://doi.org/10.1029/2000JA000008
https://doi.org/10.1016/0375-9601(83)90356-0
https://doi.org/10.1088/0951-7715/5/2/011
https://doi.org/10.1088/0004-637X/776/1/45
https://doi.org/10.1088/0029-5515/51/8/083038
https://doi.org/10.1088/1741-4326/ac6ad3

