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A nonlinear approach for late-time analysis
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In this paper, the nonlinear behavior of immiscible viscous fingering in a circular Hele-Shaw cell under the
action of different time-dependent injection flow rate schemes is assessed numerically. Unlike previous studies
which addressed the infinite viscosity ratio (inviscid-viscous flow), the problem is tackled by paying special
attention to flows with finite viscosity ratio (viscous flow) in which the viscosity of the displacing and the
displaced fluids can have any arbitrary value. Systematic numerical simulations based on a complex-variable
formulation of Cauchy-Green barycentric coordinates are performed at different mobility ratios and capillary
numbers with a focus on the late-time fully nonlinear regime. Additionally, numerical optimization is used to
obtain the optimal flow rate schedule through a second-order weakly nonlinear stability analysis in contrast to
previous studies in which the optimal flow rate was obtained entirely based on linear stability analysis. It is
demonstrated that, irrespective of the values of the mobility ratio and/or the capillary number, for patterns whose
constant injection counterpart exhibits linear flow regime, the curvature-driven relaxation time is comparable
with the operational time of the time-dependent injection flow rate controlling schemes, and most of the
controlling schemes work very well and suppress the fingering phenomenon remarkably with the maximum
recovery improvement of 15%. As the nonlinearity of the system increases, the schemes may still perform well,
but their effectiveness is more pronounced in patterns with less nonlinearity in their constant injection counterpart
than those with higher nonlinearity. As the nonlinearity increases, the curvature-driven relaxation time becomes
longer than the operational time of the schemes, leading to a reduction in their effectiveness. Additionally, it
is shown that employment of the second-order weakly nonlinear stability analysis to formulate the objective
function does not result in any remarkable variation in the obtained optimal flow rate schedule.
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I. INTRODUCTION

Viscous fingering or the Saffman-Taylor instability [1] is
perhaps one of the most common interfacial instabilities in
fluid dynamics. When a low-viscosity fluid displaces another
fluid with higher viscosity in a porous medium or in a narrow
space between two parallel plates known as Hele-Shaw cell,
the interface between the two fluids starts to deform, and
complex fingering patterns develop. Although amplification
of these fingering patterns can be beneficial in some applica-
tions such as fluid mixing [2], in many practical applications
such as enhanced oil recovery (EOR) [3,4] and CO2 seques-
tration (CS) [5], such instabilities are quite counterproductive.
Therefore, the ability to prescribe strategies which control
and eventually suppress the development of these interfacial
instabilities is of great importance. In this context, due to
the nonlinear behavior of the process, particularly at later
times, prediction and controlling of viscous-driven interfacial
disturbances in a Hele-Shaw cell has been a challenging topic
for a long time and, specifically in recent years, has attracted
considerable attention.

*sajjad.gholinezha1@ucalgary.ca

The existing literature proposes different strategies to
control and possibly suppress the development of viscous
fingering instabilities in a Hele-Shaw cell. These strate-
gies can be classified as (1) altering the Hele-Shaw cell
conventional geometry [6–13], (2) manipulating the fluid
properties [14–18], (3) using time-dependent injection flow
rates [19–26], (4) applying an external electric field [27,28],
and (5) combining two or more of these strategies [29–33].

A first set of controlling strategies involves modification
of the cell geometry. Replacement of the conventional rigid
top plate of the cell by an elastic membrane [6–8], changing
the gap size over time [9], introduction of a small negative
gradient in the gap size in the direction of fluid displacement
[10,11], and rotation of both top and bottom plates around the
cell vertical symmetry axis [12,13] are some of the geometri-
cal suppression techniques which were shown to be effective
in controlling interfacial instabilities.

In the second set of strategies, the properties of the fluids,
particularly their viscosity, are altered. Several studies have
shown that using non-Newtonian fluids as the displaced and/or
displacing fluids can offer opportunities for controlling of
the developed pattern [14–16]. Particularly, non-Newtonian
fluids with time-dependent rheology have shown promising
results [17,18]. Although higher values of surface tension

2470-0045/2023/107(6)/065108(26) 065108-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1917-492X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.065108&domain=pdf&date_stamp=2023-06-26
https://doi.org/10.1103/PhysRevE.107.065108


GHOLINEZHAD, KANTZAS, AND BRYANT PHYSICAL REVIEW E 107, 065108 (2023)

can suppress viscous fingers, especially at early flow stages,
application of time-dependent surface tension has not been
reported in the literature mainly because of the practical diffi-
culties or even impossibility of such a strategy.

A third line of research searches for suppression methods
which involve adjusting the injection flow rate in a circu-
lar Hele-Shaw cell with radial flow geometry. In contrast to
conventional constant injection rate which leads to growth
of interfacial instabilities, these methods try to control the
instabilities by employing an ideal time-dependent injection
flow rate. The oldest strategy of this type is cyclic injection in
which the displacing fluid is injected over properly distributed
intervals of time [19,20]. Another interesting scheme of this
type focuses on maintaining a fixed number of fingers. It
has been shown that, by using an injection flow rate which
scales with t−1/3, the number of emerging fingers can be
controlled [21–23]. Although this protocol does not remove
the fingers and still some fingers exist at the interface, it
tunes the interface into an n-fold symmetric structure with
a preassigned number of emerging fingers which does not
multiply over the course of time. Using a simple piecewise
constant two-step injection flow rate, in which a proper higher
injection rate follows a proper lower injection rate, is another
control technique which can minimize the development of in-
terfacial instabilities. It has been demonstrated that, for a finite
volume of injected fluid in a given time, applying this protocol
can lead to a one-order-of-magnitude reduction in the size of
the fingers compared with the conventional constant injection
flow rate [24]. Another interesting control scheme of this type
systematically looks for an optimum injection flow rate which
minimizes the final amplitude of the emerging fingers. Based
on linear stability analysis in a radial geometry, it has been
demonstrated that, in the limit of high capillary numbers, such
an optimal injection flow rate is a linear function of time
with a positive slope [25]. This scheme was later extended for
arbitrary values of capillary numbers, leading to an optimal
flow rate which is a closed-form analytical function of time
[26].

An alternative line of research concentrates on trying to
suppress the interfacial instabilities by applying an external
electric field along the surface of the cell. It has been shown
that positive electric current generates an electro-osmotic
force which restrains the establishment of interfacial distur-
bances by reducing the apparent viscosity of the resident fluid
[27,28].

Finally, in the last set of strategies, a combination of two
different strategies has been investigated. Combination of op-
timal flow rate with rotating cell [29], combination of optimal
flow rate with time-dependent viscosities [30,31], and combi-
nation of tapered cell with time-dependent viscosities [32,33]
are some of the strategies which have recently been shown to
be effective on reducing viscous fingering.

Despite the usefulness of the existing controlling strategies
to suppress interfacial instabilities in many applications, ex-
cept the time-dependent flow rate strategy, the application of
the other schemes in EOR and CS is associated with numerous
limitations and challenges. The major practical challenge is
that modification of the geometry of underground oil reser-
voirs and aquifers, particularly in a time-dependent manner, is
impossible. This limitation hinders the practical application of

geometrical controlling strategies in EOR and CS. Although
thermal methods have been successfully applied to decrease
the viscosity of resident oil in oil reservoirs, such a change
is usually expensive and limited to specific conditions [34].
Additionally, owing to the inherent low viscosity of resident
brine in aquifers, considerable modification of its viscosity
is impossible. Regarding the viscosity of the injecting fluid,
usually polymers are added to the injecting fluid (usually
water or brine) to increase its viscosity. However, limitations
such as the high cost of polymers, pore plugging, and polymer
degradation at harsh conditions of temperature and salinity
hinder their widespread applications [30,35]. Due to these
limitations, the application of the strategies which alter the
fluid viscosity is not always feasible. Regarding the appli-
cation of an electric field, both resident and injection fluids
are required to be highly conductive. Additionally, because of
the requirement of high voltage, the high cost of generating a
large-scale electric field is another limitation of this method.
As a result, it becomes practically impossible to use electric
fields for a real application of instability control in EOR
and/or CS.

Following the above discussion, manipulation of the rate at
which the displacing fluid is injected seems to be the most
convenient and practical way of controlling the interfacial
instabilities in real porous media applications. Although the
effectiveness of some of these simple controlling schemes
has been confirmed by linear stability analysis [24–26], so-
phisticated numerical simulations (for inviscid-viscous flow)
[29], and meticulous experiments [25], their late-time perfor-
mance particularly for viscous-viscous displacement have not
been investigated systematically. Specifically, the late-time
performance of the scheme proposed by Batista et al. [26] for
arbitrary capillary numbers has not been investigated in detail.

In this paper, to access the response of the displacement
at later time stages of the evolution, we explore numerically
the dynamics and control of interfacial instabilities under
the action of different time-dependent flow rate schemes in
a circular Hele-Shaw cell in which a fluid with nonzero
viscosity displaces another immiscible fluid. Unlike previ-
ous studies which addressed the infinite viscosity ratio (i.e.,
inviscid-viscous flow), we tackle the problem by paying spe-
cial attention to flows with finite viscosity ratio (i.e., viscous
flow) in which the viscosity of the displacing and displaced
fluids can have any arbitrary values. Systematic numeri-
cal simulations based on complex-variable formulation of
Cauchy-Green barycentric coordinates [36] are performed at
different viscosity ratios and capillary numbers with a focus
on late-time fully nonlinear regime. Additionally, we go one
step further by, in the spirit of Dias et al. [25] and Batista
et al. [26], deriving an optimal injection flow rate through
second-order weakly nonlinear stability analysis in contrast
to the previous studies in which an optimal flow rate was
obtained entirely based on linear stability analysis.

It should be noted that, in this paper, investigation of
the optimal flow rate schedule is undertaken assuming that
the time scale for changing the injection flow rate is small
compared with the time scale required for curvature-driven
relaxation of fingers. As will be shown later, the time scale
required for curvature-driven relaxation is notoriously long
compared with the typical fingering time scales, and thus,
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FIG. 1. Schematic representation of the standard radial Hele-
Shaw cell.

practically, it is not feasible to wait for such long time
scales.

The reminder of this paper is organized as follows. In
Sec. II A, the governing equations of fluid flow in a circular
Hele-Shaw cell are presented. In addition to summarizing our
state of knowledge about the existing time-dependent flow
rate schemes, an injection flow rate policy is provided in
Sec. II B. The details of the employed numerical framework
which enable us to gain access to the nonlinear dynamics of
the system are described in Sec. II C, while Sec. III reports the
results and the relevant discussions, particularly on the effect
of governing parameters of the system (i.e., mobility ratio
and capillary number) in the presence of nonlinear effects.
Finally, the paper ends with Sec. IV, where our final remarks
are briefly summarized, and some perspectives are outlined.

II. MATHEMATICAL MODEL

A. Governing equations

Consider a circular Hele-Shaw cell which is composed of
two flat stationary parallel plates of infinite radius separated
by a gap of constant thickness b (Fig. 1). Through a tiny orifice
located at the center of the cell, fluid 1 with the constant
arbitrary viscosity of μ1 is injected radially at a volumetric
flow rate of Q which may vary with time. Fluid 2 with the
constant arbitrary viscosity of μ2 initially occupies the cell
except a small part with the average radius of R0 around the
orifice and is removed from the outer boundary of the cell
with a constant atmospheric pressure. It is assumed that the
fluids are incompressible and immiscible with an interfacial
tension of arbitrary value σ . Additionally, it is assumed that
the cell is horizontal and b is much smaller than the cell radial
extent (b/R � 1), and thus, the system can be considered
a quasi-two-dimensional system by neglecting inertial effects
(i.e., both Bond and Reynolds numbers are very small). The
simply connected planar domains occupied by fluids 1 and 2
are denoted by Ω1 and Ω2, respectively, while ∂Ω shows the
interface between the two fluids. Under these conditions, the
fluid flow can be described by the following equations:

∇�vk = 0, k = 1, 2, (1)

�vk = −Mk∇Pk, k = 1, 2, (2)

where �vk and Pk show the vertically averaged velocity and
pressure of fluid k, respectively. The first equation is the
continuity equation, while the second equation is Darcy’s law.
Here, Mk is the mobility of fluid k which is related to b and
μ by

Mk = b2

12μk
, k = 1, 2. (3)

At the interface which is initially located at R0, we have the
following boundary conditions:

P1 − P2 = σ

(
κ + 2 cos θ

b

)
, (4)

�v1n̂ = �v2n̂, (5)

where κ is the signed curvature of the interface, and n̂ rep-
resents the unit outward normal vector. Here, θ shows the
contact angle. The first equation is the dynamic boundary con-
dition which describes the pressure jump due to the interfacial
tension through the Young-Laplace equation, while the second
equation is the kinematic boundary condition which imposes
the continuity of the normal velocities at the interface. In this
paper, the gap thickness across the cell is constant, and thus,
the gradient of the curvature in the direction perpendicular to
the cell bounding plates is zero. This way, the perpendicular
curvature does not affect the interface motion, and the only
contribution of capillary pressure is the lateral curvature (i.e.,
the curvature in the bounding plates of the cell). Accordingly,
Eq. (4) can be simplified to

Peff
c = P1 − P2 − 2 cos θ

b
= σκ. (6)

It should be noted that the effects of thin wetting film left
behind and viscous normal stresses at the interface are also
neglected.

B. Weakly nonlinear stability analysis and optimal flow rate

In this section, to understand the stability of interface, the
weakly nonlinear stability analysis is reviewed. For simplicity,
we consider polar coordinates at the plane of the flow and
assume that the initially circular interface is slightly distorted.
The perturbed interface R can be described as [37]

R(φ, t ) = R(t ) + ζ (φ, t ), 0 � φ � 2π, |ζ | � R, (7)

where R(t ) is the radius of the equivalent unperturbed inter-
face at time t and can be obtained by

R(t ) =
√

R2
0 + 1

π

∫ t

0
Q(t ′)dt ′, (8)

and ζ is the arbitrary perturbation which can be represented
as the following complex Fourier series:

ζ (φ, t ) =
+∞∑

n=−∞
ζn(t )exp(inφ), (9)

where i is the imaginary unit, n is the integer azimuthal wave
number, and ζn is the perturbation amplitude of mode n. Here,
our main task is to obtain the weakly nonlinear time evolution
of ζ accurate to second order. This is a lengthy derivation
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which was presented by Miranda et al. [37]. To avoid clut-
tering this paper with too much detail, only the final equation
is presented here which can be written as follows:

ζ̇n = λnζn + Wn(t ), (10)

where the overdot shows the total time derivative and

λn = Q

2πR2
(A|n| − 1) − γ

R3
|n|(n2 − 1), (11)

Wn(t ) =
∑
p�=0

(Fn,p + λpGn,p)ζpζn−p, (12)

Fn,p = |n|
R

{
QA

2πR2

[
1

2
− sgn(np)

]
− γ

R3

[
1 − p

2
(3p + n)

]}
,

(13)

Gn,p = 1

R
{A|n|[1 − sgn(np)] − 1}, (14)

A = MR − 1

MR + 1
, (15)

γ = b2σ

12(μ1 + μ2)
, (16)

where MR is the mobility ratio of the fluids and can be
expressed by

MR = M2

M1
. (17)

Equation (10) is called the second-order mode coupling
equation of the Saffman-Taylor instability which describes the
temporal evolution of the interfacial instabilities in a circular
Hele-Shaw cell. The first term on the right-hand side is the
purely linear growth of the perturbation, while the second term
denotes the weakly nonlinear contribution. This equation is a
nonhomogeneous linear ordinary differential equation which
can be easily solved using integrating factor [37]:

ζn(t ) = ζn(0)exp

(∫ t

0
λndt ′

)

×
[

1 +
∫ t

0

Wn(t ′)

ζn(0)exp
(∫ t ′

0 λndt ′′)dt ′
]
. (18)

At the linear level, the number of emerging fingers is given
by the mode with the maximum growth rate which can be
calculated by ∂λn/∂n|n=nmax

= 0, leading to [37]

nmax =
√

1

3

(
1 + AṘR2

γ

)
, (19)

where

Ṙ = Q

2πR
. (20)

In time-dependent injection flow rate controlling schemes
of interfacial instability, the goal is to search for a proper
injection flow rate which minimizes or even suppresses
the growth of fingers, i.e., ζn(t f ), in which t f is the
final time of the process. Due to the plethora of possibili-
ties for time functionality of the injection flow rate, several
scenarios have been proposed in the existing studies. The
simplest scenario is cyclic injection which involves distribut-
ing the injection process over proper time intervals rather

than monotonic constant injection rate [19]. Each cycle starts
with an injection stage in which a finite volume of fluid is
injected for a finite period. In the second stage, the injection
process is stopped, and the orifice is shut in for a finite period,
which may be different from the injection period. During the
shut-in period, the driving force for the finger development
is eliminated, and consequently, the interfacial tension which
acts as the stabilizing force retracts the developed fingers [20].
In practice, the whole process can consist of several cycles,
depending on the technical and economical limitations. In this
paper, for the sake of consistency, the total amount of the
injected fluid and the final time are kept constant for all the
tested methods. We consider four cycles as the typical number
of cycles with equal time intervals for injection and shut-in
stages.

The second time-dependent flow rate controlling scheme
focuses on prescribing the number of fingers. From Eqs. (19)
and (8), by integrating Ṙ over time and keeping nmax constant,
it can be shown that, if Q is adjusted to follow the follow-
ing equation, the interface will evolve by maintaining nmax

symmetrical fingers which grow but do not multiply as time
evolves [22,23]:

Q = 2π
3
√

3

[
γ

A

(
3n2

max − 1
)]2/3

t−1/3. (21)

This strategy was proposed by Bataille [21] using linear
stability analysis and was later further confirmed by weakly
nonlinear, numerical, and experimental studies [22,23,38]. Al-
though this technique offers a valid procedure to prescribe
the number of nonsplitting fingers which might improve the
performance of some physical systems, it does not quite re-
move the fingers, and the evolving fingers have considerable
sizes. Therefore, we do not investigate this technique further,
as the focus of this paper is only on efficient time-dependent
flow rates which seek ultimate suppression of the fingers and
are more desired for EOR and CS applications. For a detailed
description of this method, the interested reader is referred to
Refs. [22,23,38].

Based on linear stability analysis, it has been shown that
employment of a simple piecewise constant two-step injection
flow rate can restrain interfacial instabilities in a radial Hele-
Shaw cell at a specific scenario. Since in a radial Hele-Shaw
cell velocity decreases with the radial distance, setting of a
lower injection rate for the first stage and a higher injection
rate for the second stage is the only two-stage scenario which
can outperform the conventional constant injection flow rate
for a finite volume of injected fluid in a given time. The
duration of each stage and the corresponding flow rates are
a function of the system properties which can be obtained
by minimizing the amplitude of the fingers at the end of the
process by recalling the constraint that, for the final time, the
amplitude of the fingers with maximum growth rate which
were created and developed at the second stage must be the
same as the amplitude of the fingers with maximum growth
rate which were created at the first stage and developed during
both first and second stages [24]. Indeed, such a minimization
procedure does not lead to a closed-form analytical expres-
sion, and therefore, numerical optimization techniques are
required to find the optimal duration and the flow rates of
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the stages. In this paper, a numerical optimization framework
based on sequential least squares programming (SLSQP) was
employed to solve the problem. For a detailed discussion of
the method, the reader is referred to Dias et al. [24].

In an interesting control scheme of this type, by sys-
tematically searching for the best injection flow rate which
minimizes the linear perturbation amplitude, through the
Euler-Lagrange equation, it has been demonstrated that, in the
limit of high capillary numbers, such an ideal injection flow
rate scales linearly with time as [25]

Q(t ) = 2π
R f − R0

t f

(
R0 + R f − R0

t f
t

)
, (22)

where R f is the interface equivalent average radius at t f .
Considering the necessity of a higher injection following a
lower injection for the two-stage strategy, this scheme is ex-
pectable. The effectiveness of this method was verified by
analytical, numerical, and experimental studies [25,29]. A
detailed derivation of this scheme can be found in Ref. [25].
This scheme, hereafter referred to as linear approximate, was
later generalized for arbitrary values of capillary numbers, and
by minimizing the linear perturbation amplitude through the
Hamiltonian equation, it was shown that the optimal flow rate
can be written as [26]

Q(t ) =
(

c1

9A2

)
2π

[
(c1t + c2)2 − 3γ (A+1)

2

]
[
(c1t + c2)3 − 9γ (A+1)

2 (c1t + c2)
]1/3 , (23)

where c1 and c2 are constants which can be determined by the
boundary conditions: R(0) = R0 and R(t f ) = R f . This scheme
is referred to as linear exact hereafter. A detail derivation of
this scheme can be found in Ref. [26].

While the last two optimal flow rates offer an efficient
way to suppress interfacial instabilities, they do not provide
the true minimum of the whole nonlinear perturbation am-
plitude. The effect of nonlinear terms becomes important at
later times when the mechanisms other than spreading are
activated. However, according to Eq. (12), for a given mode,
the whole nonlinear amplitude depends on the amplitude of
other modes which makes it very difficult (and most probably
impossible) to minimize it analytically. In this paper, we seek
to obtain the true optimal point of the problem using nonlinear
optimization. In this sense, Eq. (18) is minimized using the
SLSQP optimization algorithm of the SciPy library in Python.
To have a consistent comparison with previous schemes, for
a given total time, the total volume of injected fluid was
kept constant and fed in as the constraints to the employed
optimization algorithm. The problem is then formulated as

ζnmax

(
t f

) = ζnmax (0)exp

(∫ t f

0
λnmax dt ′

)

×
[

1 +
∫ t f

0

Wnmax (t ′)

ζnmax (0)exp
(∫ t ′

0 λnmax dt ′′)dt ′
]
, (24)

constrained to ∫ t f

0
Qdt = QReft f , (25)

where QRef is the injection flow rate of the reference constant
injection rate process.

C. Numerical simulation

While weakly nonlinear and particularly linear stability
analysis offers a helpful tool to understand the qualitative
dynamic behavior of the problem and derive different con-
trolling strategies, its validity is restricted to a short period of
time after the onset of the instability beyond which nonlinear
dynamics takes over. It is therefore necessary to perform nu-
merical simulations to explore the full nonlinear dynamics of
the problem and visualize the advanced time evolution of the
interface. In this section, to investigate the range of validity
of the existing as well as the proposed controlling scheme,
we conduct a full numerical simulation of the problem. The
numerical method employed here is like the complex-variable
formulation of Cauchy-Green barycentric coordinates devel-
oped in Ref. [36]. In this framework, which is a variant of
boundary integral methods, only the fluid-fluid interface is
tracked which reduces the computational cost remarkably and
allows us to efficiently simulate the process. If we define the
following transformation:

φk = MkPk, k = 1, 2, (26)

from Eq. (1), it can be easily shown that φ is a potential
function which obeys Laplace’s equation:

∇2φk = 0, k = 1, 2. (27)

Substituting Eq. (26) into Eq. (4) gives the following ex-
pression for the dynamic boundary condition:

φ1

M1
− φ2

M2
= σκ, (28)

while the kinematic boundary condition can be written as

�∇φ1n̂ = �∇φ2n̂. (29)

Now to simplify the solution procedure, we switch from
the real domain to the complex domain by denoting the point
(x, y) in the real domain by z = x + iy. This switching re-
duces the problem dimension by one. The model equations in
the complex domain can be formulated as

∇2φk (z) = 0, k = 1, 2, (30)

φ1(z)

M1
− φ2(z)

M2
= σκ (z), (31)

〈− �∇φ1, n̂(z)〉 = 〈−�∇φ2, n̂(z)〉. (32)

At this point, to further simplify the solution, we reformu-
late the problem as an evolution problem for the interface.
Consider a holomorphic complex potential W whose real part
is equal to φ [36]:

Wk = φk + ψki, k = 1, 2. (33)

Using the Cauchy-Riemann theorem and Green’s function
for the Laplacian in the plane, the governing equations can be
rephrased in terms of W [36]:

Wk (z) = Q

2πb
ln (z) + fk (z), k = 1, 2, (34)

μ1Re[W1(z)] − μ2Re[W2(z)] = b2σ

12
κ (z), (35)

Re[W ′
1 (z)n̂(z)] = Re[W ′

2 (z)n̂(z)], (36)

065108-5



GHOLINEZHAD, KANTZAS, AND BRYANT PHYSICAL REVIEW E 107, 065108 (2023)

where fk is an analytic function on Ωk . By applying Cauchy’s
integral formula, the value of f1 at any point inside Ω1 can be
calculated from its value on the interface ∂Ω:

f1(z) = 1

2π i

∮ .

∂

f1(ω)

ω − z
dω. (37)

If we discretize the input interface ∂Ω into m elements to
get the closed polygon Ω̂ , by assuming that the value of f1

on each edge is a linear interpolation between the two end
points of that edge and then analytically calculating the edge
integrals and rearranging the terms, the integral in Eq. (37)
can be discretized as [36]

f1(z) =
m∑

j=1

Cj (z) f1(z j ). (38)

Here, C is the Cauchy-Green coordinate of the point z which
can be found in Ref. [39]. Because f2 is holomorphic on Ω2,
using Cauchy’s integral formula for unbounded domain, we
have [36]

f2(z) =
m∑

j=1

Ej (z) f2(z j ), (39)

where

Ej (z) = Cj (a) − Cj (z), (40)

where a is an arbitrary point inside Ω1. Substituting Eqs. (38)
and (39) into Eq. (34) and then substituting the resulting
equations into Eqs. (35) and (36) and rearranging the terms
yields

m∑
j=1

{μ1Re[Cj (z)]Re[ f1(z j )] − μ1Im[Cj (z)]Im[ f1(z j )] − μ2Re[Ej (z)]Re[ f2(z j )] + μ2Im[Ej (z)]Im[ f2(z j )]}

= (μ2 − μ1)
Q

2πh
ln |z| + b2σ

12
κ (z), (41)

m∑
j=1

{Re[Dj (z)n̂(z)]Re[ f1(z j )] − Im[Dj (z)n̂(z)]Im[ f1(z j )] − Re[Fj (z)n̂(z)]Re[ f2(z j )] + Im[Fj (z)n̂(z)]Im[ f2(z j )]} = 0, (42)

where Dj and Fj are the first derivatives of Cj and Ej , re-
spectively. The expressions for these terms can be found in
Ref. [39]. At this point, each edge of the polygon Ω̂ is
sampled at four points on which Eqs. (41) and (42) are con-
structed, leading to a linear set of equations which is then
solved by SciPy lsq_linear to obtain f1 and f2 at m vertices
of the polygon Ω̂ . The interface normal velocity at Ω̂ vertices
is then calculated using the following relation [36]:

vn = −Re[W ′
1 (z)n̂(z)], (43)

then the vertices of Ω̂ advance using the following equation:

dΩ̂

dt
= vn, (44)

which was integrated using a first-order Euler method with an
adaptive time step as follows:

dt = αlave

vmax
, (45)

where lave is the average edge length and vmax is the maximum
velocity observed in the interface. The parameter α controls
the interface maximum displacement at each time step and is
chosen such that it guarantees convergence without reducing
efficiency. At the next step, the new interface position is inter-
polated and sampled using a cubic spline, and the procedure
is repeated until the final time. In this paper, the SciPy built-in
interpolation function was employed to interpolate and sam-
ple the interface. The sampling process is curvature-based in
which the density of the sampling points is higher in the highly
curved areas. As the interface grows, the number of sampling
points adaptively increases to keep the edge length constant.
The initial interface was constructed using the following for-

mula [29]:

Ω̂ (φ, 0) = R0

⎧⎨
⎩1 + ε

13∑
j=2

cos[ j(φ − 2πχ j )]

⎫⎬
⎭, (46)

where R0 is the radius of the initial interface, and ε is the initial
amplitude. Here, χ is a random number between 0 and 1. It is
worth noting that, in this paper, the dynamic initiation of noise
was neglected, and it was assumed that the noise can be fully
described through the perturbations at the initial interface. The
main motivation for this assumption originates from the fact
that, according to Eq. (18), the growth of perturbations is
an exponential function of time, and thus, the perturbations
which are created later play a less significant role. Another
motivation is that dynamic generation of noise is prone to
violation of material balance which is a serious problem.

III. RESULTS AND DISCUSSION

In this section, the results for the existing as well as the
proposed time-dependent flow rate controlling strategies are
presented and compared with those of the constant injection
flow rate with emphasis upon late-time nonlinear dynamics.
We begin by validating our numerical framework through
comparison of our numerical results with the published exper-
iments conducted under identical conditions. Figure 2 shows
the experimental results obtained by Bischofberger et al. [40]
and their replication by our numerical framework for three
different viscosity ratios in descending order. For all cases, the
initial interface is of the form of Eq. (46) with R0 = 0.004 m
and ε = 0.001. The relevant physical properties of the ex-
periments are given in the figure caption. While the visual
comparison of the corresponding cases qualitatively verifies
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FIG. 2. (a)–(c) Experimental patterns from Bischofberger et al. [40], reproduced with permission from Royal Society of Chemistry, and
(d)–(f) the corresponding numerical results. (a) and (d) μ1 = 0.99 mPa s, μ2 = 296.7 mPa s, MR = 299.70. (b) and (e) μ1 = 46.6 mPa s,
μ2 = 345.1 mPa s, MR = 7.41. (c) and (f) μ1 = 224.4 mPa s, μ2 = 530.3 mPa s, MR = 2.36. In all experiments, black fluid is a dyed glycerol-
water solution, while the colorless fluid is a silicone oil which fully wets the cell surface. Additionally, b = 254 µm, Q = 10 mL/min and
σ = 26 ± 2.5 mN/m.

the numerical framework, we have also considered three geo-
metrical measures to quantify the similarity. The first metric,
which is called the normalized interfacial length, measures
how far the interface is from a circle and is defined as [41,42]

I = L

2
√

πA
, (47)

where L is the arc length of the interface, and A is the area
of the zone swept by the displacing fluid. Basically, 2

√
πA is

the perimeter of a circle whose area is A, and consequently, a
circular area has the minimum value of I which is 1. For any
other shape, I > 1. The second metric, which is referred to
as the modified roughness ratio, is a measure of the average
length of the fingers rescaled by a characteristic length and is
defined as

C = RO − RI

RI
, (48)

where RO is the average distance of the tips of the fingers from
the injection point, and RI is the average distance of the valleys
of the fingers from the injection point. For a fully stable flow
with no fingering, C = 0, and it increases as the fingers grow.
The SciPy Signal library was employed to identify the local
tips and valleys. The third metric, which is called areal sweep

efficiency, is a common measure in petroleum engineering
which measures the effectiveness of the injection process in
terms of the swept area. It is defined as

EA = A

Ac
× 100, (49)

where Ac is the area of the smallest circle with the center at
the injection point that circumscribes the entire swept area.
The calculated values of I, C, and EA for the patterns in
Fig. 2 are given in Table I. We observe that, in correspon-
dence with I, C, and EA, the numerical results agree very
closely with the experimental data with the maximum error
of 24, 27, and 5%, respectively. It is worth noting that, in
our numerical simulation, the effects of thin wetting film
left behind the displaced fluid and the viscous normal stress
were neglected [43–45]. Additionally, the real experiment is a
three-dimensional phenomenon which has been simulated as
a quasi-two-dimensional process in our simulations [46]. An-
other important fact is that, in viscous fingering, the initiation
of fingers is inherently a stochastic process in which their am-
plitude, wavelength, phase, spatial distribution, and temporal
distribution are unknown, making the real initiation of fin-
gers inaccessible to numerical simulations [47]. As mentioned
before, in this paper, the dynamic initiation of noise was
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TABLE I. Comparison of the experimental and simulation results in terms of the geometric measures.

I C EA(%)

Patterns Mobility ratio Experimental Numerical Experimental Numerical Experimental Numerical

a, d 299.70 5.62 5.53 1.46 1.06 50.2 51.2
b, e 7.41 5.68 4.34 0.79 0.68 63.0 66.4
c, f 2.36 2.76 2.12 0.21 0.19 83.0 81.3

neglected, and it was assumed that the noise can be fully de-
scribed through the perturbations at the initial interface. These
effects can be responsible for the observed discrepancies be-
tween the experimental data and our numerical simulation
results. Another important observation is that, at the top-right
quarter of the pattern in Fig. 2(b), some fingers were de-
veloped in the perpendicular direction, and their azimuthal
development is comparable with their radial propagation. The
reason is that, for the conditions of Fig. 2(b), according to
Lenormand’s criteria [48,49], the invasion is under the transi-
tion regime between viscous fingering and capillary fingering
in which, because of the competition between the viscous and
capillary forces, fingers develop at both radial and azimuthal
directions. Although the simulated pattern in Fig. 2(e) does
not show the competition to the same extent as the experi-
mental pattern, the thick bases of the fingers are a symptom of
later competition. Despite these discrepancies, our simulation
results are the closest simulations to the experimental data
without any limitation on fluid viscosities.

It is worth noting that we have also examined the effect
of the number of sampling points on the results by employ-
ing a decreasing edge length. The simulations indicate that,
below a threshold edge length, the developed patterns agree
both qualitatively and quantitatively (see Appendix A). Ad-
ditionally, we have tested the effect of the distribution of
sampling points by examining both curvature-based and uni-
form (equally spaced) arc-length-based sampling approaches
[50]. The results showed that, to have the same pattern,
the uniform arc-length-based sampling requires smaller edge
length which leads to a higher number of sampling points and
consequently higher computational cost, but below a threshold
edge length, its results exactly coincide with the curvature-
based sampling approach. It is also worth noting that, for a
perfect circular interface with no perturbation at the initial
interface, with injecting the fluid, the circle grows proportion-
ally, and only at very late time, due to the numerical errors,
some fingers emerge. Examination showed that the initial
number of fingers and their phase only impact the qualitative
behavior of the pattern by changing the phase of the developed
fingers, but they do not change the quantitative measures
remarkably. Testing the initial amplitude of the fingers showed
that it has a profound effect on the developed pattern, both
qualitatively and quantitatively. Comparison of the emerging
patterns for initial amplitudes of 0.0001, 0.0005, 0.001, 0.002,
and 0.005 showed that, with increasing the initial amplitude,
longer fingers developed in the system, which is consistent
with the predictions of Eq. (18) in which the temporal growth
of the fingers is directly proportional to their initial amplitude.
The employed value of ε = 0.001 has been chosen such that
it provides a closer match to the experiments. However, it

should be noted that the results are insensitive to small vari-
ations in the employed initial amplitude. Finally, comparison
of the volume of the developed patterns with the volume of
the injected fluid shows deviations <5%, meaning that the
numerical framework is mass conservative.

We now take the advantage of the developed numerical
framework to systematically examine the effect of the gov-
erning parameters on the performance of the existing and the
proposed time-dependent flow rate controlling schemes when
a prescribed volume of the displacing fluid is injected over
a prescribed period. Following the existing literature, all the
governing parameters are combined into two dimensionless
numbers: mobility ratio (MR), which was already defined in
Eq. (17), and capillary number at R f which is defined as

Ca = QRef (μ2 − μ1)

2πR f bσ
. (50)

To test the effect of MR, we vary its value by three or-
ders of magnitude by taking the values of 2, 10, 100, and
1000 while maintaining a constant Ca = 5 × 10−3 (referred
to as set MR). Similarly, to test the effect of Ca, its value
is varied by three orders of magnitude by taking 1.5 × 10−3,
1.5 × 10−2, 1.5 × 10−1, and 1.5 while keeping a constant
MR = 100 (referred to as set Ca). For all cases, only the
viscosity values are changed, and the other system parameters
are kept constant. Here, b = 254 µm, QRef = 10 mL/min, and
σ = 24.57 mN/m were set for all cases. To test the effect of
MR, R f = 0.0850 m was set, while to test the effect of Ca,
R f = 0.02833 m was set. The value of the physical parameters
was set based on common radial Hele-Shaw cell experiments.
The employed flow rate policies in the first set of simulations
(set MR) were calculated and plotted in Fig. 3. By examining
different policies for different values of MR, it is quite evident
that, for all tested values of MR, the ideal flow rate policy
obtained by Dias et al. [25], Batista et al. [26], and this
paper coincide. The calculated value of AṘR2/γ for the range
of [R0 = 0.004, R f = 0.085] is in the range of [316, 6720]
which is always � 1, indicating that, for the range of tested
parameters in this section, the approximation employed by
Dias et al. [25] is valid, leading to the same flow rate
functionality for the approximate policy of Dias et al. [25] and
the exact policy of Batista et al. [26]. Additionally, it seems
that the contribution of the nonlinear terms in Eq. (18) is negli-
gible compared with the linear term, and thus, inclusion of the
nonlinear terms did not result in any remarkable difference in
the obtained policy compared with Dias et al. [25] and Batista
et al. [26].

Figure 4 shows the time evolution of the interfacial pat-
terns for different mobility ratios under the action of different
flow rate schemes. The patterns are plotted at equal time

065108-8



CONTROL OF INTERFACIAL INSTABILITIES THROUGH … PHYSICAL REVIEW E 107, 065108 (2023)

0 5 10 15 20 25 30 35
t (s)

0

5

10

15

20

25

Q
(m

l/
m

in
)

(a)

0 5 10 15 20 25 30 35
t (s)

0

5

10

15

20

25

Q
(m

l/
m

in
)

(b)

0 5 10 15 20 25 30 35
t (s)

0

5

10

15

20

25

Q
(m

l/
m

in
)

(c)

0 5 10 15 20 25 30 35
t (s)

0

5

10

15

20

25

Q
(m

l/
m

in
)

(d) Constant

Cyclic

Two-Rate

Dias et al. (2012)

Batista et al. (2016)

This study

FIG. 3. Employed injection flow rate policies for different values of MR, (a) MR = 2, (b) MR = 10, (c) MR = 100, and (d) MR = 1000.

intervals of t f /10, where t f is the process final time. Because
of the same functionality of linear-approximate and linear-
exact schemes, in Fig. 4, only one row was considered for
both, and the resulting scheme was simply referred to as
linear. By scrutinizing the top row of Fig. 4, we observe
that, for the conventional constant injection rate, regardless
of the value of MR, all patterns evolve to fingered structures,
although the length and number of the fingers and overall
shape of the patterns are different for different values of
MR. While MR = 2 shows only the finger-spreading mech-
anism, the other three higher values of MR show secondary
instability mechanisms of shielding (i.e., competition), tip
splitting, and side branching to some extent in addition to
spreading. Initially, the interface is almost circular with no
visible fingers. As the time evolves, the interface undulates,
and the fingers start to emerge. As the injection continues,
the fingers spread, and their tips get blunt, forming a fanlike
structure. Spreading continues until the finger width reaches a
critical value, above which the tip of the finger splits to form
second-generation fingers. Fingers of different sizes compete,
and smaller fingers are shielded by the larger neighbor fingers.
Sometimes, smaller fingers evolve from the lateral sides of
more established larger fingers. An interesting observation
is that, for higher values of MR, as time progresses, points
located on fjords do not move away from their starting lo-
cations effectively, creating the commonly named stagnation
points, while for lower values of MR, such stagnation points
are not encountered, and the fjords keep moving away from
their creation point as time advances. This is one of the main
dynamic aspects of viscous fingering which was not captured
in single-phase flow simulation of the process (with infinite
MR), while the employed two-phase flow simulation in this
paper (with finite MR) has successfully captured it. These
findings are in line with previous two-phase flow simulations
presented in Refs. [51,52].

Qualitatively, it is apparent that the cyclic injection pol-
icy intensified the fingering phenomenon for all tested cases,
particularly for higher values of MR. Although it did not
affect the initial number of developed fingers, the area which
was fully swept is less than that of the constant injection
rate. The physical explanation for the failure of the cyclic

protocol rests on the fact that, for a given final time and total
volume of injection, because of the shut-in periods, during the
injection periods, the flow rate is higher than the conventional
constant injection rate. Particularly at early times when the
interface has smaller radius, this higher flow rate (and thus
higher velocity) promotes the destabilization, leading to more
severe overall fingering. However, the philosophy behind the
cyclic injection is that, during the shut-in periods, the driv-
ing force for the growth of instabilities, i.e., the pumping, is
removed, and thus, due to the stabilizing effect of interfacial
tension, the instabilities developed during the injection period
are supposed to shrink. Although such shrinkage might have
occurred, its amount is not significant compared with the
increased growth of the fingers due to the higher injection rate
in the previous injection stage. To elaborate on this point, let
us try to find curvature-driven relaxation time which is the
required shut-in time to fully retract the fingers developed
during the injection stage. Assume that a full cycle takes tc
which can be split into the time interval of [0, tI ] during which
the fluid is injected with the constant flow rate of Q and the
time interval of [tI , tc] during which the injection is stopped.
At the end of the shut-in stage, the perturbation amplitude can
be written as

ζnmax (tc) = ζnmax (0)exp

(∫ tc

0
λnmax dt ′

)
. (51)

The integral term can be split into∫ tc

0
λnmax dt ′ =

∫ tI

0
λnmax dt ′ +

∫ tc

tI

λnmax,I dt ′ = I1 + I2. (52)

The first integral on the right-hand side shows the finger
growth during the injection stage, while the second integral
shows the retraction of the fingers due to the relaxation effect
of interfacial tension during the shut-in stage. Accordingly, in
the first integral, λnmax is a function of time, but in the second
integral, it is a constant which only depends on nmax at tI . To
retract all the fingers and fully smooth the pattern, the value
of ζnmax (tc) must get to zero. Therefore, equating Eq. (52) with
zero and simplifying the integrals gives the curvature-driven
relaxation time, i.e., tσ = tc − tI as follows (the derivation
details are presented in Appendix B):

tσ =
4A

3
√

3
[H(RI ) − H(R0)] − ln RI

R0
− 2A

3
√

3Ψ

[H(RI )
RI

− H(R0 )
R0

] + A√
3
ln [H(RI )−1][H(R0 )+1]

[H(RI )+1][H(R0 )−1]

A(R2
I −R2

0 )
6
√

3Ψ R3
I
H(RI )(Ψ RI − 2)

tI, (53)
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FIG. 4. Temporal evolution of interfacial patterns for different mobility ratios under the action of different injection flow rate schemes. The
rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns, from left to right,
correspond to MR = 2, MR = 10, MR = 100, and MR = 1000, respectively.
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FIG. 5. Variation of I for a process in which a long shut-in period
follows the constant injection period (MR = 2).

where

Ψ = A
(
R2

I − R2
0

)
2γ tI

, (54)

H(R) = √
1 + Ψ R. (55)

For the conditions of this paper, the employed shut-in pe-
riod of 4.91 s is at least four times smaller than tσ obtained
from the above equation, leading to a negligible effect of in-
terfacial tension stabilizing action during the shut-in stages. It
is worth noting that tσ obtained from the above equation is the
minimum time required to fully retract the fingers. In practice,
because of the reduction of the number of the fingers over
time, the actual curvature-driven relaxation time is several
orders of magnitude higher than tσ obtained from the above
equation. To provide an estimate for the order of magnitude
of the actual tσ , for the case shown in the top left corner of
Fig. 4 (i.e., the constant injection rate for MR = 2), at the
end of the flow process, the pump was shut down, and the
simulation was continued until the interface became a perfect
circle. According to the corresponding variation of I which
was illustrated in Fig. 5, it takes ∼4000 s for the stabilizing
effect of the interfacial tension to fully retract the fingers (i.e.,
once I = 1) which developed for an injection time of only
34.4 s (for more details, see the video clips presented in the
Supplemental Material [53]). For higher mobility ratios with
more severe fingering, the actual tσ can be even much longer.
This observation implies that, to have an effective cyclic in-
jection policy, the shut-in periods must be much longer than

the injection periods. Additionally, the magnitude of the min-
imum required shut-in period depends on the severity of the
fingering in the previous injection period.

As mentioned before, four cycles as the typical number of
cycles were considered in the cyclic injection scenario. How-
ever, the number of cycles in the range of 2–7 was tested for
MR = 1000 as the typical mobility ratio. The corresponding
patterns which were illustrated in Fig. 6 do not show any re-
markable difference, indicating that the number of cycles has
a negligible effect on the performance of the cyclic injection
scenario.

By examining the last three rows of Fig. 4, it is quite
evident that all two-rate, linear, and nonlinear policies reduced
the fingering phenomenon to some extent. The two-rate policy
did not reduce the initial number of developed fingers, but
the fully swept central area is larger than that of the constant
injection rate except for MR = 2 in which the flow rates of
the first and second stages were the same and equal to the
constant injection rate, leading to the same performance of
two-rate and constant injection schemes.

Linear and nonlinear policies not only reduced the initial
number of fingers for all values of MR, but also the developed
fingers are shorter, and the fully swept central area is higher
than the corresponding area in the constant injection rate
protocol. The physical explanation for this observation is that,
according to Fig. 3, for these protocols at the beginning of
the process, the instantaneous flow rate is less than the con-
stant injection rate, leading to more stable interface at early
times. However, to inject the same volume for a given time, at
later times for all these protocols, the instantaneous flow rate
becomes higher than the constant injection rate, but because
it happens at higher radii, it is not able to destabilize the
interface considerably. The overall effect is that the interface
is more stable than the constant injection rate policy.

Another important observation is that the performance
of linear and nonlinear protocols is different for different
values of MR. For MR = 2, linear and nonlinear schemes
fully stabilized the interface, and the interface is almost per-
fectly circular, while for higher values of MR, although both
schemes reduced the fingering by making shorter fingers and
delayed tip-splitting, they were not able to fully stabilize the
interface. The reason seems to be related to the differences
between the operational time of the injection protocols and the
curvature-driven relaxation time of the interfaces. For MR =
2, for a long time after the beginning of the process, the devia-
tion of the interface from the ideal circle is still low, and thus,
the curvature-driven relaxation time is short and comparable

FIG. 6. Effect of number of cycles on the performance of the cyclic injection scenario for the number of cycles of (a) 2, (b) 3, (c) 5, (d) 6,
and (e) 7.
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with the operational time of the protocols. Consequently, both
linear and nonlinear protocols fully stabilized the interface.
For higher values of MR, a very short time after the beginning
of the process, the nonlinear effects dominate the dynamics,
and thus, because of the higher deviation from the circular
shape, the curvature-driven relaxation time becomes much
longer than the operational time of the protocols, leading to
a reduction in their effectiveness.

For quantitative investigation of the performance of the
employed stabilization policies, the temporal variation of the
invading fluid saturation profile was calculated and plotted in
Fig. 7. For MR = 2, while cyclic and two-rate protocols do
not show any remarkable difference, the linear and nonlinear
schemes show a flat saturation profile which is an indica-
tor of pistonlike displacement. For MR = 10, for the cyclic
injection, the saturation profile has a stairlike shape, indicat-
ing a more fingered interface, while for linear and nonlinear
schemes, the saturation profile has become gentler, indicating
a more stable interface.

For MR = 100 and 1000, a steep single-step change
in saturation profile of the constant and cyclic policies is
observed at around R = 0.015 which is an indicator of se-
vere fingering. For the two-rate policy, although the same
single-step change is observed, it is slightly gentler. Lin-
ear and nonlinear schemes show two distinct improvements.
First, the onset radius of fingering was increased to around
R = 0.025. Second, instead of a single-step steep variation
in saturation, a two-step change is observed, and thus, for
a given radius, it took a longer time to experience lower
saturations. This behavior indicates that employing these poli-
cies has changed the single-step finger generation of constant
injection into two-step generation of fingers which reduces the
unpleasant effect of fingering remarkably. It is worth noting
that the radial length of the second step change in saturation is
less for MR = 1000 than that for MR = 100 mainly because
of severe nonlinear effects for higher values of MR.

Another important observation is that, for constant and
cyclic policies, as time advances, after the steep change in
saturation profile, a valley is created which is an indication
of finger base thinning over time and disappearance of small
fingers due to the competition with larger fingers. This phe-
nomenon is much weaker for the other protocols, and for
a given radius, only a small reduction in saturation is seen
over time because of the stabilizing effect which resulted in
a smaller number of fingers with thicker bases resistant to
thinning.

The controlling ability of the employed protocols can be
investigated more quantitively in Figs. 8 and 9 which illustrate
the variation of I, C, and EA as functions of time and MR,
repectively. The quantitative comparison of these measures
again agrees with the above qualitative observations. It is
apparent that, for all protocols except the cyclic protocol,
the value of I is less than that of constant injection rate.
Additionally, it is apparent that linear and nonlinear policies
give the least I, particularly for lower values of MR, meaning
that these polices give the least interfacial area. A similar
trend is observed for C, and for all protocols except the cyclic
scheme, the value of C is less than that of constant injection
rate. In terms of EA, cyclic injection has a smaller EA than
constant injection rate, while all other protocols resulted in

higher values of EA, particularly for MR = 2. Additionally, it
is apparent that linear and nonlinear policies give the highest
EA, particularly for lower values of MR, meaning that these
polices give the highest sweep efficiency. Only for MR = 10
at the end of the process the performance is comparable with
the other schemes which is related to the occurrence of the
capillary fingering which was not considered in derivation of
the flow rate schemes.

Another observation is that, for all cases, the last two
schemes outperformed the two-rate scheme. The reason seems
to be related to the fact that the two-rate policy is merely a
poor approximation of the linear policy, and thus, although it
performs better than the conventional constant injection rate
policy, it cannot perform the same as the more exact linear-
approximate, linear-exact, and nonlinear policies.

To illustrate the evolution of individual modes and extract
the dominant mode, we performed Fourier mode analysis. The
Fourier coefficient Cn, which shows the relative strength of
mode n, was calculated according to [28]

Cn(t ) = 1

2π

∫ π

−π

R(φ, t ) exp (inφ)dφ. (56)

Figure 10 shows the evolution of individual modes. While
the dominant mode is easily distinguishable for symmetric
patterns, most of the patterns are nonsymmetric, leading to
the coexistence of many modes with similar strength. How-
ever, all the mode evolution graphs are consistent with their
corresponding patterns. For each pattern, at the end of the pro-
cess, the dominant mode corresponds to the number of fingers
in the pattern. This can be confirmed by Fig. 11, which shows
the relative amplitudes of individual modes at the end of the
simulation.

We now turn our attention to the second set of our sim-
ulations which attempts to investigate the performance of
different flow rate protocols for a range of different cap-
illary numbers (Ca). Figure 12 shows the employed flow
rate policies in this set of simulations (set Ca). As men-
tioned previously, MR = 100 was employed for all cases in
this set. Like set MR, for all tested values of Ca, the ideal
flow rate policy obtained by Dias et al. [25], Batista et al.
[26], and this paper coincide. Like set MR, for the range of
[R0 = 0.004, R f = 0.02833], the calculated value of AṘR2/γ

is in the range of [32, 2 × 105], implying the validity of the
approximation of Dias et al. [25] for the conditions of set
Ca, leading to the same approximate policy of Dias et al.
[25] and the exact policy of Batista et al. [26]. Addition-
ally, like set MR, it seems that the contribution of nonlinear
terms in Eq. (18) is negligible compared with the linear term,
leading to a nonsignificant difference in the obtained policy
compared with linear policies. Only for the Ca = 1.5 × 10−3

a very small difference was observed between the nonlinear
policy introduced in this paper and the linear policies. It is
worth mentioning that only for unrealistic viscosity values
a little difference was observed in the obtained protocols
for the linear-approximate, linear-exact, and nonlinear cases,
concluding that the linear-approximate protocol proposed by
Dias et al. [25] is accurate enough for practical applications.
Another important observation in Fig. 12 is that the piecewise
constant policy shows very little dependence on the values of
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FIG. 7. Temporal variation of the invading fluid saturation profile for different mobility ratios under the action of different injection flow
rate schemes. The rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns,
from left to right, correspond to MR = 2, MR = 10, MR = 100, and MR = 1000, respectively.
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FIG. 8. Temporal variation of I, C and EA for different mobility ratios under the action of different injection flow rate schemes. The
columns, from left to right, correspond to MR = 2, MR = 10, MR = 100, and MR = 1000, respectively.

Ca. Similarly, in Fig. 3, we observed that the policy did not
change with MR variation except for Fig. 3(a). This is because
the piecewise constant policy is essentially an approximation
of the linear policy, which does not exhibit any dependence
on fluid properties. Therefore, the piecewise constant policy
behaves similarly.

Temporal evolution of the interfacial patterns for differ-
ent capillary numbers under the action of different flow

rate protocols is illustrated in Fig. 13. Like set MR, the
linear scheme refers to both linear-approximate and linear-
exact schemes. By examining the top row of Fig. 13, we
observe that, for the conventional constant injection rate,
except for Ca = 1.5 × 10−3, all patterns evolve to fingered
structures, although like the previous set, the physical char-
acteristics of the patterns are different for different values of
Ca. While Ca = 1.5 × 10−2 shows only the finger-spreading
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FIG. 9. Quantitative measures of I, C, and EA at final time as a function of MR.
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FIG. 10. Time evolution of the mode amplitudes for different mobility ratios under the action of different injection flow rate schemes. The
rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns, from left to right,
correspond to MR = 2, MR = 10, MR = 100, and MR = 1000, respectively.
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FIG. 11. Final amplitudes of each mode for different mobility ratios under the action of different injection flow rate schemes. The rows,
from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns, from left to right,
correspond to MR = 2, MR = 10, MR = 100, and MR = 1000, respectively.
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FIG. 12. Employed injection flow rate policies for different values of Ca, (a) Ca = 0.0015, (b) Ca = 0.015, (c) Ca = 0.15, and (d) Ca =
1.5.

mechanism, Ca = 1.5 × 10−1 and 1.5 show secondary in-
stability mechanisms of shielding, tip splitting, and side
branching in addition to spreading. Except Ca = 1.5 × 10−3,
all the other patterns tend to saturate, reaching almost a stag-
nation point. An important observation is that, with increasing
Ca, the width of fingers reduces which agrees well with
both theoretical and experimental predictions of smaller finger
width for higher capillary numbers [1,40].

In terms of the performance of different policies, like set
MR, the cyclic protocol intensified the instability, expedited
the tip-splitting mechanism, and reduced the fully swept cen-
tral area for all tested values of Ca which can be related
to the same physical and theoretical explanation discussed
for the previous set. Examination of the last three rows of
Fig. 13 shows that all two-rate, linear, and nonlinear poli-
cies reduced the fingering phenomenon and ended up with
shorter fingers for the two cases of Ca = 1.5 × 10−2 and
1.5 × 10−1 but did not show any remarkable effect on the
pattern for Ca = 1.5. Contrary to what we observed for set
MR, for set Ca, none of the tested policies changed the initial
number of the developed fingers, but for Ca = 1.5 × 10−2,
two-rate, linear, and nonlinear schemes delayed the finger tip
splitting.

Another important observation is that the performance of
two-rate, linear, and nonlinear protocols is different for differ-
ent values of Ca. For Ca = 1.5 × 10−3, all these schemes fully
stabilized the interface, and the interface is almost perfectly
circular. For Ca = 1.5 × 10−2, although all these schemes
reduced the fingering by making shorter fingers and delayed
tip splitting, they were not able to fully stabilize the interface.
For Ca = 1.5 × 10−1 and particularly for Ca = 1.5 for all
schemes, the performance is almost the same as the constant
injection rate scheme. Like set MR, the reason seems to be
related to the differences between the operational time of the
protocols and the curvature-driven relaxation time.

Figure 14 shows the time variation of the invading fluid
saturation profile for the patterns in Fig. 13. For Ca =
1.5 × 10−3, for all policies including the constant injection
rate, the saturation profile remains flat during the process,
indicating that the displacement is pistonlike. For Ca = 1.5 ×
10−2, for the constant injection and the cyclic schemes,
a step change in saturation is observed which is sharper
for the later one. Although the same step change is ob-
served for the two-rate, linear, and nonlinear policies, it is
gentler. For Ca = 1.5 × 10−1, almost all saturation profiles
are similar with a little improvement for the two-rate, linear,

and nonlinear policies. For Ca = 1.5, the difference between
the different policies is even lower, and the profiles are almost
the same. Particularly the valleys in the saturation profile of
the constant injection rate do not disappear in the other con-
trolling schemes, implying that none of the employed schemes
was able to stabilize the interface.

As a more quantitative measure of performance, we have
calculated and plotted the variation of I, C, and EA as func-
tions of time and Ca in Figs. 15 and 16, respectively. For
Ca = 1.5 × 10−3, although all policies resulted in the same
value of I, two-rate, linear, and nonlinear policies resulted in
lower C and slightly higher EA compared with the constant
injection rate protocol. The cyclic scheme resulted in slightly
higher C and lower EA. For Ca = 1.5 × 10−2, compared with
the constant injection protocol, two-rate, linear, and nonlinear
policies resulted in lower I, C, and higher EA, while the cyclic
protocol resulted in higher I, higher C, and slightly lower EA.
For Ca = 1.5 × 10−1, compared with the constant injection
rate, the cyclic injection resulted in lower I, higher C, and
slightly higher EA. The two-rate scheme, while performing
better than the constant injection rate protocol over the time,
resulted in almost the same values of I, C, and EA at the end of
the process. Both linear and nonlinear policies outperformed
the constant injection rate scheme and resulted in lower I,
lower C, and higher EA. For Ca = 1.5, although over the
course of time, all two-rate, linear, and nonlinear schemes
showed lower I, lower C, and higher EA compared with the
constant injection rate, finally, they ended up with slightly
higher I, slightly lower C, and almost the same EA. The cyclic
scheme almost performed the same as the constant injection
rate scheme.

Like the previous case, Fourier mode analysis was
performed to identify the evolution of individual modes. Fig-
ure 17 shows the time evolution of individual modes. Like
the previous case, while symmetric patterns exhibit a single
dominant mode, nonsymmetric patterns show several modes
with comparable strength. Additionally, Fig. 18 shows the
relative amplitudes of individual modes at t f , confirming that
the dominant mode corresponds to the number of fingers on
the pattern.

Considering different patterns developed for set MR and
set Ca together, a very important observation is that, for
patterns whose constant injection counterpart exhibits linear
flow regime, the two-rate, linear, and nonlinear control-
ling schemes work very well and suppress the fingering
phenomenon remarkably. As the system transitions into a non-
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FIG. 13. Temporal evolution of interfacial patterns for different capillary numbers under the action of different injection flow rate schemes.
The rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns, from left to
right, correspond to Ca = 1.5 × 10−3, Ca = 1.5 × 10−2, Ca = 1.5 × 10−1, and Ca = 1.5, respectively.
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FIG. 14. Temporal variation of the invading fluid saturation profile for different capillary numbers under the action of different injection
flow rate schemes. The rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The
columns, from left to right, correspond to Ca = 1.5 × 10−3, Ca = 1.5 × 10−2, Ca = 1.5 × 10−1, and Ca = 1.5, respectively.
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FIG. 15. Temporal variation of I, C and EA for different capillary numbers under the action of different injection flow rate schemes. The
columns, from left to right, correspond to Ca = 1.5 × 10−3, Ca = 1.5 × 10−2, Ca = 1.5 × 10−1, and Ca = 1.5, respectively.

linear regime, the schemes may continue to perform well, but
their effectiveness is more pronounced in patterns where the
constant injection counterpart exhibits lower nonlinearity than
those with higher nonlinearity. As the nonlinearity increases,
the curvature-driven relaxation time surpasses the operational
time of the schemes, resulting in their reduced effectiveness.

This is consistent with the results of Dias et al. [25] and
Morrow et al. [29]. Figures 4 in Refs. [25,29] suggest that the
performance of the linear policy is higher for patterns whose
constant injection counterpart exhibits less nonlinearity than
those whose constant injection counterpart exhibits higher
nonlinearity.
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FIG. 17. Time evolution of the mode amplitudes for different capillary numbers under the action of different injection flow rate schemes.
The rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns, from left to
right, correspond to Ca = 1.5 × 10−3, Ca = 1.5 × 10−2, Ca = 1.5 × 10−1, and Ca = 1.5, respectively.

065108-21



GHOLINEZHAD, KANTZAS, AND BRYANT PHYSICAL REVIEW E 107, 065108 (2023)

FIG. 18. Final amplitudes of each mode for different capillary numbers under the action of different injection flow rate schemes. The
rows, from top to bottom, represent constant, cyclic, two-rate, linear, and nonlinear (this study), respectively. The columns, from left to right,
correspond to Ca = 1.5 × 10−3, Ca = 1.5 × 10−2, Ca = 1.5 × 10−1, and Ca = 1.5, respectively.
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IV. CONCLUSIONS

In this paper, we carried out a series of systematic nu-
merical simulations to investigate the performance of various
time-dependent injection flow rate strategies at an advanced
time regime of the viscous fingering dynamics at which the
instability has become fully nonlinear and the interface is
extremely deformed. Motivated by the fact that the ultimate
shape of the interface only depends on the capillary and vis-
cous forces, we have combined all the governing parameters
into two scaling groups, mobility ratio and capillary number,
and systematically varied each of these parameters at a time
while keeping the others fixed.

Our numerical findings showed that, compared with the
conventional constant injection rate scheme, the cyclic in-
jection strategy intensified the development of the interfacial
instabilities for most of the cases which was attributed to
the necessity of very long curvature-driven relaxation time
required to fully retract the developed fingers. While two-
rate, linear, and nonlinear schemes reduced the fingering
phenomenon for linear flow regimes, their performance at
nonlinear stages is strongly dependent on the degree of
nonlinearity, and once severe nonlinearity develops, their per-
formance reduces regardless of the value of the mobility ratio
and/or the capillary number. This stems from the fact that,
for each fingering pattern, the efficiency of these policies
strongly depends on the differences between the time scales
of the operational time of these policies and the required
curvature-driven relaxation time of the fingering pattern. Pat-
terns with less severe fingering have short curvature-driven
relaxation time comparable with the operational time of
the controlling schemes, leading to better stability response
to the schemes, but patterns with more severe fingering
have long curvature-driven relaxation time, and thus, the
operational time of the schemes is not enough to fully stabilize
the interface.

It is worth noting that, in linear scheme, pressure increases
as the injection flow rate increases. On the other hand, in real
field applications, there is a maximum operational pressure
above which further pressure increase is not allowed. At some
point, the linear scheme will reach this maximum pressure.
The injection process would then have to be switched to
the corresponding maximum allowed injection flow rate. For
future work, an interesting topic would be to find the opti-
mum time at which the injection can be switched from the
linear scheme to the constant injection scheme to ensure the
displacement stability.
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APPENDIX A: CONVERGENCE TEST

Figure 19 illustrates the convergence behavior of the devel-
oped patterns as the edge length decreases. It can be observed
that, for the largest tested edge length, the number of vertices
is insufficient to capture the pattern details. As the edge length
decreases, the number of vertices increases, and therefore,
higher detail of the dynamics is captured. However, for the
last two tested edge lengths, we do not see any remarkable
difference, and the developed patterns are identical. It is worth
noting that, because of the division by the edge length in the
Cauchy-Green coordinates given in Ref. [39], the edge length
cannot be reduced infinitely, and below a critical edge length,
due to the division by very small values, the algorithm may
become divergent again. Similarly, Fig. 20 shows the temporal
convergence behavior. It is worth noting that, since in this
paper we have employed an adaptive time step, instead of
directly altering the time step, we assessed the convergence
by varying the parameter α, which controls the time step.
From Fig. 20, it is evident that the scheme is convergent.
These convergence tests are consistent with the results of the
convergence tests in Refs. [54,55].

APPENDIX B: DERIVATION OF tσ

Assume that a full cycle takes tc which can be split into the
time interval of [0, tI ], during which the fluid is injected with
the constant flow rate of Q, and the time interval of [tI , tc],
during which the injection is stopped. At the end of the shut-in
stage, the perturbation amplitude can be written as

ζnmax (tc) = ζnmax (0)exp

(∫ tc

0
λnmax dt ′

)
. (B1)

The integral term can be split into∫ tc

0
λnmax dt ′ =

∫ tI

0
λnmax dt ′ +

∫ tc

tI

λnmax,I dt ′ = I1 + I2. (B2)

The first integral on the right-hand side shows the finger
growth during the injection stage in which λnmax is a function

FIG. 19. Convergence test of the numerical scheme in terms of spatial resolution for the average edge length of (a) 500 µm, (b) 400 µm,
(c) 300 µm, (d) 200 µm, and (e) 100 µm.
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FIG. 20. Convergence test of the numerical scheme in terms of temporal resolution for different values of α: (a) 0.2, (b) 0.15, (c) 0.1, (d)
0.05, and (e) 0.025.

of time. Substituting Eq. (19) into Eq. (11) yields the follow-
ing expression for λnmax :

λnmax = Q

2πR2

⎡
⎣A

√
1

3

(
1 + AṘR2

γ

)
− 1

⎤
⎦

− γ

R3

√
1

3

(
1 + AṘR2

γ

)[
1

3

(
1 + AṘR2

γ

)
− 1

]
.

(B3)

Thus, the first integral I1 can be written as

I1 =
∫ tI

0

⎧⎨
⎩ Q

2πR2

⎡
⎣A

√
1

3

(
1 + AṘR2

γ

)
− 1

⎤
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− γ
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√
1

3

(
1 + AṘR2

γ

)[
1

3

(
1 + AṘR2

γ

)
− 1

]⎫⎬
⎭dt ′.

(B4)

From Eq. (20), we have

dt = 2πR

Q
dR. (B5)

Substituting Eq. (B5) into Eq. (B4) and simplifying the
obtained expression yields

I1 = 4A

3
√

3
[H(RI ) − H(R0)]

− ln
RI

R0
− 2A

3
√

3Ψ

[H(RI )

RI
− H(R0)

R0

]

+ A√
3

ln
[H(RI ) − 1][H(R0) + 1]

[H(RI ) + 1][H(R0) − 1]
, (B6)

where

Ψ = A
(
R2

I − R2
0

)
2γ tI

, (B7)

H(R) = √
1 + Ψ R, (B8)

where Ψ has a dimension of m−1. The second integral I2

shows the retraction of the fingers due to the stabilizing effect
of interfacial tension during the shut-in stage in which λnmax,I

is a constant which only depends on nmax at tI; thus,

I2 =
∫ t f

tI

λnmax,I dt ′ = λnmax,I (t f − tI )

= − γ

R3
I

nmax,I
(
n2

max,I − 1
)
(t f − tI ). (B9)

Substituting Eq. (19) into Eq. (B9) and simplifying the
resulting expression yields

I2 = −A
(
R2

I − R2
0

)
6
√

3Ψ R3
I tI

√
1 + Ψ RI(Ψ RI − 2)(t f − tI ). (B10)

Substituting Eqs. (B6) and (B10) into Eq. (B2) and equat-
ing it with zero gives the curvature-driven relaxation time, i.e.,
tσ = tc − tI as follows:

tσ =
4A

3
√

3
[H(RI ) − H(R0)] − ln RI

R0
− 2A

3
√

3Ψ

[H(RI )
RI

− H(R0 )
R0

] + A√
3
ln [H(RI )−1][H(R0 )+1]

[H(RI )+1][H(R0 )−1]

A(R2
I −R2

0 )
6
√

3Ψ R3
I
H(RI )(Ψ RI − 2)

tI. (B11)
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