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The three-dimensional reversible Navier-Stokes (RNS) equations are a modification of the dissipative Navier-
Stokes (NS) equations, first introduced by Gallavotti [Phys. Lett. A 223, 91 (1996)], in which the energy
or the enstrophy is kept constant by adjusting the viscosity over time. Spectral direct numerical simulations
of this model were performed by Shukla er al. [Phys. Rev. E 100, 043104 (2019)] and Margazoglou et al.
[Phys. Rev. E 105, 065110 (2022)]. Here we consider a linear, forced reversible system obtained by projecting
RNS equations on a log lattice rather than on a linearly spaced grid in Fourier space, as is done in regular
spectral numerical simulations. We perform numerical simulations of the system at extremely large resolutions,
allowing us to explore regimes of parameters that were out of reach of the direct numerical simulations of Shukla
et al. Using the nondimensionalized forcing as a control parameter, and the square root of enstrophy as the
order parameter, we confirm the existence of a second-order phase transition well described by a mean-field
Landau theory. The log-lattice projection allows us to probe the impact of the resolution, highlighting an
imperfect transition at small resolutions with exponents differing from the mean-field predictions. Our findings
are in qualitative agreement with predictions of a 1D nonlinear diffusive model, the reversible Leith model of
turbulence. We then compare the statistics of the solutions of RNS and NS, in order to shed light on an adaptation
of the Gallavotti conjecture, in which there is equivalence of statistics between the reversible and irreversible
models, to the case where our reversible model conserves either the enstrophy or the energy. We deduce the
conditions in which the two are equivalent. Our results support the validity of the conjecture and represent an

instance of nonequilibrium system where ensemble equivalence holds for mean quantities.
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I. INTRODUCTION

In an out-of-equilibrium statistical mechanical system,
achieving a steady state requires a balance between energy
injection and energy dissipation. One practical example of
such a system can be found in fluid mechanics, where a
large-scale forcing drives a system out of equilibrium. To
attain a steady state, the system must dissipate the excess
energy. Such dissipation is ensured by a viscous term acting
as a thermostat. This system is described by the Navier-Stokes
(NS) equations, which are symmetric by time reversal in the
unforced, inviscid limit. However, the presence of the viscous
term breaks this time-reversal symmetry of the NS equations.
When the fluid is laminar, the resulting energy dissipation is
proportional to the viscosity. In the turbulent case, however,
the mean dissipation becomes independent of the viscosity
[1-3] suggesting a spontaneous breaking of the time-reversal
symmetry. To study the validity of such an assumption, one
can restore time-reversal symmetry by transforming the usual
viscosity, v, into a quantity that is odd under time reversal.
There are numerous ways to do this, but the most interesting
procedure is due to [4], which suggested monitoring v so as
to conserve at each time a macroscopic observable G (such as
enstrophy [4,5] or kinetic energy [6]). Besides spontaneous
symmetry breaking, this procedure allows investigation of
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two important questions in the context of out-of-equilibrium
physics: (1) To which extent can a reversible model describe
the irreversible dynamics? (2) Does the statistics of the re-
versible model depend on the conserved quantity? This second
question refers to the possible generalization of the notion of
“ensemble equivalence in equilibrium statistical mechanics,”
by which a system is equivalently described by microcanon-
ical (conserved energy) or canonical (conserved temperature)
ensembles. In the present case, the system is out of equilib-
rium due to the combination of forcing and dissipation. The
equivalence between both constant energy and the constant
enstrophy ensemble would then be a natural generalization of
ensemble equivalence in equilibrium statistical mechanics.

These questions have been previously investigated via
direct numerical simulations (DNS) of the reversible Navier-
Stokes (RNS) equations. In the case of conserved energy,
Shukla et al. [6] showed that the system undergoes a
second-order phase transition, with exponents in quantitative
agreement with that of a Landau mean-field theory [6]. Before
the transition, the system is in a warm phase, where the system
is thermalized at small scale. After the transition, the system
is in a overdamped regime, where the system dynamics are
dominated by viscous dissipation. At the transition, the sys-
tem is in a turbulent state that bears many similarities with
the stationary state of the irreversible equation, hinting at a
possible positive answer to question 1 in this case. Question
2, which has never been investigated before to the best of our
knowledge, will be addressed in this article.
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However, there are a number of issues that could not be
addressed due to the massive numerical costs of directly sim-
ulating the NS equations. For example, it was not possible
to study the importance of the resolution on the transition or
the convergency of the equivalence of ensemble. In addition,
some scaling properties of the dynamics at the transition could
not be investigated, as the inertial range was not wide enough
due to the difficulty of accommodating very small values of v
with DNS.

Motivated by these observations, we decided to extend the
study of Shukla et al. [6] and Margazoglou [5] to a case
where the RNS equations are projected on a log lattice rather
than on a linearly spaced grid in Fourier space. The resulting
equations correspond to a linear, forced reversible system
that we call log-lattice reversible Navier-Stokes (LLRNS). We
know from the work of Campolina and Mailybaev [7] that
this projection allows simulations with a large resolution, at a
moderate numerical cost, while the corresponding model dis-
plays most symmetries and conservation laws of the classical
model on a linear grid (used for DNS with spectral methods).
Moreover, the log-lattice projection makes it possible to adapt
the resolution to monitor very low values of the viscosity, as
already proved in [8] on the blow-up problem for the Euler
equations.

The outline of the paper is as follow: we first introduce the
RNS equations, followed by the projection on log lattices that
we will be using to define our LLRNS model. We display our
choice regarding the numerical procedure and briefly present
the tools that will be useful to analyze our results, including
the reversible Leith model, already used in [6]. We then go
through the results and discuss the presence of a second-order
transition in LLRNS and extract critical exponents. We also
study the ansatz of the structure functions of LLRNS, com-
paring them to the case of log-lattice Navier-Stokes (LLNS)
equations, where the viscosity is kept constant. We then per-
form a comparison between energy transfer in LLRNS and
the reversible Leith model, based on a nonlinear diffusion
equation in Fourier space. Finally, we study to what extent
the equivalence conjectures postulated by Gallavotti [4,5] for
RNS and NS equations hold in the framework of log lattices
for two conservation schemes: one energy conserving and one
enstrophy conserving.

II. FRAMEWORK: REVERSIBLE NAVIER-STOKES
AND LOG-LATTICE PROJECTIONS

A. Reversible Navier-Stokes

The NS equations describing a fluid of viscosity v, subject
to a force f, are given by

ou+ -V u=—-Vp+vAu+ f, (D)

where u is the velocity, p is the pressure, and we have set the
constant density equal to 1. Due to the presence of the dissipa-
tive term vAu, the dynamics induced are clearly irreversible
as (1) is not left invariant under the time-reversal symmetry:

T:t—>—t; uw— —u; p— p. 2)

This is true even in the presence of a force that is symmetric
by time reversal (which will be the case of every forcing used
in this paper).

Following the work of Shukla ef al. [6], we introduce a
reversible version of the NS equations by defining a (time-
dependent) reversible viscosity v,, which conserves the total
kinetic energy E = % fD ||u||§ dx over our domain D. The
expression of v, can be derived from an energy budget under
the constraint 0, = 0:

fpf u dx

=D " 3
Jp IV xull3 dx ©)

It is also possible to define another framework, where the
viscosity is still time dependent, but adjusted to conserve
the total enstrophy 9,2 = 0, where Q2 = fD ||V><u||§ dx [4].
The corresponding expression of the viscosity is obtained by
taking the Fourier transform of (1), multiplying by k#; and
summing over k, leading to

_ Skl fy i+ A@)
> Ikl a3

where A (@) comes from the nonlinear term of the NS equa-
tions. While it is yet unclear whether viscid or inviscid NS
equations with regular initial conditions and finite energy are
subject to a finite-time blow-up, it is known that controlling
the enstrophy is sufficient to prevent a blow-up [9]. Therefore,
the enstrophy-conserving scheme is associated with more
regular solutions than the energy-conserving scheme. In par-
ticular, it rules out a spontaneous breaking of the time-reversal
symmetry mediated by dissipating singularities as conjectured
by Onsager [1]. Therefore, it is interesting to explore the
properties of both conservation schemes.

In the first part of this paper, we mainly focus on the con-
served energy scheme, where an interesting phase transition
takes place. In the second part, we analyze the Gallavotti
conjecture using both conservation procedures.

Replacing the usual viscosity v with its “reversible” coun-
terpart v, in (1), we obtain the reversible Navier-Stokes (RNS)
equations:

vy (1) , “)

ou+ -V u=—-Vp+v.Au+ f. ®))

Taking into account that f is invariant by the time-reversal
symmetry, it is then easy to check that the whole equation is
also invariant by the symmetry (2), hence its name.

Since the viscosity is no longer a constant, the Reynolds
number Re = £Y is no longer as a valid control parameter.
Therefore, in the fixed energy case we introduce the dimen-
sionless control parameter R, [6] given by

Jfo
y ==, 6)
where fj is the forcing amplitude, kr = i—’f’ the wave number

at which the forcing occurs, and Ey the constant, total kinetic
energy.

B. LLRNS model on log lattices

Our LLRNS model is obtained by projecting the reversible
equations (5) onto a discretized logarithmic grid, composed of
exponentially spaced modes (Fig. 1):

k = ko)",
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FIG. 1. Geometry of the logarithmic lattices. Example of modes
on a 2D log lattice with a spacing parameter > = ¢ ~ 1.618.

where A is the log-lattice spacing parameter. This construc-
tion is detailed by Campolina and Mailybaev [7,8]. We start
by taking the Fourier transform of Eq. (5), to get the RNS
equations in spectral space:

Qi + ik x iy = —ikip — v.kjk;i; + f;, (7

where Einstein summation over repeated indices is used, i is
the square root of —1, k; is the ith component of the wave
number k = (m, n, ¢)ko, g is the Fourier transform of g, and
* is the convolution product which couples modes in triadic
interactions such thatk = p + q.

We then project this equation onto the log lattice. For this,
we consider from now on that the velocity modes #; depend on
only the wave vectors on the log lattice. This projection is then
valid provided that the convolution operator is “well-defined,”
i.e., that it respects the symmetries of a convolution operator
and has a nonempty set of triadic interactions. We thus require
that

A" = A" 429, (mn,q) € Z° (8)

admits solutions, which restricts the values of A to three fami-
lies of solutions, each having z interactions in D dimensions:

(i) r=2(z=3P

(i) A = o & 1.325, the plastic number (z = 12°)

(iii) A such that 1 = A® — A“ for some integers 0 < a < b.
(a,b) # (1,3), (4,5) with ged(a, b) = 1 (z = 6P).

Note that for the lowest possible values of a and b, which is
(1,2), X is the golden number (¢ ~ 1.618). The 2D geometry
of such a lattice is shown in Fig. 1.

Besides the convolution product, log lattices are also en-
dowed with a scalar product given by

(f. 9 = Re(Z f(k)@). ©)
k

Our LLRNS model is then defined by the set of ODE’s (7),
with viscosity being given by Eq. (3) or (4), and by the choice
of A among the possible values that follow from Eq. (8). Each
configuration corresponds to a reversible nonlinear out-of-

equilibrium model whose conservation laws and symmetries
are very close to that of the RNS equations.

C. Quantities of interest
1. Generic quantities

In the fixed energy case, the enstrophy €2 and the reversible
viscosity v, are good candidates for the order parameter, while
R, (6) is a good control parameter.

Throughout our study, we can compute two large-scale
quantities of interest:

(i) The energy spectrum E(k,t) = m Zk<|k’\<xk X
k', ¢ )||§, where Ny is the number of points in the shell of
radius k [proportional to log2 k)].

(i) The total enstrophy Q(r) = >, kK*E(k,1).

We also compute the mean energy transfer at scale k
through

(k) = (=23, k - u xu)), (10)

and an ansatz of the structure functions, using the following
convention:

Fye) = ([ak. 0|3). (n

where ||k||, = k and (-) refers to temporal averages over shells
of radius k.

2. Leith model

The Leith model is a toy model based on a nonlinear
diffusive equation, which in its inviscid description [10] ap-
proximates the dynamics of the energy spectrum of a Euler
flow. It exhibits both an inertial domain with scaling k—>/3
and a quasithermalization at small scales characterized by
a Gibbsian equipartition with scaling E(k, t) o< k*. Such a
model is described by a well-chosen second-order diffusive
operator:

QE K, t) = — 8 T1(k, 1) — vK2E (k, 1),

M(k, 1) = — Ck""2/E(k, t)ak(%)

Note that C is a dimensional constant that we set to 1 in this
article.

This model has been adapted by [6] to accommodate re-
versible viscosities by changing v into v,, given by Eq. (3). Its
solutions confirm the existence of a mean-field second-order
phase transition, albeit for an order parameter equal to /<.
Moreover, it showed that the resolution of the simulation
could have a large impact on the nature of the transition, the
latter becoming imperfect as the resolution is decreased. In
this article we adopt the same convention for the dimension-
less number representing the influence of resolution, namely,
h = ko/kmax, Where ko and kn.x are, respectively, the mini-
mum and maximum wave number in our simulation.

In our system the thermalization is no longer associated
with an energy spectrum following E(k, t) oc k> but instead
to a k~! behavior. It is then necessary to adapt the previous
definition of the energy transfer to our system:

[(k,t) = — CK/*\JE(k, t o [KE (k, 1)].
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Solving 9;I1(k,t) = 0, we obtain an energy spectrum of
the form E(k,t) o< (Ak=/% + Bk=3/2)?/3, where (A, B) are
two constants taking into account boundary conditions and
governing the scale at which the thermalization occurs.

D. Numerical framework
1. Integration scheme

We integrate (7) using a three-step method. Starting from
the initial conditions (), we first solve the equation without
any viscosity using an explicit adaptive Runge-Kutta method
of order 4-5 via the DOPRIS solver from the Python library
Scipy. The equation solved is

dii = Pj(—ikyity % 0t + f}), (12)

where P;; = §;; — % accounts for the pressure term under
zero divergence hypothesis. This gives us @(t + dt),,—o where
dt is the time step. To maintain a very high degree of accuracy
for our conservation laws, we do not use the expression for
reversible viscosity given by Eq. (3) or (4), but instead com-
pute in a second step the reversible viscosity v, by numerically
solving G(v,, t + dt) = Gy, where G stands for the conserved
quantity. The final step is to apply the chosen viscosity by
a technique similar to viscous splitting: &(t + dt) = a(t +
dt )v,:Oe_v'kZdt .

We provide in Appendix A a comparison between this
method and direct computation using the analytical expression
of v, (3) in the Runge-Kutta solver.

2. Numerical details

The minimum wave number of the grid is set to kpi, = 27.
The maximum grid size N = 20% is chosen such the hydro-
dynamic branch is well enough resolved. We set a maximum
time step dt = 0.005, in order to avoid underresolving some
very stiff moments when the viscosity tends to zero. As a
result, whenever the viscosity is not very small, the time step
is a constant equal to dt.

The equation G(v,,t + dt) = Gy is solved such that G is
conserved with floating-point accuracy: |G(t 4+ dt) — Gy| <
10_14%.

We use the following initial conditions, taken from [6]:

(k) = U(k),

iy (k) = — i ()% (13)
k,

ﬁZ(k) = 07

where U is an initial field, with initial energy centered on the
large scales.

The forcing term f is a constant field of norm f, symmet-
ric by time reversal, with nonzero contributions for k such that
15 < k||, < 16:

Fuk) = foif 15 < [|k|l, < 16 else O,
&) = foif 15 < |kl < 16 else 0,
fk)=o0. (14)

Unless written otherwise, the log-lattice spacing parameter
is A = ¢. The range of parameters studied is chosen such that

it is possible to observe the two regimes previously observed
by Shukla ez al.

All the simulations ran on one core of a consumer-grade
computer, for a few (<4) CPU days at most.

II1. RESULTS

All the results presented in this paper before Sec. III G are
obtained in the conserved energy case, i.e., for G = E.

A. Dynamics

Figure 2(a) illustrates the time evolution of the normalized
enstrophy ¢ (properly defined in Appendix B) for many modes
N =20°. As in [6], different regimes are observed. At low
values of the control parameter R,, the solutions converges to
a constant mean value of ¢ with few to no fluctuations. This
regime is associated with a lower branch of mean viscosity
(vr) [Fig. 2(b)] that develops a power law (v,) o R}, where
o ~ 2. This result was already obtained in DNS [6] and can be
justified using a Kubo fluctuation dissipation theorem, which
also applies on log lattices. As the size of the grid increases, it
becomes harder to reach the limit R, — 0 as the low values
of viscosity require smaller time steps. This limit is associated
with a thermalized steady state, as it is characterized by a
vanishing energy injection and therefore, in order to conserve
the energy, to a vanishing viscosity.

As R, increases, the system fluctuations continually in-
crease up to a certain value of R} at which fluctuations
reach their maximum. Beyond this critical value, fluctuations
slowly decrease to zero, towards a lower branch of enstrophy
[Fig. 2(a)]. This branch corresponds to a branch of large vis-
cosity [Fig. 2(b)]. Before vanishing completely, the enstrophy
fluctuations appear as “bursts” of enstrophy.

Note that defined in such a way, R depends on the reso-
lution N. Indeed, both the value of R, at which the system
leaves the collapsed branch JFig. 2(b)] and the location of
maximum fluctuations [Fig. 3(d)] clearly depend on the reso-
lution. Also note that both definitions of R [from fluctuations
and the asymptote in Fig. 2(b)] are equivalent in the limit
N — oo as the thermalized branch can never be reached.

B. Phase transitions

In Shukla et al. [6] the various regimes of the enstrophy
dynamics are associated with the existence of a second-order
phase transition, described by a Landau mean-field theory.
Specifically, the time-averaged normalized enstrophy (g) ex-

hibits a power law (g) = (1 — g; Y8, with B >~ 0.5, while the
normalized standard deviation of the renormalized enstrophy

Oy presents a divergence around R}, following a power law

R,
R;

05 = (1 — 3£)77 with y ~ 1. As it is possible to observe

different values of y on each side of the transition, we define
y; and y, where [ and r stand for left and right, respectively.
In our case we also observe at N = 20° behaviors for
the enstrophy that are reminiscent of a second-order phase
transition, albeit with exponents that do not correspond to
the mean-field description [Figs. 3(a) and 3(c) and Table I].
Indeed, we observe a power law with exponent 8 =~ 1, which
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FIG. 2. Behaviors of order parameters using A = ¢. (a) Time series of the normalized enstrophy ¢ for different values of the control
parameter R,, with N = 8. (b) Time-averaged reversible viscosity as a function of the control parameter R,. The dashed line represents a

linear fitting in the warm regime, exhibiting a power-law behavior. The dimensionless time is T = £/+/Ey, where £/ is the scale at which the
forcing occurs.
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of (c) the renormalized enstrophy and of (d) fi as a function of R,. The dashed lines associated with the equations correspond to a Landau
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TABLE I. Critical exponents of ¢ as a function of 4. For A = 2,
values of y, were not extracted as the variance does not vanish, but
converges to a constant on a domain extending quite far away from

TABLE II. Critical exponents of fi as a function of 4. Values of
y, were not extracted as the variance does not vanish, but converges
to a constant on a domain extending quite far away from R.

R,

A N h B Yr i
83 7x1073 - - -
2 123 4x1074 ~0.4 - 1.6
163 3x1075 ~0.5 - 1.0
83 3%x1072 - 1.0 1.6
é 123 5%1073 ~0.27 1.0 1.4
203 1074 ~0.5 1.0 1.0

by N h B Vr Vi
83 7x1073 - - -
2 123 4x107* ~0.8 - 1.6
163 3x107° ~1 - 1.0
83 3x1072 - 1.0 2.2
1) 123 5%x1073 ~0.5 1.0 1.8
203 1x10~* ~1 1.0 1.0
Shukla et al. [6] 1283 2.4x1072 ~0.5 ~1 ~]
Landau mean field - - 0.5 1 1

is larger than its mean-field version [Fig. 3(a)]. In the case of
the variance, we observe a divergence at R} with a critical
exponent corresponding to the mean-field value y; = 1, like
in [6].

Our results show that, while the nature of the transition is
unaffected by the details of the interactions between modes,
the value of the critical exponents depends on those details.
One should see Table I for different values of A and recall that
on log lattices, different values of A correspond to different
numbers of local interactions.

In that respect, it is interesting to see whether our result
fits in the cruder description of the interactions provided by
the Leith model. In this model the mean-field description is
found by taking the square root of the enstrophy as an order
parameter. In our case, upon defining i = &2, we indeed

observe a mean-field behavior for (fi) in the limit of large
grids kya.x — o0 [e.g., Figs. 3(b) and 3(d)]. Its critical order
parameters depend on the lattice spacing A as R} ~ 3.75 for

(a) ¢ S
~¢ \\\ —1.48
107 ~F
. \\\ \\Q\:\\
[ TN —128 TSN —14
~ ~ _ k ~Q~ k
103_ é \\Jf 1.5 s N \\\
e N, 1077 S<e
~
é s 2 2 2 J
= 10° s \\ 3x104x10° 6x10 10°
B CEEN
10~ 5 [AEEN
P \\\ k*]
2 ~o
6 LN
1073 e R,=1.11 2 2 >~o
A R,=145 LI
E = 4
107 R, =178
" " "3 "4
10 10 10 10
k

A =2 and R; ~ 2.75 for A = ¢. The computed exponents
associated with this model are presented in Table II. Note,
however, that the mean-field description is not entirely valid
in our model, as we do not observe the peculiar link between
pre- and posttransitions prefactors: A, = 2A_. Still, it seems
that as the number of interactions grows (i.e., as A decreases),
we are getting closer and closer to this description.

Finally, we stress that as soon as R, > R}, both the vari-
ance and the mean viscosity [Fig. 2(b)] become independent
of the grid size. Therefore, only 8 and y; depend on kpax.

C. Characterizing the various phases with spectra

As shown in [6], the nature of the different phases before
and after the transition can be elucidated by looking at energy
spectra. Examples are provided in Fig. 4. Before the transition,
we observe a spectrum that is characterized by two slopes: one
at low wave numbers, with an exponent close to —5/3, and
one at large wave numbers, with an exponent closer to —1.
As already discussed in [7,11], the —1 slope corresponds to
thermalization on log lattices, characterized by equipartition
of energy among the modes. The —5/3 regime corresponds

FIG. 4. Time-averaged energy spectra vs R,, A = ¢, N = 20> modes. (a) Warm regime, with coexistence of two phases. The dotted line
represents the slope of the two coexisting regimes, a pseudo-Kolmogorov regime at large scales and a thermalized regime at small scales
exhibiting a —1 slope. The inset shows a zoom in the crossover area, highlighting the difference in slopes with respect to R, associated to the
contamination of the bigger scales by the thermalization. (b) Laminar state, with dominant dissipative range, and no thermalization. The inset

shows the energy transfer IT;.
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to a classical spectrum due to a positive flux of energy, as
evidenced by the insert of Fig. 4(b). We call this phase with a
coexistence of two cascades the “warm cascade” regime. As
‘R, decreases, the thermalized phase extends further towards
lower k, and the pseudo-Kolmogorov phase disappears. Con-
versely, as R, increases, the thermalized phase progressively
disappears, to leave room for an increasingly laminar state
as the reversible viscosity increases. Such a state is shown in
Fig. 4(b).

D. Structure functions

The nature of the various phases can be further character-
ized using higher orders of the velocity field, via the structure
functions [Eq. (11)]. In classical shell models, such structure
functions are subject to intermittency, as they exhibit scaling
laws F, (k) ~ k% that deviate from the monofractal behavior
&, = gé1 [12-15].

In our case it is difficult to measure the exponents of the
structure functions for all phases: at large values of R, the
viscosity rises quickly, and the inertial range becomes very
small. At small values of R,, the scaling laws are polluted
by the coexistence of the pseudo-Kolmogorov regime and the
thermalized state, as illustrated in Fig. 4(a). This invalidates
the classical method of computing exponents via extended
self-similarity [16] as the structure functions can present mul-
tiple slopes at different scales. We extracted exponents via
the following method: we first determine the inertial range
by computing the time-averaged energy transfer IT; through
Eq. (10). Then we define the inertial range as the range of
wave numbers where it is flat. If this range is large enough (at
least a decade), we fit the scaling exponents of the structure
functions on this range only. This provides us with an un-
ambiguous determination of &,. The extracted exponents are
shown in Fig. 5(a), for the value of R, in various regimes, as
illustrated in Fig. 5(b).

In the limit of low R, the &, exponents appear to be signifi-
cantly lower than the usual exponents (Fig. 5, blue, green, and

orange curves). This phenomenon can be explained by the fact
that, in such a limit, the system tends to follow equipartition,
associated with an energy spectrum of E (k) ~ k~' (Fig. 4).
This is indeed what we observe: as R, gets closer to 0 a
quasithermalized spectra appears, first at low scales, and then
progresses towards the larger scales, impacting the slope even
at larger scales [as illustrated in Fig. 4(a) and the inset of
Fig. 5(a)]. There is no intermittency in this regime, with all
exponents aligning onto a perfect line. In the other limit, as R,
rises, the RNS exponents increase (Fig. 5). However, there is
still no intermittency in this regime. To check whether it was a
feature of the RNS system, we computed the same exponents
from a simulation of NS equations with fixed viscosity. The
result is also shown in Fig. 5(a) (brown curve). We see that
the resulting exponents are very close to the exponents we
observe in RNS, reaching a quasiperfect agreement for both
exponents and slope (Table III) located around the middle of
the transition area.

This absence of intermittency is not surprising, as log-
lattice models consider only local interactions. Such a
phenomenon was also observed in REWA models of tur-
bulence, where intermittency decreases as the number of
interactions decreases [17-19]. In contrast, intermittency
has already been observed in various shell models such as
SABRA [20] or GOY [21] models. In that case, it was
observed that the tuning of the free parameter controlling

TABLE III. Slopes of the exponents of the structure functions
for both RNS and NS equations. Values were extracted by fitting the
structure functions in the inertial range, determined by the domain of
constant energy transfer.

Equation RNS NS
R, 1.11 1.78 2.23 2.78 2.9 -
Slope 0.36 0.38 0.4 04 0.42 0.42
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previously introduced control parameter R,. (b) Renormalized enstrophy as a function of the control parameter R,. (c) Rescaled variance of
the normalized enstrophy as a function of R,. (d) Rescaled variance of the energy, as a function of R, for the LLRNS conserved enstrophy
case and LLNS. In all four figures, the empty gray symbols are the data of Figs. 2(b) and 3(a). Circles, squares, and triangles are associated
to N =83, 123, and 16, respectively. The conservation schemes are coded by color, with light green to dark green being the irreversible
LL-Navier-Stokes model, purple to dark blue the LLRNS model with conserved enstrophy, and orange to brown the LLRNS model with
conserved energy. Note that in the nonconserved energy case, we define R, using the averaged kinetic energy. Also note that the difference
between the gray and blue symbols lies in the numerical details; both are associated with the conserved energy case. Gray symbols are
obtained varying the forcing amplitude f;, while blue symbols are associated with a fixed f, and varying initial condition, i.e., varying Ejy.
Panels (a) and (b) show that all mean viscosities and enstrophy collapse on an universal law, while Fig(c) and (d) highlight the absence of
transition for LL-Navier-Stokes and LL-RNS with conserved enstrophy.

additional conservation can bring the system from a situation E. Universal and nonuniversal laws
where the only fixed point is the K41 scaling (no intermit-
tency) to a situation where the K41 scaling becomes unstable,
leading to chaos and intermittency [21]. In our case, it is likely
that with A = ¢ we are in the first situation, with only one
stable fixed point. It would be interesting to check whether
decreasing the value of A results in the loss of stability of
the fixed point and the appearance of intermittency. This is
beyond the scope of this article, however, and left for future
work.

Note finally that in the log-lattice simulations, the usual
Kolmogorov prediction &, o ¢/3 does not hold. Indeed, even
for the NS equations, the slope is roughly equal to 0.42
(Table III).

In previous sections, we described the dependence of
(vt /6}2, (or (g)) on R, for LLRNS models with constant
energy. Surprisingly, such behavior extends to both LLRNS
models with conserved enstrophy and to irreversible LL-
Navier-Stokes models (Fig. 6) upon defining R, = (EfT“kf
This property is interesting as it provides information on
the steady state of the system, and on whether the sys-
tem is well resolved. Indeed, if the system is underresolved
(i.e., kmax < ky, k) being the Kolmogorov scale), it is charac-
terized by a thermalization of the small scales and corresponds
to a state located before the transition at R, < R}, on the
linear part of Fig. 6(a).
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However, neither the LLRNS with conserved enstrophy
nor the LL-Navier-Stokes model displays the divergence
of fluctuations observed in the LLRNS with fixed energy
[see Fig. 3(d)]. Indeed, the LL-Navier-Stokes model exhibits
bounded values of energy and enstrophy fluctuations, as
shown in Figs. 6(c) and 6(d). The LLRNS model with constant
enstrophy cannot, by construction, display any enstrophy fluc-
tuations. However, it does not present diverging fluctuations
for the energy either [see Fig. 6(d)]. This shows that the phase
transition feature observed in the LLRNS model with constant
energy is nontrivial. We conjecture that these events are linked
with the existence of events of quasi-blow-up in the vorticity,
which are naturally present in the inviscid blow-up [22,23].
These quasi-blow-ups can propagate from low wave numbers
to large wave numbers when the viscosity is low, provoking
events of large vorticity. In the case where the enstrophy is
fixed, such quasi-blow-ups cannot exist anymore. In addition,
these events are blocked by normal constant viscosity, but
not by hypoviscosity [23]. A time-dependent viscosity like
in the RNS case could be viewed as a hypoviscosity, leaving
room for these events to develop, in contrast with LL-Navier-
Stokes. This therefore explains why we only observe these
events in the LLRNS with constant energy.

F. Comparison with Leith model predictions
1. Influence of the resolution

While performing simulations on log lattices, it is possible
to reach high resolutions (k > 10%°) at a moderate numerical
cost, making it possible to analyze the effect of the resolution
on the transition. Such a study could not be done using DNS.

A first influence of resolution can be obtained on the value
of the mean reversible viscosity, illustrated in Fig. 2(b): as
kmax (or equivalently the number of modes, N) is increased,
the viscosity decreases for a same value of R,, as there is
more room for the cascade to operate. Therefore, the time-
averaged viscosity gives us some insights on the dependence
of the system on the resolution. Indeed, before the transition,
for R, < R} _ (being the lower bound of the transition) the
viscosity exhibits a very large dependence on the size of
the grid. As we reach the transition area, which we locate at
the beginning of the quick rise of viscosity, all the data then
collapse on the same universal curve, independent of kyx-
Note that Ry _ shifts to lower values as the size of the grid
increases (Table IV).

Another influence of the resolution is given by the nature
of the transition, which shifts from a second-order transition
to an imperfect transition as the number of modes is decreased
[see Figs. 3(c) and 3(d)]. This effect was a prediction of
the Leith model introduced in [6], and we observe the same
typical features found in this model.

Indeed, for N < 203, neither the mean enstrophy nor its
square root follows a power law. Such description is accurate
only upon reaching N = 20°. In the case of the variance,
we observe in Fig. 3(d) a scenario that resembles the one
predicted by the Leith model: at low resolution, the standard
deviation exhibits a “bump” [Fig. 3(d), circle and triangle
markers]. In this case, extracting a y exponent is question-
able. Nevertheless, Table I gathers all the extracted critical
exponents. At larger resolution, the divergence of the variance

TABLE IV. Values of various quantities around the transition
area. R defines the value at which the transition area starts, defined
by the quick rise in viscosity. Av represents the difference in viscos-
ity between the two asymptotic regimes separated by the transition
area. h = k:ﬁ is a parameter used to quantify the influence of the
resolution, and N is the number of spectral modes.

A N h Av,  RE R

r

83 7x1073 10* ~4.3 ~7

2 123 4x10~* 100 ~3.6 e
163 3x1073 108 ~3.1 ~3.75
83 3x1072 10? ~4.4 ~5

¢ 123 5%1073 10* ~2.8 ~4
203 1074 108 ~1.8 ~2.75

Shukla et al. [6] 1283 2.4%x1072 — ~2.0 2.75

becomes more visible, with a critical exponent converging to
the mean-field value y; = 1. Note that even while using log
lattices, there are still finite-size effects, as the limit R, — 0
exhibits truncated Euler dynamics, characterized by equipar-
tition E (k) oc k="' (Fig. 4).

2. Further comparison with the Leith model

It appears that, so far, our results and observations are in
general agreement with the reversible Leith model proposed in
[6]. It is then interesting to compare more quantitatively those
two systems. The only quantity from the RNS runs that can be
compared to the Leith model is the energy transfer. Therefore,
our comparison will rely on computing the Leith-like energy
transfers ITy ¢ (see Sec. II C 2) from the RNS energy spectra
and comparing them to the RNS transfers ITgys.

The comparison between the two quantities is presented in
Fig. 7. We see that the Leith-like transfer is able to mimic the
RNS transfer in the inertial domain, but drops more quickly
in the dissipative domain. This effect is probably caused
by the Leith-like computation not taking into account the
strong oscillations of the viscosity (and therefore of the Kol-
mogorov length) naturally present in RNS. Such oscillations
tend to straighten the transfer a bit further outside the inertial
range. Overall, it seems that the Leith models share features
with the RNS equations without completely reproducing their
dynamics.

G. Gallavotti conjecture

In this section we now investigate how relevant the re-
versible models are to understand the dynamics of the
irreversible LL-Navier-Stokes model. This can be done via
suitable adaptation of conjectures by Gallavotti [5].

1. Definitions and conjectures

Following [5], we introduce the collection ELN of the
stationary distributions ,uf’N , where 7 characterizes the ir-
reversible equation (with time-independent viscosity, i.e.,
LL-Navier-Stokes), with N modes. Similarly, we define the
collection E® of the stationary distributions ME’N, asso-
ciated with the LLRNS model of N modes, where G is the
conserved quantity (total enstrophy, total kinetic energy, etc.).
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For any observable O, (O)f’

ages over the distributions uZ and /,Lg’N , respectively.
As in [5], a set of parameters v, G, and N will be said to be

“in correspondence” if

N and (O)g'N denote the aver-

G =G (15)

Ga is associated with a conserved, and therefore constant,
quantity in the RNS model, while G is its irreversible coun-
terpart in regular NS.

The adaptation of the two Gallavotti conjectures to our
models can then be formulated as follows.

Conjecture 1. If v, G, and N are in correspondence, then
for any local observable (i.e., depending on a limited number
of modes) O(u) one has

YN, lim (O) X" = lim (O)T". (16)
v—0 v—0

Conjecture 2. Let O(u) be a local observable depending on

u(k) for k < K, then if v, G, and N are in correspondence one

has

lim (O)ZN; (17)

lim (0)5"" = lim

N—o00

Vv and K < c,ky, c, —0> ¢y < 0o, where k, is the Kol-
v—>

mogorov scale.
Those two conjectures are associated with different

regimes. Indeed, by fixing the resolution N and sending the
viscosity to 0, one reaches the warm regime, characterized by
thermalization (Conjecture 1). In contrast, by sending first the
resolution N to infinity, then viscosity to 0, one prevents the
thermalization from occurring (as it is associated with under-
resolved simulations). Therefore, Conjecture 2 is associated
with hydrodynamical regimes and better describes turbulence
in the limit of low viscosities.

2. Numerical procedure
In order to investigate the equivalence of ensem-
ble, we start by running a LL-Navier-Stokes simulation,
with time-independent viscosity of v = 107,107, 5x 107,

107%, 1077 for different values of N. After reaching a steady
state for a sufficient number of time steps (to ensure the pos-
sibility of doing statistics), we use the LL-Navier-Stokes field
as an initial condition for the LLRNS equation, in both con-
servation cases. We then let both reversible and irreversible
simulations run for 4x 10° time steps.

This procedure enables us to highlight any divergence of
the reversible solution from the irreversible solution, while
allowing us to characterize the simulations by viscosity v or
equivalently by their Reynolds number (Re).

3. Using scores to compare PDFs
In the next sections, we need to compare PDFs. To quan-
tify their similarity, we introduce a scalar parameter, a score,
defined as
14 |O(i) _
1 R
s@=1-3 1%
z

i=1

(18)

where O stands for the ith moment of the local observable
O, p for the number of moments we take into account, and B
for a decomposition basis (B = 10, being a decimal basis in
our case).

A score of one implies few errors between irreversible
and reversible moments and leads to matching PDFs. We
will restrict the computation of the score to the first three
moments because of large statistical errors in our kurto-
sis. Therefore, the score should be roughly 1 whenever the
three first moments coincide, i.e., whenever the distributions
are identical around the mean value. Thus, S appears as
a good indicator to qualify to what extent the conjecture

holds.

4. Statistics of the reversible viscosity

Because of its presence in the limits, the viscosity plays
a special role in the conjectures. However, it is a nonlocal
observable. There is therefore no reason that mean reversible
viscosities should be equivalent to irreversible viscosities,
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even when only small values are considered. However, there
are several differences between the conservation schemes that
may temper this observation. First, the total kinetic energy is
concentrated at the large scales, whereas enstrophy is a small-
scale quantity, resulting in completely different statistics of
the viscosity. In fact, a major difference between the two
cases arises in the possible occurrence of negative viscosities.
At low viscosities, there is almost no occurrence of negative
viscosities in the conserved energy case, even in systems
presenting a quasithermalized spectrum [Fig. 8(a)]. This is no
longer true for the conserved enstrophy case as we observe
many occurrences of negative viscosities in well-thermalized
regimes [Fig. 8(b)].

In addition, conserving the enstrophy is a strong constraint,
which implies additional equivalence for the viscosity. Indeed,
if the first conjecture holds, we should observe conservation
of the mean work of the forcing term W = (f.u), because it
is local at large scales (more details are in Sec. III H 1 and
Tables V and VI in Appendix C). Using the energy budget,
this yields (v,) = v in the constant enstrophy case [5], even
though v, is not a local observable. The property is not true
for the conserved energy case, so that the Conjecture 1 should
not hold a priori for the viscosity.

Our measurements are generally in agreement with these
theoretical predictions, with some exceptions [Fig. 9(a)]. In
the conserved enstrophy LLRNS model, we observe that the
condition (v,) = v holds for most values of v, except for very
low viscosity. In the conserved energy case, the situation is
opposite: the property does not hold a priori for large enough
values of viscosity. However, for small enough values of v, we
recover (v,) ~ v.

Note that since injection is a local observable, and since
we are in a stationary state, where on average injection equals
dissipation, we expect that v,€2 obeys Conjectures 1 and 2. In
the case of constant enstrophy, this condition is equivalent to
(v,) = v, as we just saw. However, in the conserved energy
case, this is not true anymore. Indeed, as we see in Fig. 9(b),
we have (v,Q) ~ v(Q2) for the conserved energy case, even
though the equivalence is not fulfilled for the viscosity alone.

5. Energy and enstrophy

The first obvious quantities to investigate are energy E
and enstrophy 2. Results are reported in Tables V and VI
(see Appendix C), where we give the mean ratios between
reversible and irreversible values at various v and for the
two conservation schemes. In all cases, the ratio of (G)/G
is very close to 1, showing the validity of Eq. (15) for both
conservation schemes. It is interesting to note that the mean
energy is well described even in the conserved enstrophy
case. On the other hand, in the conserved energy case the
enstrophy is correctly reproduced only in the quasithermalized
state [Table V and Fig. 6(a)]. In particular, at high resolution
(N = 16°), we observe an enstrophy ratio above 100%.

H. Analysis of Conjecture 1: Warm regime

In this subsection we focus on Conjecture 1. We consider
various local quantities and analyze results at fixed number
of modes N = 83 and decreasing viscosity of v = 1074, 1079,
5%107°,107°, and 1077.

1. Work of the forcing term

We now consider the work W = (f - u). This quantity
appears as a good candidate for Conjecture 1, as the forcing
term is localized around ky = 15 [see Eq. (14)]. Tables V
and VI (see Appendix C) summarize the ratio of mean val-
ues between reversible and irreversible values, and show that
almost all simulations fulfill correspondence conditions (15)
with either conserved energy or conserved enstrophy. A finer
understanding of this correspondence can be obtained by
exploring the properties of its PDF in both the hydrodynami-
cal case (v = 10™*) and quasithermalized one (v = 1x 1079).
This is shown in Fig. 10. In both cases and with both schemes,
the PDF shows good agreement between the reversible and
irreversible cases, except for the high-viscosity case, where
tails are different. This difference is due to the difference
in standard deviations. Nevertheless, in the quasithermalized
regime [Fig. 10(b)], the PDF presents quasiperfect agreement
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between irreversible and reversible cases, which is a signature
that Conjecture 1 holds for the local observable V.

To further support this claim, we analyze the ratio of the
Wr)

(Wz)
those results, obtained for N = 83. One observes that for any
value of v, the mean value of W corresponds to the mean
value of the reversible equations, within a 5% error margin
[Fig. 11(a)]. This property does not hold, however, for the
standard deviation, where the ratios lie outside the confidence
interval in the hydrodynamical case [Fig. 11(b)]. As the vis-
cosity decreases, both ratios enter the confidence interval, and
thus both PDFs match in the inviscid limit.

w
two first-order moments and °%;. Figure 11 gathers
oz

2. Energy spectra

We now consider the equivalence for the distribution of
energy in the wave number space, through the instantaneous
energy spectra E(k). As time varies, and for each given &,
E (k) fluctuates in time, and we can study its statistics through
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our score function. Figure 12 gathers the different scores
S(E), obtained for different v at various k. In the conserved
energy case [Fig. 12(a)], Conjecture 1 holds quite well. In-
deed, as v — 0, the score is almost equal to one (purple
pentagons) over the whole space, highlighting good moments
matching. For higher viscosities (blue dots, green squares,
etc.) the score starts to drop at smaller k, indicating that only
the first shells display equivalence. Note that the statistics
around the first and last data points might be biased by side
effects associated with the sampling process. The conserved
enstrophy case [Fig. 12(b)] shares some similar features, as
the score indeed appears to grow as v decreases, progressively
spanning the whole grid.

According to the score, one should observe PDF matching
(outside the tails) for v = 107 at big scales (k; ~ 16.5) and
PDF differences at small scales (k; ~ 182.6). This is indeed
what we observe in Figs. 13(a) and 13(b). In addition, one
expects nearly identical PDFs in both conservation schemes,
at all scales for v =107, This statement is confirmed in
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FIG. 10. PDF of the work of the forcing term . Simulations are performed with N = 83. (a) v = 107, (b) v = 107°. Dashed lines
represent the mean values of the PDF. Both conservation schemes show good agreement for the mean values. At higher viscosities, tails differ.
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Figs. 13(c) and 13(d), where the PDFs are almost indistin-
guishable.

1. Analysis of Conjecture 2: Hydrodynamical regime

In this section we analyze Conjecture 2, i.e., equivalence
at fixed v and varying N in the case of the hydrodynamical
regime, in the thermodynamic limit 4 — 0 (kpax — 00).

In the analysis of this conjecture, there appears a strong
difference between the conserved energy case and the con-
served enstrophy case. Indeed, the former case presents a
phase transition whose characteristics depend on N (Fig. 6).
This dependence complicates the analysis on the impact of
kmax — 00 (N — o0) in Conjecture 2. Indeed, for a given
'R,, increasing N implies a switching phase [Fig. 6(a)], going
from quasithermalized regimes (R, < R}, in which Conjec-
ture 1 holds) to hydrodynamical ones (R, > R}). Therefore,
one must be careful while comparing similar Re for different

resolutions as the validity of the conjecture is related to the
position in the transition, as will be highlighted later.

1. Energy spectra

We now focus on the statistics of the energy spectrum at
given values of k. In the hydrodynamical regime, Conjecture
2 implies that the score of £(k) should be equal to 1 in
the thermodynamic limit # — O (ky.x — 00). In practice, we
shall see that this will be true only for a given range of wave
number k < K, [5,24].

In the conserved enstrophy case the analysis is straightfor-
ward. We show in Fig. 14 the evolution of the score Sq(E) at
various resolutions. At lower resolution, Sq(E) drops quickly
(Fig. 14, blue dots) highlighting the absence of equivalence
between the reversible and irreversible ensemble. By increas-
ing N, we obtain scores closer to 1 on intervals up to K,
defined as the value of k such that Vk > K, Sg(O) < 0.9. We
also observe that for low values of viscosity, the scores are

(b)1.00
\

0.98 1

_0.961

SQ(E

0.94 1

0.92 1

ks

FIG. 12. Score S(E) of the energy in each shell. Panel (a) corresponds to the conserved energy case, while panel (b) is associated with the
conserved enstrophy case. The gray shaded areas show where the forcing term is localized. Figures are obtained for N = 83. Blue dots, green
squares, orange triangles, red diamonds, and purple pentagons are respectively associated with v = 107#, 107%, 5% 1075, 1075, and 107",
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FIG. 13. Energy PDF. Results are obtained for different values of k, and v, with N = 83, (a), (b) v = 1074, k, ~ 16.5, k, ~ 182.6;
(©), (d) v =107, k, = 16.5, k, ~ 182.6. Dashed lines represent the mean values of the PDF.
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FIG. 14. Score S(E) of the energy in each shell for G = Q. (a) v = 5x107%; (b) v = 10~>. Blue dots, green squares, and orange triangles
correspond to N = 83, 123, 163, respectively. Black dashed lines correspond to a score of 0.9.
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(a)

1.0 1

0.8 1

0.2+

0.0

FIG. 15. Score S(E) of the energy in each shell for G = E. (a) N = 123; (b) N = 16°. Blue dots, green squares, orange triangles, red
diamonds, and purple pentagons correspond to v = 107*, v = 107>, 5x107°, 107, 1077, respectively. Note that in (a), the purple pentagons
are associated with a quasithermalized state, being a crossover region between the two conjectures. Black dashed lines correspond to a score

of 0.9.

similar for N = 12% and N = 16>, supporting the second con-
jecture, in the conserved enstrophy case. For k > K,,, scores
start to “oscillate,” this is associated with the fact that the
reversible moments fluctuate around the irreversible ones and
sometimes lie in the confidence interval, leading to artificially
higher scores.

In the conserved energy case, the analysis is complicated
by the phase transition, as detailed below. According to Con-
jecture 2, one expects to observe scores Sg(E) > 0.9 on
bigger and bigger domains as v — 0. Figure 15 shows the
scores, in the case of conserved energy E, for various viscosi-
ties and N = 123 [Fig. 15(a)] or N = 163 [Fig. 15(b)]. Our
results indeed highlight a dependency of K, on v (Figs. 14
and 15). Note that the red diamonds in Fig. 15(a) are asso-
ciated with a crossover regime where thermalization at small

N=123 e
N=16°

(b) 0.200

scales starts to occur, leading to results similar to Conjecture
1 [Fig. 12(a)] but with a slight drop.

Figure 16 shows the extracted thresholds divided by the
Kolmogorov scale for both conservation schemes, at different
resolutions and different viscosities. Unlike in [5], ¢, is no
longer a constant but depends on the value of v and does not
grow as fast as the Kolmogorov scale k, (Fig. 16).

Note that for v = 1077, the N = 123 are underresolved,
leading to an upper bound K = ky,x for the threshold that
cannot grow anymore as v decreases. Such a phenomenon ex-
plains the difference between the two first points of Fig. 16(b).

In the thermodynamic limit of the conserved energy case,
the equivalence is best achieved for R, — R (N). As men-
tioned before, such properties make the comparison between
resolutions difficult, as the value of R, at which the transition

= N=12° "

— 3
0.175 N=16

0.150 1

0.125 1
Y

k

Qo.mo-

0.075
0.050 1

0.025 1

FIG. 16. Ratio K/k, in the context of Conjecture 2 (a) corresponds to conserved total kinetic energy, while (b) corresponds to conserved
enstrophy. The thresholds K were extracted directly from the score at the considered k. The thresholds were not extracted for N = 8? since the
resolution is insufficient as most simulations lie on the thermalized branch [Fig. 6(a), colored circles].
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between warm and hydrodynamical regimes occurs also de-
pends on N. Nevertheless, Fig. 16(a) gathers the results for the
conserved energy case, confirming the validity of Conjecture
2, on smaller domains with respect to those observed in the
conserved enstrophy case.

IV. CONCLUSION

We have shown that LLRNS models are able to repro-
duce features previously observed in DNS while allowing
us to better probe the transition by reaching scales much
lower than usual DNS. We found that the LLRNS system
with conserved energy indeed exhibits a second-order phase
transition, with /<2 as an order parameter, sharing interesting
features with the reversible Leith model; a simple nonlinear
diffusion model. The phase transition separates two phases,
the first characterized by the coexistence between a hydro-
dynamical regime and an equipartition of energy at small
scale (named the “warm” phase), and the second characterized
by an overdamped regime with very large viscosity (named
overdamped phase). In between, we have a turbulent hydrody-
namical regime, with properties resembling those of solutions
of the NS equations.

We have not observed a divergence of fluctuations in the
LLRNS model with enstrophy conservation nor in models
with fixed viscosity. This may be due to the fact that the
enstrophy-conserving scheme is associated with more regular
solutions than the energy-conserving scheme. In particular, it
rules out a spontaneous reversal symmetry breaking mediated
by dissipating singularities as conjectured by Onsager [1].
More work is therefore needed to understand the difference
between the two conservation schemes from the point of view
of the emergence of dissipative weak solutions. This is the
subject of an ongoing work.

We also studied the finite-size corrections of the scalings
induced by the finite resolution and found good agreement
with tendencies predicted by the Leith model. Such a study
would have been impossible to perform on present DNS.
Finally, we studied the influence of reversibility on scalings
of the ansatz of the structure functions. They were found
to obey self-similar scaling in all phases, with an exponent
ranging from 0.36 in the warm (reversible) phase to 0.42
in the hydrodynamical (irreversible) phase. We did not find
any intermittency corrections in either phase. It is an open
question whether choosing other step sizes on the logarithmic
grid, for instance, allowing more interactions, will result in
intermittency in either of the two phases.

We also tested the adaptation of two conjectures by
Gallavotti [4], regarding the equivalence of the reversible
models and the irreversible model. We find that the properties
of the quasithermalized regime of the reversible and irre-
versible models are equivalent both for conserved enstrophy
or conserved energy. This equivalence also holds in the hydro-
dynamical regime for local observables located at k < K, for
both conserved enstrophy and conserved energy. This result is
therefore an extension of the equivalence found in [5] in DNS
of RNS with conserved enstrophy. In addition, we find that
equivalence between irreversible LL-Navier-Stokes models
and LLRNS models with conserved energy in fully developed
turbulence (Conjecture 2) holds best in the limit N — oo,

R, = R This feature was discussed but not proven in [6] in
the DNS case. We showed that, unlike in DNS [5], the value
of ¢, = K/k, is not a constant but depends on v. Altogether,
our results show that ensemble equivalence holds for LLRNS
models in the average sense, since the conserved enstrophy
and conserved energy model display similar means for all
observables studied in this paper.

These results show the interest of the models based on
projecting fluid dynamics on a log lattice. Being three-
dimensional, and respecting most symmetries of the original
equation, they may be used to explore fundamental issues
of the original system, albeit at a moderate computational
cost and without any adjustable parameters. By construction,
they of course lack many interactions present in the original
equations, and it is not clear how well many of the results pre-
sented here can be extended to real fluids. Nonetheless, it will
likely take some time before direct numerical simulations can
reach the parameter values explored here, so this interesting
question is left for the future.
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APPENDIX A: VISCOUS SPLITTING

In our study we propose to first solve the inviscid NS
equation (12), then we compute the reversible viscosity, ac-
cording to the quantity that must be conserved. Finally, we
take into account the viscosity by rescaling the velocity fields.
One could wonder if this method gives proper results in the
reversible case.

1074 —— Direct computation
—— Viscous splitting
107 4
A
10°
107 4

T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000
step

FIG. 17. Evolution of the reversible viscosity v, at each step.
Both simulations are performed for A = ¢ &~ 1.618, N = 123, fo =
0.27. The green curve is obtained using the viscous splitting method,
while the blue curve is obtained by directly solving the RNS equa-
tion, where the reversible viscosity is computed using Eq. (3).
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TABLE V. Ratio of various quantities for constant energy. WW
stands for the work of the forcing term.

TABLE VI. Ratio of various quantities for constant enstrophy.
WV stands for the work of the forcing term.

N v (Er)/{E1) (Qr)/(R1) Wr)/(Wz) N v (Er)/{E1) (Qr)/(R1) (Wr)/(Wz)
1074 100.0% 125.6% 99.9% 1074 98.2% 100.0% 98.5%
1073 100.0% 102.1% 99.7% 10-° 99.8% 100.0% 99.9%
83 5x1076 100.0% 98.2% 98.6% 83 5x1076 98.9% 100.0% 98.3%
106 100.0% 100.0% 99.9% 105 99.8% 100.0% 99.4%
1077 100.0% 100.0% 97.3% 1077 100.0% 100.0% 96.3%
1074 100.0% 135.4% 99.6% 1074 98.5% 100.0% 98.1%
1073 100.0% 160.0% 99.3% 1073 99.0% 100.0% 98.9%
123 5x1076 100.0% 164.6% 99.1% 123 5x1075 98.8% 100.0% 98.6%
106 100.0% 132.3% 99.7% 1076 98.6% 100.0% 98.9%
1077 100.0% 100.4% 99.8% 1077 100.0% 100.0% 99.7%
1074 100.0% 142.9% 97.5% 1074 98.8% 100.0% 98.0%
1073 100.0% 156.1% 98.4% 1073 99.6% 100.0% 99.3%
16° 5x1076 100.0% 145.1% 98.9% 16° 5x1076 99.7% 100.0% 99.8%
106 100.0% 315.2% 98.8% 106 99.5% 100.0% 99.8%
1077 100.0% 313.4% 97.9% 1077 98.7% 100.0% 98.5%

Both methods lead to similar behavior of the viscos-
ity (Fig. 17), with mean values v, spliting ~ 4.9%1077 and
V. Direct = 5.9% 1077 Tt is expected to find a slight difference
as the number of time step is still relatively small. More-
over, the direct computation is performed using the analytical
expression of the reversible viscosity and therefore leads to
deviation from Ej.

Still both methods give similar results (Fig. 17). However,
the “viscous splitting” method allows us to “perfectly” (with
floating-point accuracy) conserve a chosen quantity (here the
total kinetic energy) without deviation.

APPENDIX B: ENSTROPHY RENORMALIZATION

The case of R, — 0 is associated with a vanishing energy
injection and therefore, in order to keep the total energy con-
stant, to a vanishing viscosity. The system thus behaves as a
truncated Euler equation and should exhibit an equipartition
of energy. In our model this equipartition is characterized by
an energy spectrum developing a power law k~! that we will
use in order to compute the total enstrophy Qax.

We start by assuming that the kinetic energy in a shell can
be written as E;, = =, where A is a constant obtained through
the total kinetic energy Ey:

=Y E0Am =AY %(Ak —k)=AN(L — 1),
k k

where Ay is the measure of the space, which is (Ak — k) for
the 1D shells here. This leads to A = where N is the

N(A NG—1)?
number of modes used on the grid.
We then compute the total enstrophy 2pax:

E
Qnax = Y_KE(K)(0k — k) = ﬁ" K
k k

2 N—1

EOkO Z 2p

We can now define the renormalized enstrophy:

. Q
Q Qmax.

EgA2k2,
TNOZ-1) T )

(B1)

APPENDIX C: TABLES
Containing the two tables, Tables V and VI.
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