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Elastic fingering in a rotating Hele-Shaw cell
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We consider the steady-state fingering instability of an elastic membrane separating two fluids of different
density under external pressure in a rotating Hele-Shaw cell. Both inextensible and highly extensible membranes

are considered, and the role of membrane tension is detailed in each case. Both systems exhibit a centrifugally
driven Rayleigh-Taylor—like instability when the density of the inner fluid exceeds that of the outer one, and this
instability competes with the restoring forces arising from curvature and tension, thereby setting the finger scale.
Numerical continuation is used to compute not only strongly nonlinear primary finger states up to the point of
self-contact, but also secondary branches of mixed modes and circumferentially localized folds as a function
of the rotation rate and the externally imposed pressure. Both reflection-symmetric and symmetry-broken chiral
states are computed. The results are presented in the form of bifurcation diagrams. The ratio of system scale
to the natural length scale is found to determine the ordering of the primary bifurcations from the unperturbed
circle state as well as the solution profiles and onset of secondary bifurcations.
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I. INTRODUCTION

The Saffman-Taylor instability, also known as the viscous
fingering instability, occurs at the interface of two fluids in a
Hele-Shaw cell when a lower viscosity fluid is injected into a
more viscous fluid, leading to a dynamic process of fingerlike
pattern formation at the fluid-fluid interface [1-5]. In con-
trast, when a higher (or equal) viscosity fluid invades a lower
viscosity fluid, the interface is stable and forms a uniformly
spreading front. Many variations of this instability have been
constructed, such as those which destabilize conventionally
stable Hele-Shaw flows through the implementation of vari-
able geometry of the Hele-Shaw cell [6-8], the introduction
of surfactants [9-15], or the presence of A + B — C-type
chemical reactions at the fluid-fluid interface [16—-18]. One
variation of interest is the introduction of a global rotation
of the Hele-Shaw cell about a perpendicular axis through the
center at a prescribed frequency [19-23]. If the density of the
inner fluid exceeds that of the outer, the system is suscep-
tible to a centrifugal instability resembling the well-known
Rayleigh-Taylor instability of superposed fluids, as the denser
fluid in the center is now unstable to outward displacement.
In general, the two fluids may have different viscosities such
that the instability is mediated by competing centrifugal and
viscous effects, or the viscosities may be taken to be the same
so that only inertial effects drive the instability. More recently,
this instability has been considered in systems where the inter-
face has additional properties such as a curvature-dependent
bending modulus due to a chemical reaction between the two
fluids or constrained length [20,24-27]. If the interface is
taken to have a nonzero bending modulus, the length scale of
the emerging finger pattern is set by the competition between
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the bending of the elastica and the centrifugal driving [28].
The fingering structures which emerge can take the form of a
periodic finger pattern commonly referred to as wrinkles, or
isolated single or multiple localized structure(s) called folds.
These states represent steady states of the system character-
ized by force and torque balance. Similar pattern formation
occurs in many other systems beyond the Hele-Shaw geome-
try, for example, during the dynamic buckling of a membrane
bounding a popped soap film [29,30], the dynamic wrinkling
of a sheet due to drop impact [31], or the dynamic buckling of
pressurized circular rings [32]. Similar pattern formation may
also occur quasistatically, for example, in the buckling of a
ring due to geometrically simple confinement [33], compres-
sion or contact-induced wrinkling and folding of a floating
elastic sheet [34—38], three-dimensional deformations of wa-
ter droplets under rotation [39], the wrinkling and puckering
of supported growing elastic struts [40,41], or the folding in
biological systems such as airways [42,43], ocular surfaces
[44,45], or arteries [27,28].

In this article we examine the deformation of an elastic
interface between two fluids in a rotating Hele-Shaw cell.
The time-dependent growth of the instability was explored
in a series of papers by Carvalho er al. [20,25] with a sub-
sequent study of strongly nonlinear, time-independent states
[26] based on the assumption that the pressures in the interior
and exterior fluids are identical and that the interface cannot
support tension. The second assumption is consequential: it
implies there is no force that resists changes in the inter-
face length. As a result, Carvalho et al. report a series of
steady-state profiles with different interface lengths without
organizing these states into a bifurcation scenario that de-
scribes how the steady states of the system vary with system
parameters.

We adopt here a different approach. We include an inter-
face tension comprised of a curvature-dependent term and a
Lagrange multiplier 7 required by the assumed inextensibility
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of the interface and refer to T, for simplicity, as the tension.
This quantity is determined by solving a nonlinear eigenvalue
problem and quantifies the response of the system to changes
in the system parameters, at fixed interface length. It is there-
fore possible to plot the solutions in a (P, T') plane, measuring
the response of the system (the tension 7') to changes in the
pressure difference P between the inner and outer fluids. If
P is held fixed and the rotation rate €2 is varied, one may
instead show the (€2, T') plane. Such diagrams are examples
of bifurcation diagrams, and they allow one to track changes
in the solution profile as a parameter is varied, since the profile
is determined in the process of solving the eigenvalue problem
for T. Numerical continuation techniques are ideally suited to
this purpose and we use them here. In the case where 7 = 0,
i.e., the length is unconstrained, we use the length L of the
interface as a new parameter and track how L changes as a
function of P or, equivalently, of the rotation rate 2.

Since we focus on steady states of the rotating two-fluid
Hele-Shaw system only, and such states are not accompa-
nied by fluid flow, our results are independent of viscosity.
The resulting steady states are then described by a model
equation derived from force and torque balance using the
simplest nonlinear bending energy possible for an interface
with constant bending modulus. In previous work we stud-
ied an equivalent equation describing the wrinkling of an
elastic lining of an artery under compression and provided
an explanation via weakly nonlinear analysis and numerical
continuation for how primary and secondary solutions emerge
and the forms they take [27]. We also noted that the finger
profiles of this system map onto the buckled states of an elastic
ring under pure compression, albeit at different locations in
parameter space [46]. Since the latter problem is integrable in
terms of elliptic functions, this is also the case for the present
problem [46—49]. It is not, however, the case for the secondary
states comprising mixed modes and spatially localized folds
whose properties we also investigate. The net result is a rather
complete picture of the steady states of this interesting system.

This paper is organized as follows. In Sec. II we formulate
the problem. Section III introduces the length-constrained
problem and summarizes the linear stability properties of a
circular interface. Section IV summarizes parallel results for
the case T = 0. Section V describes the formulation of our
numerical continuation approach and the numerical tests car-
ried out to validate it. This is followed in Secs. VI-VIII by the
results tracking the properties of fingers, mixed modes, and
folds as a function of the parameters in the length-constrained
case, followed by a summary of our results in the uncon-
strained case in Secs. IX—XI. Finally, in Sec. XII we consider
asymmetric or chiral states and investigate their origin in
parameter space. The paper concludes with a brief summary
in Sec. XIII.

II. THE SYSTEM

We consider a Hele-Shaw cell with a fluid of density p;
surrounded by a fluid of density p, and separated from it
by a closed, elastic membrane of length L = 2R and bend-
ing modulus B, assumed to be independent of the curvature
(Fig. 1). The system rotates with constant angular veloc-
ity €2 about an axis perpendicular to the cell at r = 0. In
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e

FIG. 1. A rotating Hele-Shaw cell containing two fluids of den-
sities p; and p, separated by an elastic membrane (red) wrinkled with
wave number m = 5 (top) together with a schematic top view (bot-
tom). The interface is parametrized by arc length s, with (x(s), y(s))
providing a parametric representation of the interface profile.

equilibrium, the inner liquid occupies a circular region with
the axis of rotation at its center. We are interested in un-
derstanding the properties of this equilibrium state as either
the rotation rate increases for a given pressure difference P
between the fluids, or as P varies for a given rotation rate 2.

We parametrize the perturbed interface with the arc length
s such that the curvature of the interface at location s or,
equivalently, at r(s) = (x(s), y(s)) relative to the origin is
given by k = 9,¢, where ¢(s) is the angle between the tangent
to the interface at point s and the x axis (Fig. 1). We define the
density difference Ap = p; — p, > 0 between the interior and
exterior fluids and impose a pressure difference P = P, — P,
between them. A tension T in the elastica is required to
maintain its inextensibility. We call the resulting problem the
constrained length problem. In contrast, when T is set to
zero the length of the interface is unconstrained, and we call
the resulting problem the unconstrained length problem. Both
forms of the problem exhibit steady-state solutions, and it is
solely these solutions we consider in this paper.

III. CONSTRAINED LENGTH

With the system thus defined, we can derive an equation for
the interface by balancing the normal forces and the torque on
an element of length ds of the interface. The normal force
includes contributions from the elastica bending modulus,
tension, and centrifugal force together with the force from the
imposed pressure difference. The resulting Kirchhoff equa-
tions for the interfacial elastica are given in the Supplemental
Material [50] and can be manipulated to yield the governing
equation

B}k +3k) =Tk =P —1Ap Q%7 =0. (1)
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Here r(s) is defined implicitly via the geometrical con-
straints d;x = cos ¢ and d;y = sin ¢. In the unconstrained case
the resulting equation is identical to that used in previous
work on centrifugally driven instabilities in a Hele-Shaw cell
[19-21,26].

We expect a centrifugal instability to set in when Ap > 0,
i.e., when the density of the inner fluid exceeds that of the
outer one, and use this fact to introduce the natural length
scale of the instability:

B \3
= (mm) ?

We use this scale to construct a dimensionless parameter
¢ = R/ that measures the radius R of the elastica in units
of the natural length X.

Rescaling Eq. (1) according to s ~ R, k ~ R, r ~R,
T ~ B/R* P ~ B/R3, we obtain

N+ 10,0 —Toe—P— 17 =0. 3)

The instability of the circular membrane arises when the
denser interior fluid is displaced outwards, thereby increasing
the outward force upon it. When this force exceeds the re-
straint arising from the curvature of the interface, the tension
T, and the imposed pressure difference P, instability sets in,
and it is this balance which gives rise to wavelength selection.

In the unperturbed problem, the interface is circular and
of length L =27, with T = %(1 — £%) — P. A linear stability
analysis of this state yields the dispersion relation for the
mode number m of the fingering instability [27]:

4 e 2 35
mt— (24 P+ |+ (14+P+ ) =0 @)

From this relation we can determine the wave number m* of
the first unstable mode that sets in as P increases and the
critical value P = P* at which it does so:

m* =1+ 02 PP = (=0 440772, (5)
all for a fixed rotation rate 2. Alternatively, we may fix P and

increase the rotation rate, leading to the critical rotation rate
Q(m, P),

2 2 1/2
QE|: B <2(m —DP—-—m +l))i| ’ ©)

ApR> 3 —m?

for the appearance of a mode with wave number m; minimiz-
ing this expression over m for fixed P recovers the results in
Eq. (5). Figure 2 shows several examples of the marginally
stable wave number m as P and ¢° vary and shows that, as
£3 increases, instability sets in at lower and lower values of P
and with larger and larger values of m*, i.e., larger finger wave
numbers. This is the fingering instability whose nonlinear
development is key to understanding the constrained system.
When m* is not an integer, the figure shows that the primary
instability corresponds to the integer m nearest to the m* given
by Eq. (5).

m T
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FIG. 2. The perturbation wave number m as a function of P
across a range of £3 values corresponding to onset wave numbers
m* =2,3,4 (red dots). As £° increases, instability sets in at lower
values of P and with larger values of m*, i.e., larger finger wave
numbers. Since L = 27, the £> values have been chosen to yield
integer wave numbers at onset.

IV. UNCONSTRAINED LENGTH

When the interface cannot support any tension, the insta-
bility may lead to interface growth. In this case 7 = 0 and
the length L of the interface becomes a free parameter. We
are interested in this case because earlier work by Carvalho
et al. [26] presented a number of solutions to Eq. (3) with
T = 0 with interfaces of different (and unspecified) lengths.
With L as a free parameter, nondimensionalization requires
rescaling Eq. (1) using the natural length scale A. We take
s~Mk~A L r~AP~ l’)’/)\3 such that the rescaled gov-
erning equation is now given by

1,2 =0. (7)

8$2K+%K3—P—2

For a circular interface this equation yields a monotonic re-
lation between the pressure and the interface length, P =
[(L/27)~3 — (L/2m)*]/2, so in equilibrium there is only one
L for a given P.

A linear stability analysis of this state, similar to that lead-
ing to (4), yields

S 3 (Y] 2
mt = Zm +{2+<2n>]_0. (8)

This relation has no real roots for L > m, indicating that solu-
tions of wave number m do not emerge as primary bifurcations
from the circle state as P varies.

V. METHOD

Both versions of the problem, Egs. (3) and (7), are imple-
mented in AUTO, a numerical continuation software package
using pseudo-arc-length continuation for bifurcation prob-
lems in ordinary differential equations (ODEs) [51]. The
equations may be written as a nonlinear boundary value
problem and implemented in AUTO as a five-dimensional dy-
namical system in s encompassing the third-order ODE for ¢
and the two first-order ODEs for (x, y). For the constrained
length sections of this paper, we construct the problem on
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the domain s € [0, ], representing half of a closed elastic
interface of length 2, subject to the boundary conditions

$0)=7/2, ¢()=3m/2, (9a)
x(0) = xo,  x(7) = xy, (9b)
y(0) = y(m) =0, (9¢)
9p(0) = d7¢() =0. (9d)

The final two conditions represent force-free conditions
following previous work [27,30] and allow us to generate
the full circle solution via reflection in the x axis. For the
unconstrained length sections, s € [0, L/2], where L is free to
vary. Since the system is five-dimensional with eight boundary
conditions, numerical continuation is performed in the four
parameters (P, T, xo, x;) for the constrained length problem
and (P, L, xo, x) for the unconstrained length problem [52],
i.e., for a given change in P, the new tension T (or length L)
is found as a nonlinear eigenvalue of the problem, while xg, x;
are adjusted to satisfy the force-free boundary conditions.

The results of this procedure have been carefully compared
to those from a high-order weakly nonlinear analysis and
are found to be in excellent agreement [27]. The nonlinear
results have also been validated by matching to exact analyt-
ical solutions to within numerical tolerance [46]. Self-contact
forces can be included in order to continue solutions beyond
our current range [53,54], but we do not do so in this paper.
Self-intersecting solutions are not shown.

The boundary conditions (9) impose a reflection symmetry
on all the solutions generated by the above procedure and so
prevent the computation of states that break this symmetry.
Since such states are also expected to be present [26], we
discuss in the penultimate section, Sec. XII, an alternative for-
mulation of the above problem that permits the computation
of such solutions.

VI. CONSTRAINED LENGTH: FINGERS

The order with which primary finger states bifurcate from
the circle state is determined by the parameter £° as it sets the
critical wave number m* via Eq. (5). Subsequent bifurcations
as P increases lead to modes with wave numbers m alternately
above and below m*. Once m = 2 is reached only modes
with large wave numbers m remain, and these continue to be
destabilized as P increases, as seen in Fig. 3. The figure shows
the response of the system, as indicated by the tension 7', to
changes in the imposed pressure difference P for three values
of £° obtained using numerical continuation starting from
the neutral modes of the circle state (black line). The corre-
sponding solution profiles at the point of first self-contact are
shown alongside. We see that for large enough 3 the primary
finger states bifurcate to secondary branches of mixed-mode
states connecting a primary branch with m < m* to a primary
branch with m > m* [Fig. 3(b), shown in green], as well as
to circumferentially localized states we call folds [Figs. 3(a)
and 3(b), shown in yellow], which do not connect to another
branch. The mixed modes do not set in prior to self-contact
when £° is small but begin to proliferate with increasing £°; for
this reason they are omitted from panel (c). The primary mode
with m = 2 is called here a buckling mode (labeled B) because
of its radically different behavior at large £°, with negative
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FIG. 3. Bifurcation diagrams in the (7, P) plane for (a) £> = 64
(m* =3), (b) £> =576 (m* =5), with some states beyond self-
contact shown with dashed lines, and (c) £° = 14400 (m* = 11),
showing the succession of color-coded primary branches of finger
states as P increases: primary fingers with m = m* (purple), m > m*
(blue), and m < m* (red). Mixed-mode states are shown in (a) and
(b) (green), together with branches of folds (yellow). In (c) only
the primary finger modes are shown. Primary bifurcation points are
labeled by the corresponding wave number m, while points of self-
contact are indicated with crosses [for m < 7 in panel (b)]; in panel
(c) points of self-contact fall outside the parameter range shown.
Selected solution profiles at the point of self-contact are shown on
the right.

modulus dP/dT, behavior typical of buckling processes [27].
In the absence of a natural wavelength A or as A becomes large
relative to the domain, the m = 2 mode is the first to become
unstable [53].

Single folds bifurcate from the first primary branch
(m = m*) and do so prior to self-contact whenever m* > 3.
Figure 3(a) shows the case m* =3 (&° = 64) and shows that
these states emerge in pairs, here a single protrusion fold Fy+
and a single intrusion fold F;- (for profiles see Figs. 7 and 8).
The resulting branches track closely but do not self-contact
at the same point; mixed-mode branches are absent. In panel
(b), for £> = 576, fingering, buckling, and mixed modes are all
present, as well as additional folds. In (c), for £> = 14 400, the
number of mixed modes and folds becomes large, and these
states are omitted.

The finger profiles are A independent [46,48,49,55], so the
displayed self-contact solutions hold for any of the bifurcation
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FIG. 4. The P = 0 steady-state solutions in the (7', L) plane for
03 =576 (m* = 5 in purple), where L is the interface perimeter. All
profiles are plotted on the same scale. The horizontal dashed line
indicates L = 2, the length used in all other constrained problem
computations.

diagrams, although their location in the (7', P) plane does vary
with €3 [46].

Constrained length: P = 0 fingers

Finger solutions when the applied pressure difference P =
0 are of physical interest as they dictate solutions which may
be observed in ambient conditions, emerging solely from the
competition between inertial and elastic energies. Of course,
these solutions have the same shape as before, but the length
and tension at which they arise are not known a priori.
Figure 4 shows their location in the (7, L) plane. Solutions
bifurcate with m increasing monotonically from m* = 2 as
L increases. We note that the size of the marginally stable
circle state may be smaller than in Fig. 3 for finger solutions
with m values close to m*, since these typically bifurcate
from the circle state already at more negative P, i.e., for these
states L < 27r. Moreover, for the value of £° used in Fig. 4,
£> = 576, the states with m = 2, 3 reach self-contact at L <
2m and at negative values of T, i.e., under compression. In
contrast, for larger values of m, the circle at threshold is gen-
erally larger than L = 27, and self-contact generally occurs at
small or slightly positive values of the tension 7.

VII. CONSTRAINED LENGTH: MIXED MODES

In Fig. 5 we show an example of the richness of the mixed-
mode connections at higher values of £°, here ¢° = 6400
(m* =9), where more states with m < m* are interspersed
with states with m > m*. The profiles above the diagram
provide examples of mixed-mode states with comparable con-
tributions from both wave numbers (black dots). In contrast,
the profiles along the side correspond to profiles along a single
mixed-mode branch, here the branch M3 19 connecting the
m = 3 and m = 19 primary finger branches.

In Fig. 6 we show another example of mixed-mode connec-
tions, computed for £3 = 14400 (m* = 11). The figure shows
the connections along a primary branch with m = 23, i.e.,
m > m*, as opposed to Fig. 5 where we showed all the
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FIG. 5. A partial bifurcation diagram for £> = 6400 (m* = 9)
with all complete mixed-mode connections between the m = 3 finger
state and other primary branches. The profiles above the bifurcation
diagram correspond to the black dots proceeding from left to right,
while the profiles on the right correspond to the blue dots on the
mixed-mode branch Mj 19, proceeding downwards.

secondary connections for a m = 3 primary branch, m < m*.
The solutions in Figs. 5 and 6 match closely those previously
identified via a different computational procedure (see Fig. 4
of Ref. [26]).

VIII. CONSTRAINED LENGTH: FOLDS

Additional secondary branches which do not connect to
any other branches bifurcate from the finger branches at or
near the critical branch with m = m* [Figs. 3(a) and 3(b),
yellow curves]. These correspond to localized solutions and
typically come in pairs. The first pair always has a single
intrusion or protrusion (F+) and bifurcates from the critical
finger branch [Figs. 3(a) and 3(b), yellow curves]. Intruding
and protruding states follow essentially identical paths in the
bifurcation diagram and reach self-contact at almost the same
point in the (7', P) plane [Fig. 3(a)].

P
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-6000
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FIG. 6. A partial bifurcation diagram for £3 = 14400 (m* = 11)
with four mixed-mode connections between m = 23 and the primary
branches with m = 2 (B), 3, 4, 5. Solutions beyond the point of self-
contact are shown with broken lines. The lower panels show profiles
at the locations indicated by black dots (two on the Mys , branch).
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9 225 576 1225 6400 14400

FIG. 7. F,+ solutions at self-contact for increasing values of ¢3
corresponding to m* = 3,4,5,6,9, 11.

Figure 7 explores the ¢° dependence of the simplest fold
states F;+ at self-contact and shows that the width of the
localized structure decreases in the expected way relative to
the perimeter length as £ = R/A, or equivalently, the rotation
rate increases.

Changes in £° also have an effect on the localized state
branches in parameter space. Figure 8(a) shows that for mod-
erate values of €7 the branches of F,+ fold on themselves, each
exhibiting a saddle-node bifurcation. These bifurcation points
can be followed numerically, and Fig. 8(a) shows the result
of such a computation for F,+ starting from the saddle-node
bifurcation at £> = 225 and both increasing and decreasing
£3; Fig. 8(b) shows the solution profiles at the saddle nodes
[maxima in the (7', P) plot]. Evidently, as ¢ varies, so does
the wave number m* of the branch from which the F,+ bifur-
cates. This is, in fact, a continuous process: as £3 increases, for
example, the secondary bifurcation to Fg+ moves down along
the m* = 4 branch to the primary bifurcation point. As this
happens, the m = 5 primary bifurcation passes through the
m* = 4 primary bifurcation point, so that for larger £° the cir-
cle state loses stability first to m* = 5, followed by m = 4, i.e.,
the m = 4 and m = 5 branches exchange positions. Beyond
this point the secondary bifurcation to Fs+ moves up the new
m* branch, and the whole process repeats [38,56]. However,
despite the jumps in m*, the movement of the saddle node of
the fold states F+ as ¢° varies is continuous. With increas-
ing ¢°, the saddle node moves past the point of self-contact,
and we terminate the continuation when this first happens
(&> ~ 570).

p@ Q)
641
—50°" = 150? "]
~100" 320‘.\ + ] @
150 |
~200 570

-10 T

FIG. 8. Numerical continuation (black dashed line) in the (7', P)
plane of the local maxima on the branch of F+ of localized fold states
(yellow lines) between £3 = 64 (m* = 3) and £> = 570 as indicated
in the labels. Since T measures the response of the system to changes
in the pressure difference P, these maxima represent saddle-node
bifurcations. The continuation is terminated when the saddle-node
reaches the point of self-contact (crosses) or the bifurcation point
from the primary branch (squares). The corresponding solution pro-
files at the labeled saddle nodes are shown alongside.

Z40 30 —20

As ¢° increases, the variety of localized fold states in-
creases dramatically, since fold states now bifurcate not only
from the critical finger state with m = m™ but also from the
subsequent primary finger branches. In Fig. 9 we show all
localized fold states for a given £ (£5 = 6400). The critical
primary branch supports the most secondary bifurcations to
fold solutions. Although subsequent branches have a simi-
lar overall number of secondary bifurcations, the number of
bifurcations to fold states decreases while the number of bi-
furcations to mixed-mode states increases. The details depend
on the number of factors of each integer m and hence on the
symmetry of the branch states. For example, Fig. 9 shows sev-
eral localized states with a 27” rotational symmetry emerging
from the m = 9 finger branch which shares this symmetry.
Similarly, we see a 2?” rotational symmetry in one of the
localized states emerging from m = 10 and a 7 rotational
symmetry in one that emerges from m = 8.

IX. UNCONSTRAINED LENGTH: FINGERS

We now consider the same system but this time take 7" to be
zero and the interface length L to be a free parameter, resulting
in Eq. (7). Numerical continuation of steady-state symmetric
finger states may be performed in the same way as before.
Figure 10 shows the result of continuing several finger states
in the (L, P) plane. We observe that as the interior pressure
drops, the area and perimeter of the steady-state finger profile
grow dramatically. With a smaller contribution from internal
pressure, a larger contribution from the centrifugal force is
needed to support a steady state, requiring larger L. In contrast
to the results with nonzero tension, in this case the finger states
no longer bifurcate from the circle state. Moreover, although
secondary bifurcations do set in as L increases, for these small
values of m they do so far beyond the point of first self-
contact. Figure 11 shows that this is no longer so for larger
values of m.

X. UNCONSTRAINED LENGTH: MIXED MODES

Mixed-mode states connecting two primary branches with
different numbers of fingers can also be found. Figure 11
shows three mixed-mode branches (light green lines) originat-
ing on the m = 2 finger branch (gray line), shown in the (P, L)
plane. The branches terminate on the m = 12 (red), m = 13
(dark green), and m = 14 (blue) finger states, respectively. In
each case the solutions are realizable near the high m end
of the branch (solid light green lines), but as P becomes
more and more negative they make self-contact beyond which
the solutions are no longer realizable. The top panel in the
figure shows the pure finger state at the right end of each
branch (lowest profile), a physical solution before self-contact
(second profile from the bottom), the solution at first self-
contact (third profile from bottom), and finally, an unphysical,
self-intersecting profile very close to the termination of the
mixed-mode branch on the m = 2 branch (top profile).

XI. UNCONSTRAINED LENGTH: FOLDS

Fold states arise through bifurcations from the primary
finger states, although this time almost exclusively from states
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FIG. 9. Bifurcation diagram for £°> = 6400 depicting the first few finger modes (m* = 9, and m = 10, 8, 11, color-coded) and the multitude
of remarkable fold states that bifurcate from them (yellow). Solutions at the point of self-contact, arranged in ascending order and labeled with
dots of the corresponding color, are shown at the top. Branches of intrusions and protrusions are almost degenerate leading to overlapping dots.

far beyond self-contact. Figure 12 shows a number of exam-
ples in the (P, L) plane.

We see that each primary finger branch (thick solid lines)
yields a multitude of secondary branches of fold states with
varying numbers of intrusions and protrusions, collectively re-
ferred to as folds. The first fold state to emerge from a primary
finger state with wave number m generates a state with m — 1
folds, and each subsequent secondary bifurcation adds one
additional fold. These folds can be intruding, protruding, or
come in antisymmetric pairs (due to the symmetry constraint
imposed by our boundary conditions). There is always a spe-
cial pair of intruding and protruding fold states which respect
the symmetry of the finger state they bifurcate from.

As P becomes more negative and the length of the
domain increases, the profiles gradually deform from the
self-intersecting, nonphysical states they bifurcate from into
non-self-intersecting, physically realizable states. Beyond the

point of last self-contact, the profiles remain physical even
as their length continues to increase. Simultaneously, the de-
tails of the shape of the folds become less important and
the branches collapse to evenly spaced curves, each corre-
sponding to a particular number of folds, as indicated on
the left of the bifurcation diagram. Each of these asymptotic
lines consists of multiple branches originating from different
primary states. For example, there are four distinct twofold
states, two of which are symmetric states with either two intru-
sions or two protrusions originating from the second primary
bifurcation on the m = 2 finger branch, and two additional
states, one with one intrusion and one protrusion, and one
with a pair of antisymmetric folds, originating from the first
primary bifurcation on the m = 3 finger branch. In the present
projection, these pairs of branches lie on top of one another
and one therefore sees only two branches, labeled 2. Likewise
there are three branches labeled 3, originating in the third
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FIG. 10. Numerical continuation of m = 2, 3,4, 5 finger states
(orange, pink, dark and light blue, respectively) in the (L, P) plane.
The branch of circle states is shown in black, and self-contact is

indicated by crosses. The finger states no longer bifurcate from the
circle state.

0 27 47 o™

bifurcation on the m = 2 branch, the second bifurcation on the
m = 3 branch, and the first bifurcation on the m = 4 branch,
each with appropriate multiplicity (see profiles in row labeled
3). As in the case of the fold states for the constrained length
(Fig. 9), many fold states respect the symmetry of the primary
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FIG. 11. Bottom: mixed-mode connections (light green) between
m = 2 (gray) and m = 12 (red), m = 13 (dark green) and m = 14
(blue) finger states shown in the (P, L) plane. Dashed lines indicate
solutions beyond first self-contact. Top: sample solutions at the color-
coded locations indicated in the bottom panel proceeding from the
m = 2 start of the mixed-mode branch to its endpoint at the other
end. In each case the top profile corresponds to an unphysical, self-
intersecting solution on the m = 2 branch, while the profile below
corresponds to last self-contact (lower panel zoom). Beyond this
point the solutions are realizable; the final profile corresponds to a
pure finger state at the right end of the branch.

branch they bifurcate from. For example, the second pair of
states bifurcating from m = 3 features a solution with three
intruding folds and a solution with three protruding folds,
while m = 6 bifurcates to a state with three pairs of antisym-
metric folds and a solution with six alternating intrusions and
protrusions with overall symmetry under rotations through
2m /3. The different states of alternating symmetric intrusions
and protrusions as well as the antisymmetric folds resemble
the folded states of a floating planar elastic sheet under com-
pression [38], particularly when L is large.!

XII. ASYMMETRIC STATES

In the unconstrained case, many interesting steady-state
finger profiles have been reported in the literature [26], but
the continuation scheme summarized in Egs. (9) rules out
many of them since it can only generate solutions that are
symmetric about the x axis. However, using an explicit Runge-
Kutta method and numerical shooting, we are able to construct
a variety of full-domain solutions which do not obey the
previous symmetry restriction imposed by our continuation
procedure. Figure 13 shows examples that are similar in nature
to those discovered in previous work [26]. In the top row
we show mixed-mode solutions with no reflection symmetry,
while the bottom row shows chiral versions of the localized
states shown in Fig. 9. Owing to the symmetry of Eq. (3)
under reflection (¢, s) — —(¢, s), each left-handed solution
is accompanied by an identical but right-handed solution.

To determine the origin of these states in parameter space
we implemented a full-circle extension of our numerical con-
tinuation in AUTO using periodic boundary conditions for
(059, 83(1), 83¢, x,y) with Dirichlet boundary conditions for
¢ at s =0,27 to pin the phase on the full domain. The
continuation of the first few primary and secondary branches
of symmetric and asymmetric states is shown in Fig. 14.

Figure 14 shows that asymmetric states appear via sec-
ondary bifurcations from the symmetric finger states, a result
consistent with the fact that all primary states in O(2)-
symmetric steady-state bifurcation problems are necessarily
reflection symmetric [57]. It has previously been observed
that the branches of symmetric intruding and protruding folds
emerging from a common bifurcation point coincide in the
(T, P) plane [27]. Figure 14 shows that in fact all sec-
ondary branches (intruding, protruding, symmetric, or chiral)
emerging from a common bifurcation point coincide in the
(T, P) plane, although they do not reach self-contact at the
same location. We believe, but have been unable to check,
that the multifold chiral states shown in Fig. 13 likewise
originate in secondary bifurcations from symmetric finger
states.

XIII. CONCLUSION

We have studied the bifurcation properties of equilibrium
states arising from a Rayleigh-Taylor-like instability of a
higher density fluid confined within a lower density fluid in

'The profiles in Fig. 4 of [38] are labeled in the opposite order to
the branches in Fig. 3.
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FIG. 12. Bifurcation diagram depicting the m = 2, 3, 4, 5, 6 finger states in thick lines (red, orange, green, blue, and purple, respectively)
and the many fold states bifurcating from them (thin lines, corresponding color). Self-contact for primary states is marked with a cross, and
states beyond this point are dashed. Sample solutions (all rescaled to equal size for clarity) are arranged in ascending order according to the
number of localized intrusions and protrusions on the 27 domain (profile labels correspond to branch labels in the bifurcation diagram). The
number of distinct states created in each bifurcation grows in successive bifurcations as P decreases (L increases) and depends on the wave
number m of the underlying finger state. At large negative P (large L), branches with the same number of intrusions and protrusions are almost
degenerate, since both contribute only slightly to the length, despite originating in general from different primary finger states as indicated
by the color-coded profiles at the top panels. For example, there are four branches labeled 2, two of which originate from the m = 2 finger
branch (red) and two of which originate from the m = 3 finger branch (orange). The branches originating in the same branch are strictly
degenerate in this projection, although they reach self-contact at slightly different locations (not shown). Profiles originating in subsequent
primary bifurcations are arranged vertically and correspond to P ~ —20.
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FIG. 13. Asymmetric states computed on the full domain. Top
left: L = 15.714, £°> = 8232.56; top right: L = 15.714, £> = 6257.5;
bottom left: L = 6.283, ¢° = 650; bottom center: L = 25.649, ¢> =
0.916; bottom right: L = 15.707, £3 =295, all computed for P = 0.

a rotating Hele-Shaw cell. The interface separating the two
fluids is modeled as a thin elastic membrane, with the cen-
trifugal force playing the role of effective outward gravity.
The bending modulus of the interface introduces an intrin-
sic length scale into the problem that defines the scale of
the resulting fingering instability. We examined two cases,
one in which the interface was taken to be inextensible (the

P
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FIG. 14. Full-domain numerical continuation for £> = 576 in the
(T, P) plane showing the first three symmetric and asymmetric fold
states emerging simultaneously from secondary bifurcations of the
m = 5 and m = 6 symmetric finger states (blue lines), which in turn
bifurcate from the circle state (gray line). The branches of symmetric
and asymmetric states coincide in this projection. Color-coded solu-
tion profiles corresponding to the locations indicated in the top panel
are shown along the bottom.

constrained case) and one in which the interface was per-
mitted to proliferate freely (the unconstrained case). In the
inextensible limit, we obtained a prediction via linear theory
for the critical rotation rate as a function of the mem-
brane bending modulus, the difference in fluid densities, and
the applied pressure difference (6). Potential applications of
this equation may include a variation on the strain-induced
elastic buckling instability for mechanical measurements
(SIEBIMM) technique [58], wherein the elastic modulus of
a thin material is measured by its wrinkling response to pre-
scribed substrate properties and forcing. The critical rotation
rate for the onset of instability could be employed in a similar
manner, combining an easily experimentally tunable param-
eter (the rotation rate) with prescribed density and pressure
differences, together with the observed instability wave num-
ber, to deduce an unknown bending modulus of a material
placed at the interface.

In both the inextensible and extensible cases, we used
numerical continuation to follow strongly nonlinear equilib-
rium finger states in parameter space through to the point
of self-contact. We showed that, depending on parameters,
these states may undergo secondary bifurcations leading to
two types of secondary states, mixed modes and folds. The
former form secondary connections between fingers with dis-
tinct wave numbers, while the latter form progressively more
localized intrusions or protrusions as one follows each fold
branch away from the secondary bifurcation that generates
it.

The unconstrained or tension-free case is of particular
interest. Here the primary finger states were found to be
disconnected from the circle state, in contrast to the con-
strained case. However, as in the constrained case, the finger
states exhibit instabilities to both mixed-mode states and to
fold states. The latter take the form of symmetric intrusions
or protrusions or antisymmetric folds that come in pairs to
maintain the overall reflection symmetry imposed by our nu-
merical continuation scheme. In particular, we demonstrated
that the first bifurcation of a finger state with wave number
m generates a fold state with m — 1 folds of various types.
States with the same number of folds but different orientation
or shape are created in bifurcations from other finger states
with different but smaller wave number, but these bifurcations
are necessarily subsequent bifurcations and not the first. For
example, the first bifurcation of the m = 3 finger states creates
a state with two folds, and so does the second bifurcation of
the m = 2 finger state (Fig. 12). The folds localize away from
these bifurcations as P becomes more and more negative and
the interface length grows, resulting in asymptotic degeneracy
of all branches with the same number of folds, regardless of
type and origin. This is a consequence of the fact that in this
regime the folds take up an increasingly small fraction of the
overall length L. The unconstrained system thus recapitulates
similar behavior found earlier in a floating elastic sheet under
compression [35,38], a system described by an equation sim-
ilar to Eq. (3).

Moreover, the finger states can be either symmetric m-
finger states, or break this symmetry, forming an m-finger
chiral state of definite handedness. However, these chiral
states appear via secondary bifurcations from an already ex-
isting finger state, at the same bifurcation as the symmetric
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folds, and cannot form in a primary bifurcation of the
circle state. Together these results shed light on the ori-
gin and organization of the states reported previously in the
unconstrained case with zero pressure difference across the
interface [26].

Similar progressive localization of folds takes place in the
constrained case as well, as the parameter ¢ or equivalently,
the rotation rate increases (Fig. 7). In both cases this is a
consequence of the fact that the folds bifurcate subcritically,

much as in the Swift-Hohenberg equation with a bistable
nonlinearity [59].
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