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Learning to swim efficiently in a nonuniform flow field
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Microswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can
then navigate in response to these signals. We analyze this navigation by combining deep reinforcement learning
with direct numerical simulations to resolve the hydrodynamics. We study how local and nonlocal information
can be used to train a swimmer to achieve particular swimming tasks in a nonuniform flow field, in particular,
a zigzag shear flow. The swimming tasks are (1) learning how to swim in the vorticity direction, (2) learning
how to swim in the shear-gradient direction, and (3) learning how to swim in the shear-flow direction. We find
that access to laboratory frame information on the swimmer’s instantaneous orientation is all that is required
in order to reach the optimal policy for tasks (1) and (2). However, information on both the translational and
rotational velocities seems to be required to accomplish task (3). Inspired by biological microorganisms, we also
consider the case where the swimmers sense local information, i.e., surface hydrodynamic forces, together with
a signal direction. This might correspond to gravity or, for microorganisms with light sensors, a light source. In
this case, we show that the swimmer can reach a comparable level of performance to that of a swimmer with
access to laboratory frame variables. We also analyze the role of different swimming modes, i.e., pusher, puller,
and neutral.
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I. INTRODUCTION

Active matter encompasses a broad range of physical,
chemical, and biological systems composed of “active” agents
that consume energy from the surrounding environment in
order to perform tasks (e.g., self-propel). Examples include
motile cells such as spermatozoa, fish, birds, and even hu-
mans. Besides consuming energy, living agents also sense
and react to environmental stimuli in order to accomplish
their tasks, e.g., biological objectives such as gravitaxis [1,2],
chemotaxis [3,4], or predation avoidance [5,6]. An example of
predator avoidance is given by copepods (Acartia tonsa) [7],
crustaceans that can be found in both freshwater and salt-
water, which use mechanoreceptors to sense hydrodynamic
signals in order to escape from predators. The recent progress
in synthetic active particles has also revealed exciting pos-
sibilities for novel applications of active systems, e.g., as
micromotors [8,9] or for therapeutics [10,11]. However, such
applications require that the active agents be able to navi-
gate complex environments in order to accomplish particular
tasks. A natural question here is how to efficiently train the
agents to achieve these objectives, when they are only able
to process simple cues from their surroundings. For wet ac-
tive systems, the major challenge is to fully account for the
hydrodynamic interactions. Colabrese et al. [12] have used
a reinforcement learning method (Q-learning) to develop ef-
ficient swimming strategies for a gyrotactic microswimmer,
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which was tasked with swimming in the vertical direction
against a periodic Taylor-Green background vortex flow in
two dimensions (2D). The swimmer was given information
of its laboratory frame orientation and the vorticity of the
background flow, which was discretized to have three possible
values: positive, negative, or zero. Subsequent studies have
extended the method to three dimensions, e.g., to optimize
for vertical migration against gravity [13,14], avoiding pre-
dation [15], navigation near surfaces or interfaces [16], and
navigation in other complex flow fields [17,18]. However, the
hydrodynamic interactions were not fully taken into account
in these studies, as the background flow was fixed, with the
swimmer being advected or rotated by the flow. In contrast,
here we investigate how to train a swimmer to navigate a com-
plex flow (a zigzag shear flow) by performing direct numerical
simulations (DNSs) [19] to account for the full hydrodynamic
interactions and the particle-fluid coupling in three dimen-
sions. First, we consider the case where the swimmer is able to
perceive its current location, orientation, and translational and
rotational velocities, within the laboratory frame, as well as
retaining a memory of the last two actions it has performed.
We then train the swimmer to achieve three separate tasks,
(1) swimming in the vorticity direction, (2) swimming in
the shear-gradient direction, and (3) swimming in the flow
direction. We employ deep Q-learning [20] on a suitably
discretized action space. Our results show the feasibility of
using only the orientation and the action memory in order to
learn optimal swimming strategies for tasks (1) and (2), i.e.,
swimming along the vorticity and the shear-gradient direc-
tions. Swimming in the flow direction proved to be a much
more challenging task, as evidenced by the low performance
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compared with that of the other two. In this case, the swimmer
was unable to learn to align itself with the flow streamline.
While most studies on navigation [21–23] assume the agent’s
state to be composed of laboratory frame information, this
is not appropriate for biological microswimmers, as they
can only sense local information, e.g., hydrodynamic signals.
Therefore we have also investigated how the same learning
can be performed using only locally accessible information,
i.e., the hydrodynamic force exerted on the swimmer by the
surrounding fluid and the relative alignment of the swimmer
with a signal direction. In what follows we will refer to this as
a light source, sensed by light-sensitive receptors for which we
use the shorthand of “eye,” without implying the presence of a
fully developed eye. In principle, microorganisms could also
sense the Earth’s gravitational field, or other signals coming
from, e.g., persistent magnetic [24], heat [25], or chemical
gradients. For the case in which the organism can sense a
single laboratory frame signal direction in this way we found
that a combination of these two signals (hydrodynamic forces
and signal orientation), along with the memory of two recent
actions, can yield the same qualitative level of performance as
when using laboratory frame information. Finally, we also in-
vestigate the effect of learning for different swimming modes,
i.e., pusher, puller, and neutral. When given the same set of
signals, pushers show the best performance, above that of
neutral swimmers, with pullers performing the worst.

II. SIMULATION METHODS

A. System of interest

We consider a swimmer navigating through a Newto-
nian fluid with an imposed zigzag shear flow. The coupled
dynamics of the swimmer and the fluid are evaluated by solv-
ing a modified Navier-Stokes equation, which accounts for
the fluid-particle interaction using the smoothed profile (SP)
method [19], together with the Newton-Euler equations for
the rigid-body dynamics. The squirmer is assumed to be able
to perceive information from its environment and perform ac-
tions accordingly. These actions are determined by a weighted
neural network, trained using a deep Q-learning algorithm, to
draw actions that lead to the highest accumulated reward over
a given time interval.

B. The squirmer model

Here, we consider the “squirmer” model to represent swim-
mers as self-propelled spherical particles with a modified
stick-boundary condition [26,27]. Originally, this model was
proposed to describe the dynamics of ciliated microorgan-
isms, where the swimmers are driven by the fluid flows
generated at their surfaces. The expression for this surface
velocity is given as an expansion in terms of Legendre poly-
nomials. For simplicity, the radial and azimuthal components
are usually neglected, and the expansion is usually truncated
to neglect modes higher than second order [28]. Thus the slip
velocity of the swimmer at a given point on its surface is
characterized by spherical polar variables (ϑ, ϕ), with ϑ = 0
corresponding to the swimming direction, according to

us(ϑ, ϕ) = B1

(
sin ϑ + α

2
sin 2ϑ

)
ϑ̂, (1)

FIG. 1. Top: A schematic illustration of a particle learning to
navigate a zigzag shear flow. The particle trajectory over a learning
episode is illustrated as the black short-dashed line. The position of
the swimmer at the discrete simulation time steps i is marked with
black filled circles. This trajectory is coarse grained to define the
action trajectory, illustrated as the red long-dashed line. This action
trajectory consists of action segments, composed by taking every
M simulation steps, marked with red open circles. The swimmer
chooses an action aI at the start of each action segment I , which
it follows until the start of the next action segment (I + 1). Bottom:
a schematic diagram of the squirmer “pusher” model, illustrating the
surface flows generated by the B1 (∝ sin θ ) and B2 (∝ sin 2θ ) modes,
which determine the swimming speed and stresslet, respectively; as
well as the relevant unit vectors and angles, in spherical coordinates,
i.e., r̂, θ̂, and φ̂, where ê is the swimming direction.

where ϑ̂ is the tangential unit vector in the ϑ direction,
ϑ = cos(r̂ · ê) is the polar angle, with ê is the swimming
axis, and r̂ is a unit vector pointing from the center of the
squirmer to the point (ϑ, ϕ) on the surface, as shown in the
bottom panel of Fig. 1. The coefficient B1 is the amplitude of
the first squirming mode, which determines the steady-state
swimming velocity of the squirmer U = 2

3 B1, with α = B2/B1

characterizing the type of flow field: For negative (positive)
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α, the squirmer is a pusher (puller), e.g., Escherichia coli
(Chlamydomonas reinhardtii). The first mode, B1, relates to
the hydrodynamic source dipole, with a decay in the velocity
field proportional to 1/r3, while that of the second mode is
related to a force dipole, which decays as 1/r2. For a neutral
squirmer (e.g., Paramecium), α = 0, the first mode dominates
over B2, and the velocity field decays as 1/r3.

C. The smoothed profile method

To solve for the coupled fluid and particle dynamics, we
solve the equations of motion for both the viscous host fluid
and the squirmer using the smoothed profile (SP) method [19].
The evolution of the particle obeys the Newton-Euler
equations:

Ṙi = V i, Q̇i = skew(�i ) · Qi,

MpV̇ i = FH
i + Fext

i , Ip · �̇i = NH
i + Next

i , (2)

where i is the particle index, Ri and V i are the particle
center-of-mass position and velocity, respectively, Qi is the
orientation matrix, and �i is the angular velocity. The skew-
symmetric matrix is defined such that skew(�i ) · x = �i × x
(∀x ∈ R3),

skew(�i ) =

⎛
⎜⎝

0 −�z
i �

y
i

�z
i 0 −�x

i

−�
y
i �x

i 0

⎞
⎟⎠. (3)

The forces exerted on the particle, appearing on the right-
hand side of (2), include the hydrodynamic forces FH and
external forces Fext, e.g., gravity. Likewise, the torques are
decomposed into hydrodynamic NH and external Next con-
tributions. Here, we have neglected interparticle forces and
torques, as we only consider single-particle systems. The
forces and torques are evaluated assuming momentum con-
servation to ensure a consistent coupling between the host
fluid and the particles. The time evolution of the host fluid
is determined by the Navier-Strokes equation, together with
the incompressibility condition:

∇ · u f = 0, (4)

ρ f (∂t + u f · ∇)u f = ∇ · σ f + ρ f f , (5)

σ f = −pI + η f [∇u f + (∇u f )T ], (6)

where ρ f is the fluid mass density, u f is the fluid velocity
field, η f is the shear viscosity, σ f is the stress tensor, and f is
an external body force.

When applying the SP method, the sharp interface between
the rigid particle and the fluid domains is replaced by an
interfacial region with a finite width ξ , with both regions
characterized by a smooth and continuous function φ. This
function returns a value of 0 for the fluid domain and a value
of 1 for the solid domain. The total velocity field u can then
be written as

u = (1 − φ)u f + φup. (7)

The first term on the right-hand side of (7) represents the
contribution from the host fluid, while the second term is

from the rigid-body motion. Then, we can consider the sys-
tem as a single-component fluid and write down a modified
Navier-Stokes equation, similar to (5), but in terms of the total
velocity u, as

ρ f (∂t + u · ∇)u = ∇ · σ f + ρ f (φ f p + φ f sq + f shear ), (8)

where φ f p is the force density field required to maintain the
rigidity of the particle, φ f sq is the force density required to
maintain the squirming motion, and f shear (x, t ) is an external
force required to maintain the following zigzag velocity pro-
file [29]:

vx(y) =

⎧⎪⎨
⎪⎩

γ̇ (−y − Ly/2), −Ly/2 < y � −Ly/4
γ̇ y, −Ly/4 < y � Ly/4
γ̇ (−y + Ly/2), Ly/4 < y � Ly/2,

(9)

where γ̇ is the shear rate, y is the distance in the
velocity-gradient direction, and Ly is the height of the
three-dimensional rectangular simulation box, of dimensions
(Lx, Ly, Lz ). We numerically solve the equations of motion
using a fractional step procedure. First, the total velocity field
is updated by solving for the advection and hydrodynamics
stress contributions in the Navier-Stokes equation. Simultane-
ously, the particle positions and orientations are propagated
forward in time. Second, we evaluate the momentum ex-
change over the particle domain and use it to compute the
hydrodynamic contributions to the forces (torques) exerted on
the particles. Third, the updated forces and torques are used to
update the particle velocities, in such a way that the squirming
boundary condition is maintained (through φ f sq). Finally, the
rigidity constraint (φ f p) is computed, in such a way that the
momentum conservation is guaranteed, and used to update
the total velocity field (together with the shear-flow constraint
f shear). Detailed discussions of this procedure can be found in
our earlier work [19,29,30].

D. Deep reinforcement learning

We employ a reinforcement learning (RL) framework [31]
to obtain optimal policies for the prescribed swimming tasks.
This involves training a neural network to select actions
that generate a high reward. RL has proven itself to be a
powerful tool for finding flow control and navigation strate-
gies [12,32,33]. In RL, an agent (here the swimming particle),
uses information received from its environment to define its
current state, which it uses to determine its next action, result-
ing in a corresponding reward (assumed to be a real number)
for this action. This type of agent-environment interaction
allows one to control the agent decisions, in order to maximize
the long-run accumulated reward without prior knowledge of
the dynamics of the system. In this paper, we adopt a deep Q-
learning strategy, combined with prioritized experience replay
and n-step learning [20,34,35], as the search tool for finding
optimal navigation strategies for a given task.

The swimmer is trained by maximizing the expected
reward over a fixed time interval, called an episode (see
Fig. 1). Episodes are discretized into Ns action segments of
M simulation steps each, such that Tepisode = Ns · T , with
T = M · t being the time duration of the action segment
(t is the simulation time step). Let sI be the state of the
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swimmer at the beginning of action segment I , which cor-
responds to simulation time step i = I · M and time TI =
I · T = (I · M ) · t ≡ ti=I·M . The swimmer uses a policy
function π , which maps states to actions, in order to choose
its next action aI , which it will follow for the duration of
the action segment (i.e., the next M simulation steps), after
which it will be in a new state s′

I = sI+1. The swimmer is
then assigned a reward rI , which depends on its state at the
endpoints, sI and s′

I . This gained (action-reward) experience
is written in tuple form as (sI , aI , s′

I , rI ). For the purposes
of the learning, the state of the system at intermediate times
between the starts of subsequent action steps I and I + 1, i.e.,
TI = tI·M < t < t(I+1)·M = TI+1, will be irrelevant. Finally, at
the end of the episode, the total reward is evaluated by ac-
cumulating each of the individual action rewards acquired
during the trajectory, r = ∑Ns−1

I=0 rI .
To compute the (optimal) policy, define the action-value

function Qπ , for a given policy π , as Qπ (sI , aI ) = rI +
γ rI+1 + γ 2rI+2 + · · · , with γ ∈ [0, 1) being a discount fac-
tor. This Q function gives the expected accumulated reward
for adopting action aI during step I (starting from state sI ),
expressed as the reward for action step I , plus the (dis-
counted) rewards at each subsequent step (0 < I < Ns). The
optimal policy function π∗, whose mapping of states and
actions maximizes the long-time reward, must satisfy the Bell-
man equation Qπ� (sI , aI ) = rI + γ maxa Qπ� (sI+1, a) [31]. To
learn this optimal policy, the Q value function is represented
by a neural network and trained in an episode-based fashion,
over Nepisode episodes, with each episode consisting of Ns

action steps, of M simulation steps each.
Throughout the training phase, at the beginning of each

episode the position and orientation of the swimmer are ran-
domly set, and the swimmer is allowed to navigate for the time
duration Tepisode (Ns action segments). At each action step I ,
the (current) best action is that which maximizes the (current)
value function, i.e., aI = argmaxaQπ (sI , a). In order to reduce
the bias in the training, a batch of stored experiences of size
Nb is drawn from a “replay memory” buffer (size NPmax ) at
the end of each action step. The replay memory buffer will
store the experiences gathered over many action steps and
episodes. Each element of this batch of experiences consists
of information on the environmental signals, the actions taken,
and the immediate rewards, i.e., (sI , aI , s′

I , rI ). The drawn
batch is then used to adjust the weights of Q, according to
the following rule:

Q(sI , aI ) ← Q(sI , aI )+ ν[rI + γ max
a

Q(sI+1, a)− Q(sI , aI )],

(10)

where ν is the learning rate. The Q network is trained
against the following loss function (with θ being the network
weights):

LI (sI , aI ; θI ) = (YI − Q(sI , aI ; θI ))2, (11)

where YI is the “target” at learning step I , defined as

YI = rI + γ max
a

Q(sI+1, a; θ−
I ) (12)

with θ−
I being a set of target network parameters which are

synchronized with the “prediction” Q-network parameters
(the ones begin optimized for) θ−

I = θI every C steps, and
otherwise held fixed between individual θ updates. This can

be understood as a loss function that depends on two identical
Q networks, a prediction network and a target network, but
is only trained on the former. The gradient with respect to
the weights θ can then be written as (writing only the θ

dependence)

∇θI L(θI ) = [YI − Q(θI )]∇θt Q(θI ). (13)

We use the ADAM optimizer [36] to minimize the loss function.
A detailed description of the deep Q-learning framework we
have used can be found in Ref. [20].

In order to maximize exploration of the phase space, par-
ticularly at early stages of the learning, we have adopted
an ε-greedy selection scheme. Thus the chosen policy aI is
allowed to deviate from the optimal policy. That is, the op-
timal policy determined from the action-value function Q is
used with probability 1 − ε; otherwise the action is randomly
drawn from the action space with probability ε. This greedy
parameter is exponentially decaying in time, starting from
ε = 1, until it reaches a value of ε = 0.015. The reason for
decaying the greedy parameter is to prevent the swimmer
from prematurely narrowing down the state-action space. Dur-
ing the early episodes of the training, the policy is very far
from its optimum; therefore the swimmer needs to explore
the state-action space as much as possible to gain experience
interacting with the environment. Thus it is better to draw
random actions, rather than sticking to a specific policy. How-
ever, after a suitable training period, the policy is expected
to improve, and the swimmer should now favor the trained
policy, rather than a randomly chosen action. Note that we
always allow for a small probability ε of selecting a random
action, even though the policy is expected to converge to the
optimal one, since we aim to provide some room for possible
improvements of the current best policy.

Finally, we will consider two forms of reward, signed
rewards, in which the reward for segment I is computed
from the displacement of the swimmer R(TI ) = R(TI+1) −
R(TI ), and unsigned rewards, computed from the absolute
value of the displacements. Furthermore, since we consider
the three distinct tasks of swimming in the shear-flow (x),
shear-gradient (y), and vorticity (z) directions, the rewards
are given by rI = êμ · R = Rμ(TI ), in the signed case, and
rI = |Rμ(TI )|, in the unsigned case (êμ are the unit basis
vectors in the laboratory frame, μ = x, y, z). The latter type of
reward may be a natural choice for organisms in which there is
no preferential direction of motion, but where moving to a new
location may be advantageous. An example of this could be
the swimming of the marine bacterium Vibrio alginolyticus,
whose swimming pattern is a cycle of forward and back-
ward swimming, together with turns to change its direction
of motion [37]. Furthermore, we discretize the action space
and define an action to be an external torque Next = H n̂ that
the swimmer can activate, with H being the magnitude of the
torque and n̂ = m/|m| being a unit vector (mμ = −1, 0, 1).
Thus the size of the action space is given by the 33 = 27
possible rotation axes.

E. The system parameters

Throughout this paper we present our results in simulation
units, using as basic units of length, density, and viscosity
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FIG. 2. Learning performance for different tasks or rewards as measured by the rolling average of the total reward, normalized by the
maximum possible displacements per episode. From left to right: Learning to swim in the vorticity (z), shear-gradient (y), and shear-flow (x)
directions, using laboratory frame information and signed rewards, and finally, learning to swim in the vorticity direction using body frame
information and unsigned rewards. For each task, we train our swimmer using different sets of signals, which can include the orientation
quaternion q, translational velocity V , rotational velocity �, position R, and background flow vorticity ω, as specified in the plot legends.
The two previous actions (a) were included in all cases (not labeled). The subscript b in the legend of the last panel denotes signal variables
projected into the body frame. An averaging window size of 50 episodes was used. The shaded area represents the standard error in the mean.
The signed rewards are defined as

∑Ns−1
I=0 Rμ(TI ) = ∑Ns−1

I=0 (Rμ(TI+1) − Rμ(TI )), where I is the action or learning step and Ns is the total
number of action segments per episode. Likewise, the unsigned rewards are given as

∑Ns−1
I=0 |Rz(TI )| = ∑Ns−1

I=0 |Rz(TI+1) − Rz(TI )|.

the grid spacing  = 1, fluid density ρ f = 1, and viscosity
η = 1. The units of time and mass are ρ f ()2/η = 1 and
ρ f 

3 = 1, respectively. The radius of the spherical swim-
mer is σ = 5, and the size of our rectangular simulation
box is 32 × 64 × 32, with full periodic boundary con-
ditions along all dimensions. Other parameters used in the
SP simulator are the particle-fluid interface thickness ξ =
2, the particle density ρp = ρ f , and the magnitude of the
external torque H = 400η2/ρ f . The applied shear rate is
γ̇ = 0.04η/(ρ f 

2), which corresponds to a Reynolds number
Re ≈ 1. For most of the cases presented here, and unless
stated otherwise, the swimmer is set to be a puller with α = 2
and B1 = 0.1η/(ρ f ), corresponding to a particle Reynolds
number Re ≈ 6 × 10−2, comparable to that of E. coli in wa-
ter [38].

To further characterize our system, we introduce the fol-
lowing three dimensionless ψ parameters:

ψ1 =
2
3 B1
γ̇

2 Ly
, (14)

ψ2 = H/(πσ 3η)

γ̇ /2
, (15)

ψ3 =
2
3 B1Tepisode

Ly
. (16)

These measure the strength of the swimming in three natu-
ral ways: ψ1 is the ratio of the baseline swimmer speed to
the maximum shear-flow speed (twice the typical shear-flow
speed); ψ2 is the ratio of the active rotation rate of the swim-
mer to that induced by the shear flow; and ψ3 is the ratio of
the maximum total active displacement of a swimmer over one
episode, duration Tepisode, to the largest system size Ly. Unless
otherwise specified, our system parameters correspond to the
following: ψ1 
 5 × 10−2, meaning that the swimmer moves
slowly compared with the fluid speed; ψ2 
 6, meaning that

the swimmer can actively rotate faster than the rotation in-
duced by the shear flow, necessary for it to have meaningful
control of its orientation; and ψ3 
 20, meaning the swimmer
can explore regions with different shear gradients. The char-
acteristic angular rotation (per epoch) caused by the external
torque corresponds to H

πσ 3η
Tepisode 
 180 rad, such that the

agent can fully rotate �10 times during one episode. For the
learning parameters, we use a discount rate γ = 0.93, learning
rate ν = 2.5 × 10−4, and batch size Nb = 128, with a replay
memory size of NPmax = 105 and a greedy parameter ε with
decay rate k = 0.992 (see Supplemental Material Sec. IV [39]
for a discussion of the choice of decay rate). The neural net-
work consists of one input layer with the number of neurons
equal to the number of state-defining variables, with three
hidden layers of 100 neurons each, and one output layer with
27 neurons, corresponding to the size of the action space.
Finally, a learning episode consists of Ns = 2 × 103 action
steps of M = 10 simulation steps each. The precise numerical
values for all our parameters can be found in the Supplemental
Material, Sec. I [39].

III. RESULTS AND DISCUSSION

One of the main challenges of RL is defining an appropri-
ate state. Gunnarson et al. [40] have shown that in unsteady
two-dimensional flow fields, different sets of environmental
cues lead to significantly different levels of performance for a
given task. Here, to define the state, we use combinations of
the swimmer’s laboratory frame configuration, i.e., position R
(nR

d = 3), translational velocity V (nV
d = 3), rotational velocity

� (n�
d = 3), and rotation quaternion q (nq

d = 4), together
with the background flow information, in particular, the flow
vorticity ω = ∇ × u (nω

d = 3). For simplicity, we encode
the orientation using quaternions q = (cos θ/2, sin θ/2n), de-
fined by rotating the laboratory frame around a unit vector n,
by an angle θ . The number of degrees of freedom (inputs)
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FIG. 3. Schematic representation of a spherical microswimmer
that measures (local) body frame information while navigating a
zigzag shear flow. Here, x′, y′, and z′ are the principal axes in the body
reference frame, with ê = z′ being the swimming direction. We con-
sider a swimmer with six sensors distributed across its surface, each
one aligned with one of the principal axes. The stress sensors occupy
spherical caps (highlighted) with an area of π/2σ 2(1 − cos 30) ≈
0.21σ 2 each. The swimmer is assumed to have a single sensor (eye)
that can sense a signal (light), with a location specified by the unit
vector n̂e (green arrow). The signal source can lie in any direction n̂L

(magenta arrow), but here we illustrate the case in which it is aligned
with the shear-gradient direction (magenta arrow).

required to specify each of the state variables � is given by
n�

d (� ∈ {R,V,�, . . .}). Taken together, these sets of signals
provide a complete specification of the swimmer’s current
configuration. We also include the swimmer’s previous two
actions, denoted a in all examples, with the goal of improving
the convergence of the policy. Such limited memory may be
accessible, even in microorganisms [41]. However, it turns
out that this memory term is not essential for the learning
(Supplemental Material Sec. V [39]). Figure 2 shows the
rolling average of the normalized total rewards for the differ-
ent swimming tasks. The normalization constant is defined as
the maximum possible displacements per episode, calculated
as (2/3B1)Tepisode.

For the tasks of swimming in the vorticity and shear-
gradient directions, it is sufficient for the swimmer to receive
orientation information, via the rotation quaternion q, along
with the memory of the last two actions taken, in order to
develop an efficient policy. We see that the signal variable
combinations that include the orientation q can approach
an optimal policy, while those that do not show inferior

performance. In contrast, for the task of swimming in the
flow direction, the swimmer was unable to reliably perform
the task. In these cases, however, swimmers given position
and orientation information were able to outperform all other
swimmers (as might be expected), even if the overall score
was still poor (relative to the other tasks). As shown in Fig. 2
(flow direction), swimmers with this privileged information
achieve a reward that is significantly higher (
 0.4) than that
achieved by those without the information (
 0) and can
actually learn to swim in the flow direction even though the
performance is still inferior compared with the other two
tasks. A detailed quantitative analysis of the performance ob-
tained for this task can be found in the Supplemental Material,
Sec. II [39]. This (relatively) poor performance is associated
with the fact that the swimmer is unable to learn how to
align itself with the x-y (shear) plane; otherwise it would be
able to locate the position (height) of maximum flow and
remain there in order to maximize its reward. The last panel
of Fig. 2 shows the results obtained when using unsigned
rewards, defined as rI = |Rz(TI )| = |Rz(TI+1) − Rz(TI )|, for
the task of swimming in the vorticity (z) direction. The signals
used for this set of simulations are different (compared with
learning with signed rewards), as the swimmer only needs to
perceive how it is orientated relative to the flow vorticity ω,
as measured by the angular velocity in the body frame �b,
in order to develop an efficient policy. While the signal from
the background vorticity also provides information about the
orientation of the swimmer, the performance in this case is not
as good as that obtained when using the swimmer’s rotational
velocity.

We have demonstrated the ability of idealized microswim-
mers to efficiently perform swimming tasks using laboratory
frame information. We have also shown that information on
the body frame rotational velocity can be used to efficiently
swim in the (unsigned) vorticity direction, since it can give
a hint as to the axis of rotation, which itself can be related
to the alignment in the vorticity direction. However, active
microorganisms in nature may not have such privileged in-
formation. Typically, they can only obtain certain body frame
signals. A good example is that of copepods, which are able to
sense the proximity of predators through the induced bending
patterns of their setae, hairlike structures on the surface [7].
Recent work on RL for swimming in nonuniform flows has
included local signals, e.g., local fluid strain rate and slip
velocity, but the full hydrodynamic effects have not been
taken into account [14,42,43]. Furthermore, these studies have
only considered the task of swimming against gravity. Given
that swimmers can be expected to sense local surface stress
signals, we train a swimmer to accomplish a similar suite of
swimming tasks to those discussed before (i.e., swimming in
the shear-flow, shear-gradient, and vorticity directions), but
using a set of physiologically reasonable body frame signals.
First, the swimmer is assumed to be able to detect surface
stresses, through the hydrodynamic forces exerted by the
surrounding fluid on the swimmer, denoted as τ i (nst = 3).
Here, we assume that the spherical swimmer has six surface
sensors (0 � i < 6), located on the antipodal points at the
intersection of the three principal body axes (see Fig. 3).
Each sensor is assigned a surface area of 0.21σ 2, where σ

is the particle diameter. These sensors are given a finite size in
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FIG. 4. The rolling average of the normalized total rewards, with an averaging window of 50 episodes, for swimmers tasked with migrating
along different directions μ, under light sources shining along a direction β (μ, β = x, y, z). Columns represents the reward direction μ, and
rows represent the signal direction β. The total rewards are defined in terms of either signed displacements

∑
I Rμ(TI ) (μ = β) or unsigned

displacements
∑

I |Rμ(TI )| (μ �= β). Here we consider two sets of input signals, {τ i, n̂e · n̂L, (n̂e × �) · n̂L} and {τ i, n̂e · n̂L}, with the eye’s
location at � = 30◦.

order to average the surface stress derived from the numerical
simulations. Furthermore, we also assume that this swimmer
has a sensor (eye) located on its surface, at an angle � from
the swimming direction ê. This sensor can be considered to
detect visual cues (i.e., light), via the signal n̂e · n̂L (nst = 1).
This might, therefore, serve as a model for a microorganism
capable of migrating towards or away from light sources. We
consider cases in which the light can come from one of three
directions: parallel to the flow direction (x), parallel to the
shear-gradient direction (y), or parallel to the vorticity direc-
tion (z). In addition, we also consider the case in which the
model microorganism has the ability to sense the “flashing” of
the light due to its relative reorientation. This flashing signal
is encoded as (n̂e × �) · n̂L. We utilize these as state-defining
parameters and repeat the same Q-learning procedure used
previously, in order to obtain the optimal policy for each of
the three swimming tasks, i.e., swimming in the shear-flow,
shear-gradient, and vorticity directions.

Figure 4 shows the learning results for such a model swim-
mer. Each column of panels in this figure represents a reward
direction, i.e., the desired swimming direction, and each row
represents the direction of the signal source. In cases where
the desired or target swimming direction is aligned with the
signal direction, we use a signed reward

∑
I Rμ(TI ); other-

wise we use the corresponding unsigned reward
∑

I |Rμ(TI )|.
The rationale behind this is that the swimmer is able to distin-
guish whether it swims towards or away from a light source,
hence the use of signed rewards in that case. However, while
there may be an evolutionary advantage for the swimmer
to move from its present location (e.g., to locate additional
food sources), in the absence of any external signals, there
is no reason to choose any particular (signed) direction. In-
spired by the fact that the eye location of particular biological
microorganisms, e.g., Chlamydomonas, is at 30◦ away from
the front [44], we consider a microorganism-inspired swim-
mer with � = 30◦. This swimmer can perceive three types
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FIG. 5. The rolling average of the normalized total rewards, with an averaging window of 50 episodes, for visually aware swimmers tasked
with migrating along different directions μ, under light sources shining along direction β. We consider swimmers with eyes located at � = 0◦,
30◦, and 90◦, using {τ i, n̂e · n̂L} as the state-defining variables.

of signals: surface stresses, light alignment, and light rota-
tion (flashing). The results using these signals are found to
be broadly similar to the results for swimmers able to use
laboratory frame information; see Fig. 2. In Fig. 4, two differ-
ent combinations of input signals were studied, i.e., {τ i, n̂e ·
n̂L, (n̂e × �) · n̂L} and {τ i, n̂e · n̂L} alone. One can see that
there is little qualitative difference between these two sets of
parameters. Thus the surface stresses and the alignment with
the light provide sufficient information to allow for efficient
swimming. It is somewhat surprising that the swimmer learns
to swim so well in the vorticity and shear-gradient directions.
However, as for the swimmers with access to laboratory frame
information, these swimmers are still unable to efficiently
swim with the shear flow. We consider that this is due to the
difficulty, for an unconstrained agent in 3D, of identifying
the appropriate rotation that would lead it to the high-flow
regions. Simply put, there is not enough sensory information
to narrow down the rotational degrees of freedom to allow

the swimmer to perform this task efficiently. To test this hy-
pothesis, we constrained an agent to only be able to orient
within the shear-flow–shear-gradient (x-y) plane, resulting in
effective 2D motion with one rotational degree of freedom.
We found that this restriction allowed the agent to efficiently
target the high-flow regions, strengthening our argument that
it is the excessive degrees of freedom, and lack of information,
associated with rotating in 3D that make this such a difficult
task in general. We further conducted an auxiliary simulation,
where the agent was rewarded for staying oriented in the x-y
plane, to test whether the agent could bypass this issue by first
learning to move in the x-y plane and only then learning how
to reorient within it. We found that the agent still struggled to
target the x-y plane, even for this simpler task. The details are
available in the Supplemental Material, Sec. VI [39].

To clarify what role, if any, is played by the positioning
of the eye, we have compared the learning efficiency for
different locations, � = 0◦, 30◦, and 90◦, with {τ i, n̂e · n̂L}
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FIG. 6. The rolling average of the normalized total rewards, with an averaging window of 50 episodes, for different types of swimmers,
with eyes located at � = 30◦, using {τ i, n̂e · n̂L} as the state-defining variables. Here we consider three distinct swimmer types: puller (α = 2),
neutral (α = 0), and pusher (α = −2).

as the input signals. The results are shown in Fig. 5, where
a similar performance is obtained in all cases. Thus, for the
tasks considered here, the choice of the eye’s location seems
to be relatively unimportant.

Finally, we also compare the performance for different
swimmer types by considering the squirming parameters α =
−2 (pusher) and α = 0 (neutral), in addition to the puller
studied in the rest of this paper. The plots in Fig. 6 show
the results obtained when using the surface stresses and light-
alignment signals {τ i, n̂e · n̂L}. Here we found a surprising
result for the task of swimming in the shear-gradient direc-
tion, in which there are clear differences between the policy
efficiencies developed under different swimming modes. The
pushers achieve the best performance, followed by neutral
swimmers, with pullers being the least efficient. This dis-
tinction between swimming modes has also been observed
in a confined system [45,46]. This results from the fact that
each type of swimmer perceives the surrounding flow field
differently (see Supplemental Material Sec. III [39]).

IV. CONCLUSIONS

We have performed direct numerical simulations, using the
smoothed profile method, coupled with a deep reinforcement
learning algorithm to investigate the learning performance
of a swimmer under an applied zigzag flow. We considered
three different swimming assignments, in which the swimmer
is tasked with moving in the shear-flow (x), shear-gradient
(y), or vorticity (z) directions. We demonstrated how different
state information provided to the swimmer during the learning
could result in vastly different performance. We studied the
learning in cases where the swimmer receives either labora-
tory frame or body frame (local) variables. For the former,
an efficient policy for migrating in the vorticity and shear-
gradient directions emerged for swimmers given only their
instantaneous orientation and the memory of the last two ac-
tions. However, for the task of swimming in the flow direction,
the swimmer was unable to develop an efficient policy, mean-
ing it could not target regions in which the flow was maximal.
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For swimmers more closely inspired by microorganisms, e.g.,
copepods, we assumed that the swimmer has six force- or
stress-sensing channels distributed on its surface, allowing
it to sense relative differences with the local fluid velocity.
This swimmer was also assumed to possess a sensor, e.g.,
a crude eye or photoreceptor that can sense light. Thus the
model microorganism can also measure its alignment relative
to the direction of a light source, and perhaps also the flashing
of this light due to its relative rotation. We found that pro-
viding hydrodynamic forces, along with the light-alignment
signal, was sufficient to develop efficient strategies to perform
the swimming tasks. In particular, we observed similar effi-
ciency to the case of swimmers trained on (global) laboratory
frame information. Additionally, we found that the location
of the eye was inconsequential to achieve these swimming
tasks, with this particular flow field. We also investigated
the differences in learning as a function of type of swim-
mer, by comparing pullers, pushers, and neutral swimmers.
The pushers outperform the other two modes, with neutral
swimmers performing better than pullers. This distinction in
the performance among different swimming types arises from
the different ways the swimmers sense the surrounding flow
field. We hope that our work may help motivate future studies
on efficient swimming strategies for active particles and also

further our understanding of model biological swimmers. One
of the remaining challenges to address relates to our use
of an external torque to define the action of the swimmer.
Thus, while our swimmers are force-free, they are not torque-
free. This might be reasonable for certain artificial swimmers,
but most biological microswimmers are both force-free and
torque-free. In future work we will consider learning under
torque-free conditions.
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