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What promotes smectic order: Applying mean-field theory to the ends
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Not every particle that forms a nematic liquid crystal makes a smectic. The particle tip is critical for this behav-
ior. Ellipsoids do not make a smectic, but spherocylinders do. Similarly, only those N-CB alkylcyanobiphenyls
with sufficiently long (N � 8 carbons) alkane tails form smectics. We understand the role of the particle tip in
the smectic transition by means of a simple two-dimensional model. We model spherocylinders by “boubas”
with rounded tips, and ellipsoids by “kikis” with pointed tips. The N-CB molecules are modeled by a small body
with a polymer tail. We find that rounded tips and longer polymer tails lead to a smectic at lower densities by
making the space between layers less accessible, destabilizing the nematic.
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I. INTRODUCTION AND FORMULATION

Onsager recognized that the geometry of particles affects
the structure of their ordered phases [1]. The most remarkable
thing about his insight is that the nematic phase is unremark-
able: any fluid of sufficiently anisotropic particles will form a
nematic liquid crystal, where the particles are homogeneously
distributed but have a preferential orientation. However, not
all such particles form a smectic-A phase, a phase with the
same orientational order but with a periodic density modula-
tion in the direction of alignment. This was noticed by Frenkel
[2,3], who considered a system of parallel ellipsoids. Smectics
have strong orientational order, so the particles may be as-
sumed parallel without loss of generality. He argued that this
system had no smectic phase because it could be mapped to a
system of hard spheres in a way that preserves the thermody-
namic properties by simply rescaling the lengths and momenta
parallel to the ellipsoids. Hard spheres are only observed to
exist in fluid or crystalline phases, so the ellipsoids can have
no smectic phase.

This argument is extremely elegant, but leaves some open
questions; what if the particle shape is only approximately
an ellipsoid so that the rescaling does not produce spheres?
Are ellipsoids the only elongated particles that miss the smec-
tic phase due to this symmetry? Spherocylinders have been
observed in simulations to make smectics [4]; what do they
have that those particles without smectic phases do not? These
questions have a long history and have been tackled using
density functional theory, lattice models, computer simula-
tions, or combinations of all these methods [5–15]. These
often result in involved analyses from which the fundamen-
tal differences between different particle shapes may not be
apparent.

It is useful to look for another instance of two molecules
with similar structures where one has a smectic phase but the
other does not, so that similarities to the case of ellipsoids
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and spherocylinders can be sought. Such an example ex-
ists and is well known to experimentalists: N-CB-type
alkylcyanobiphenyls [16,17]. The precise structure of these
molecules is shown in Fig. 1, but it is most useful to think
about them as a small “body” to which a “tail” made of
N links is attached. When N = 8, the molecule is a typical
thermotropic liquid crystal former, and has both a nematic
and a smectic-A phase. With N = 5, however, the smectic is
absent (indeed, for N < 8 there is no smectic, though most
experiments focus on 5-CB). The common difference between
the particles in the N-CB example and Frenkel’s case is the
structure at their ends; their “tips.” This points to the key
question we would like to answer: why are the particle tips
important for the formation of a smectic phase? We will argue
here that the nematic phase is suppressed by rounded tips
allowing the smectic phase to intervene. This effect is similar
to the situation found in [18] where the introduction of small
platelets suppressed the uniaxial nematic phase allowing for
the onset of the biaxial nematic. In short, when the mesogen
tips are pointed, a test mesogen can more easily be inserted
between existing smectic layers compared to a round-tipped
mesogen. As a result pointy mesogens more easily fill in
the space between smectic layers resulting in the nematic
phase.

We tackle this problem by means of a toy model, which
captures the essential physics but is simplified enough to
be understood fully. For this model to be satisfactory and
consistent, it should be able to describe the isotropic-nematic
(I-N) transition and nematic-smectic (N-S) equally well. An
(almost) exactly solvable model for the I-N transition was
developed by Onsager [1], and we might start there for in-
spiration. Onsager’s approach relied on the virial expansion
which, fortuitously, could be truncated. This is because, for
highly anisotropic particles, the I-N transition happens at
rather low concentrations. For the N-S transition this is not the
case, and the virial expansion breaks down [19]. Hence, we
must take a significantly different starting point for our model
that can incorporate interactions between large numbers of
molecules without appealing to the virial expansion.
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FIG. 1. The chemical structure of the N-CB molecules (specifi-
cally 8-CB) is given above our crude model for it. We think of these
molecules as having a small body of size w0 and a polymer tail of
length lp.

Recall the bouba-kiki effect where, across cultures and lan-
guages, the word “bouba” is associated with rounded shapes
and “kiki” with pointed shapes [20–22].1 We will argue that
nature has a similar bias and expresses it by allowing boubas
to form smectics more easily than kikis. To keep the model as
simple as possible, we restrict our attention to two dimensions
and simplify the particle structures. We consider “kikis” in-
stead of ellipsoids, and “boubas” instead of spherocylinders.
Both the bouba and the kiki are of total length l , and have
rectangular midsections with widths w0, but their tips are
different: The boubas have semicircular tips, of radius w0/2,
whereas the kikis have triangular tips whose height is also
w0/2. These are sketched in Fig. 2. We model the N-CB
molecules, with the same simplifying spirit, as particles with
a small body from which a flexible polymer tail of length lp

emerges. For the cases of interest, 5-CB and 8-CB, the tail is
relatively short, since it only includes a few repeating units.
This makes the flexible polymer a crude model for the tail, as
it assumes a very large number of monomers. Another simpli-
fying but crude approximation we make is to ignore the size
of the body, so that it has no excluded volume. Nevertheless
this should not change the physics at the particle tips, which
is our focus.

Our approach is built on a construction of the free energy,
which considers one test particle in a given background. By
supposing that the dominant interaction between the particles
is their excluded volume, we may understand the background
as restricting the position of the test particle to a particular
region. The size of this region controls the free energy. This
allows interactions between large numbers of particles to be
accounted for qualitatively in much the same way as success-
ful tube theories in polymer physics [23] or free volume theory
[24]. We briefly outline this construction before showing how
it is consistent with virial theory for a simplified model of
the I-N transition. We then apply it to the N-S transition for
boubas and kikis and, subsequently, N-CB molecules. Our
calculations demonstrate that boubas form smectics at lower
densities than kikis, because the tip geometry destabilizes the
nematic phase. The same conclusion applies to the N-CB

1This effect was first realized by Köhler for shapes named
“maluma” (rounded) and “takete” (pointed), although it is most fa-
mous now with the names “bouba” and “kiki.”

FIG. 2. Sketches of the particle shapes we consider. On the left is
a bouba, with a rectangular midsection of width w0 and semicircular
tips of radius w0/2. The kiki is on the right, whose midsection is the
same as the bouba, but whose tip is a triangle of height w0/2. Both
particles are of total length �.

particles with long tails; (N + 1)-CB makes a smectic at a
lower density than N-CB.

In this missive, we employ a general construction for the
free energy that has been used before to determine the free
energy of polymers subject to topological constraints [25,26]:
posit a test particle in state T placed in a background in the
state B. Later we will give specific examples of these states;
for example, one can imagine T to indicate if the test particle
is in a “nematic state” or a “smectic state.” Assuming that the
test particle is confined to a given region by the background
allows us to determine the probability of realizing the test
particle in some state, given the state of the background. We
write this conditional probability as P(T |B). The probability
of realizing the background state, P(B), determines in what
phase the system lies. For the purposes of our construction,
we suppose it is known and is determined by minimizing the
free energy.

We calculate the free energy per test particle from Gibbs’s
definition

βF =
∑
B

∑
T

P(T ∩ B) log P(T ∩ B) (1)

where β = (kBT )−1 is the inverse temperature, P(T ∩ B)
is the probability of realizing T and B, and the sums run
over all possible states. Applying the identity P(T ∩ B) =
P(B)P(T |B) and noting that

∑
T P(T |B) = 1 we find

βF =
∑
B

P(B) log P(B) +
∑
B,T

P(B)P(T |B) log P(T |B).

(2)
The first term is understood as the free energy of the back-
ground, βFB, and the second as the free energy of a test
particle in a given background, βFT (B), averaged over all
realizations of that background. The total free energy of the
test particle is

βF = βFB + 〈βFT 〉 (3)

with angle brackets denoting an average over the background.
This construction is general and can be applied to three- and
two- dimensional systems equally well. Any approximations
or simplifications appear in the choices of the states, T or B.
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II. ISOTROPIC-NEMATIC TRANSITION

Let us demonstrate how this construction can be used
to study liquid crystal transitions by applying it to a sim-
plified model of the I-N transition [19]. This involves a
two-dimensional gas of rods (rectangles) which can only be
oriented vertically or horizontally. The rods interact exclu-
sively via their excluded volume, and it is supposed that each
accesses every allowed position with equal probability. In this
model, the isotropic phase is when the rods are vertical or
horizontal with equal probability and the nematic phase is
when there is a bias one way or the other. Zwanzig studied, via
a virial expansion, a three-dimensional version of this model
where the rods can only point along the coordinate axes [27];
it can be specialized to two dimensions where the analysis is
relatively simple [19]. Here we demonstrate that our approach
yields the same results as the more traditional approach but it
also allows us to consider densities beyond which the virial
expansion fails.

The first step is to define the test particle and background
states. The state of the test particle is determined by both its
position and orientation, so we write T = (T, r). Here r is
its position and the variable T indicates if it is vertical (V )
or horizontal (H). For the background, we suppose that every
particle is in the same orientation, given by the variable B. To
completely specify the state, we then need to keep track of the
positions of all the particles {ri} and we write B = (B, {ri}).

Next we need the conditional probability P(T |B). Given
our assumptions, we have

P(T |B) = αT �TB(r, {ri}). (4)

Here �TB(r, {ri}) is a unit indicator function which picks out
the allowed positions r of a test particle with orientation T
in a background of particles with orientation B and positions
{ri}. The constant αT , which depends on the test particle ori-
entation, is determined by ensuring P(T |B) is appropriately
normalized. If the probability of the test particle being vertical
is p, then

P(V, r|B) = p

�VB
�VB(r, {ri}) (5a)

and

P(H, r|B) = 1 − p

�HB
�HB(r, {ri}) (5b)

for the two possible orientations and

�TB({ri}) =
∫

dr �TB(r, {ri}) (6)

are normalization factors. Using these expressions we can
directly compute βFT (B) from (2):

βFT (B) = βF0(p) − p log �VB({ri})

− (1 − p) log �HB({ri}) (7)

where βF0(p) = p log p + (1 − p) log(1 − p) is the standard
entropy of mixing.

What do we choose for P(B)? The state B = (B, {ri}) is
realized with probability P(B) = ϕ(B)ψ ({ri}), with ϕ being
the orientational probability and ψ the probability of the back-
ground particle positions. Both are taken to be independently

normalized. Next we make the “mean-field-like” approxi-
mation to say that the probability of the background being
vertical is the same as that probability for the test particle,
i.e., ϕ(V ) = p. The same is of course true for the probability
of being horizontal. Putting this into (2) the total free energy
as a function of p is

βF (p) = 2βF0(p) − p2〈log �VV〉 − (1 − p)2〈log �HH〉
− p(1 − p)(〈log �VH〉 + 〈log �VH〉) (8)

where �VV is the accessible area to a vertical test particle in
a vertical background, �VH is that for the vertical test particle
in a horizontal background, and so forth. The angle brackets
denote averaging over all positions of the background parti-
cles. We note here that, if a continuous range of orientations
had been considered, the natural generalization of this formula
would have been obtained.

Equation (8) is simplified greatly by noting symmetries of
the accessible areas, namely,

�VV = �HH ≡ �‖ and �VH = �HV ≡ �⊥. (9)

It follows that the free energy is, up to a constant,

βF (p) = 2βF0(p) − 2p(p − 1)[〈log �‖〉 − 〈log �⊥〉]. (10)

Note the factor of 2 appearing in front of the entropy of the
mixing term, βF0. This arises because, by artificially splitting
the system into the test particle and the background, and
assuming all of the background particles are identical, we are
essentially considering two separate particles. As we shall see
shortly, this factor of 2 is correct and leads to the same result
as the virial approach.

To explore the I-N transition, we must find the equilibrium
probability of the system being vertical, p∗, by minimizing
F (p):

βF ′(p∗) = 0 = 2 log
p∗

1 − p∗ − 2(2p∗ − 1)	S (11)

where 	S = 〈log �‖〉 − 〈log �⊥〉. Evidently, when the two
accessible areas, �‖ and �⊥, are both equal the only solution
is p∗ = 1/2. This is always a solution but, depending on
	S, this is not the minimum of the free energy. The difficult
part of this approach is computing 	S as a function of the
density of the system. We will discuss this in more detail
for the N-S transition but for now, guided by the knowledge
that the I-N transition occurs at low density, we make an
approximation valid in that limit. Namely, we employ free
volume theory. The test particle may access the whole area
of the system, A, except those parts where it overlaps with
any background particle. For sufficiently low densities, the
background particles all independently exclude some area that
does not depend on their position. Denoting this excluded area
as aexc

‖,⊥ in either the parallel or perpendicular case we may
write �‖,⊥ = A − Naexc

‖,⊥, and it follows that, for small area
density ρ = N/A,

	S = log

(
1 − ρaexc

‖
1 − ρaexc

⊥

)
≈ ρ(aexc

⊥ − aexc
‖ ). (12)

Using this in (10) yields the same equation for p∗ as would be
derived using Onsager’s virial expansion approach [19]. This
demonstrates the consistency of our construction with more
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FIG. 3. Sketches of the smectic and nematic phases in our model.
In both panels the solid and dashed sets of lines are shown. In panel
(a) the solid lines are preferred to the dashed lines by the particles,
i.e., p �= 1/2. This is the smectic phase. Panel (b) has the solid and
dashed lines occupied equally, p = 1/2. This is the nematic.

traditional approaches for studying liquid crystal transitions.
The advantage of our method is that the free energy is written
in terms of the area accessible to a single particle. This is
relatively straightforward to calculate (or estimate) even for
concentrated systems where the virial expansion breaks down.
As we shall see, this allows us to study the N-S transition in
much the same way as the I-N transition.

III. NEMATIC-SMECTIC TRANSITION

An appealing aspect of our treatment of the I-N transition
was that the continuous range of orientations a real particle
can access was replaced by two discrete options: vertical and
horizontal. To get this to carry over to the study of the smectic
phase, we want to split the continuous range of positions into
two distinct choices.

The defining feature of the smectic phase is that the parti-
cles lie in distinct layers with a given separation. Let us say
that these layers are all parallel to the x axis and are separated
by h. If our particles have total length �, then we must have
� < h < 2�, for the layers to make sense. By analogy to the
vertical-horizontal two-state model of the I-N transition, let
us suppose that there are two sets of such layers, “solid” and
“dashed.” The spacing between layers of the same type is h,
but the layers are interleaved so that the distance between a
solid and a dashed layer is h/2. The particles can be placed
on either a solid or a dashed layer. Our goal is to find the free
energy as a function of p, the probability that a particle occu-
pies a solid layer, and to determine the equilibrium value p∗.
When p∗ �= 1/2 we have a smectic-A phase, and we identify
the state when p∗ = 1/2 as the nematic. Why should this be
the case when there is still vertical layering? To see this, let us
consider the definition of the smectic order parameter, S [2].
The density of the particles as a function of y can be expanded
as a Fourier series:

ρ(y) − ρ̄ =
∞∑

n=1

ρn cos (2πny/h + δn) (13)

where the n = 0 mode defines the average density, ρ̄; there is
an arbitrary phase per mode, δn; and h is the aforementioned
layer spacing. The coefficient of the n = 1 mode defines the
smectic order parameter, S ≡ ρ1. The nematic and smectic
phases in this model are sketched in Fig. 3. When the solid

FIG. 4. An example state of the test particle (picked out in red)
and the background. Here, the test particle is in state T = (D, x),
sitting on a dashed layer. The background is in state B = (S, {xi}),
with all particles on solid layers. The set of coordinates {xi} denotes
the x positions of the background particles. Only a selection of the
background particles closest to the test particle is shown.

and dashed layers are occupied with equal probability it is
clear that

ρ(y) − ρ̄ = ρ2 cos
(

4π
y

h
+ δ2

)
+ · · · , (14)

hence S = 0 identically in this case. While there is now a new
smectic with half the periodicity of the target phase, that is not
the smectic for which we are looking. This is why we identify
this as the nematic phase, even though there is a “higher
level” layered order present. This situation is likewise true for
the two-state model of the I-N transition: when vertical and
horizontal orientations are equally likely, the nematic order
parameter vanishes, but there is still fourfold orientational
order in the system.

We construct the free energy as a function of p using the
same test particle and background construction as before. The
state of the test particle, T = (T, x), tells us both whether it
sits on a solid or dashed line and its x position on that line and
T = S when it is on a solid line and T = D when on a dashed
line. We assume that all allowed x positions of the test particle,
not overlapping with a background particle, are equally likely.

For the background state, B, all of the particles occupy
the same set of layers; either they are all on solid or all on
dashed. We also need to keep track of the x positions of all
of the particles. This may appear intimidating, but notice that
we need only keep track of those particles on layers which
interact with the test particle, because all of the others will
drop out of the calculation. We refer to the set of x coordinates
for these particles by {xi}; the range of the index i depends on
with how many layers the test particle interacts. Again B = S
for solid and B = D for dashed. Furthermore, we may assume
that each layer of the background has length L and is occupied
by N particles. We shall call the line density on each layer
ν = N/L. All together, we write B = (B, {xi}). In Fig. 4 we
sketch an example state of the background and test particle.

The conditional probability is

P(T |B) = p(T ) �TB(x, {xi})

�TB({xi})
. (15)

Here, p(T ) is the probability of the test particle being on a
solid T = S line or dashed T = D line and �TB(x, {xi}) is a
unit selector function picking out when the test particle at po-
sition x does not overlap with any of the background particles.
This latter function determines the “accessible length” for the
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test particle and provides the proper normalization:

�TB({xi}) =
∫ ∞

−∞
dx �TB(x, {xi}). (16)

Define p(T = S) = p for the probability of the test particle
being on a solid line so p(T = D) = 1 − p. Applying the
same mean-field approximation as we did for the I-N tran-
sition we choose p(B = S) = p and p(B = D) = 1 − p and
follow the steps that led to (8) to obtain

βF (p) = 2βF0(p) − p2〈log �SS〉 − (1 − p)2〈log �DD〉
− p(1 − p)[〈log �SD〉 + 〈log �SD〉]. (17)

Similar to Eq. (8), this formula generalizes naturally when a
continuous range of y positions for the particles is allowed.

Similar symmetries to (9) apply due to the equivalence
of shifting the whole system along y by h/2 (solid-dashed
duality):

�SS = �DD ≡ �o, �SD = �DS ≡ �x. (18)

Up to a constant, the free energy is

βF (p) = 2βF0(p) − 2p(p − 1)[〈log �o〉 − 〈log �x〉]. (19)

Note how similar this is in structure to (10) for the I-N transi-
tion. Hence, the equation determining p∗ is precisely the same
as (11):

log
p∗

1 − p∗ = (2p∗ − 1)	S (20)

where we have defined 	S = 〈log �o〉 − 〈log �x〉. We see
that when 	S > 2 a smectic phase forms with p∗ �= 1/2. So
the problem all comes down to computing 	S for the boubas
and kikis and the N-CBs—the key here is that we do not
need to rely upon the low-density limit. In the following we
will estimate 	S directly in the spirit of the Tonks gas [28].
Note that 	S is a function of the layer spacing h, the density
on each layer ν, and the average density ρ̄ = number/area =
N/(Lh) = ν/h. Our aim is to show that boubas undergo a N-S
transition at a lower density than kikis, and to elucidate the
difference that the tip shape makes. For the N-CBs, we would
like to show that the larger N is, the lower the density at which
the smectic forms. We do not aim to precisely determine the
phase boundary in any case, which would require a more
sophisticated method.

A. Boubas versus kikis

The whole calculation boils down to computing 〈log �o〉
and 〈log �x〉. In the first case, the test particle only interacts
with those background particles on its own layer, because of
the restriction h < 2�. This also means that the result will
be identical for boubas and kikis, because the tip geometry
is irrelevant when interacting with mesogens on the same
layer. The starting point is an expression for �o. Let x2 be
the distance between the centers of the closest background
particle to the left and right of the test particle. The accessible
length is then simply

�o = x2 − 2w0, (21)

FIG. 5. A sketch of the test particle (in red) on a solid layer,
when the background particles are also all on solid layers. The two
background particles closest to the test particle are indicated. These
two are separated by a distance x2. Each excludes a length of w0 to
the test particle, so that the accessible length to it in this configuration
is �o = x2 − 2w0.

because each background particle excludes a length w0, as
shown in Fig. 5. So, we must compute

〈log �o〉 =
∫

dx2 P(x2) log(x2 − 2w0), (22)

where P(x2) is the probability of realizing the distance x2.
Each layer is a Tonks gas [28], a one-dimensional gas of finite
sized particles interacting only via excluded volume. The dis-
tance x2 is the next-nearest-neighbor distance for such a gas,
and its distribution P(x2) was calculated by Tonks. This allows
us to explicitly calculate (22). This is done in Appendix A, but
here we make an approximation which simplifies our analysis,
but does not change the outcome. The approximation replaces

〈log �o〉 → log〈�o〉 = log (2/ν − 2w0), (23)

where we have used Tonks’s result 〈x2〉 = 2/ν.
Now we turn our attention to 〈log �x〉. Once again we shall

replace this with log〈�x〉, but the complete calculation is in
Appendix A. In this case, there are no background particles
on the same layer as the test particle. However, the occupied
layer above is only vertically separated from it by h/2, so it
may interact with that layer and it likewise interacts with the
layer beneath. Let us refer to the closest background particles
on the left and right as xL and xR, respectively. We supply these
with the superscripts a or b to indicate if they come from the
layer above or below the test particle so that xa

L is the position
of the closest particle on the layer above the test particle to its
left and so on. Now, we can write �x as

�x = min
i∈(a,b)

x j
R − max

i∈(a,b)
xi

L − 2w(h) (24)

so that the absolute left and right limits for the test particle
are set by the background particles closest to it. The function
w(h) is the length excluded by the particle, its effective width,
which must be a function of h because of the shape of the
tip. Note that the function w(h) is different for different tip
shapes. This expression requires us to consider the four possi-
ble arrangements of background particles. One example is for
the closest on the left to come from the layer above and that on
the right to come from the layer below. In this situation if we
move from all the way to the left to all the way to the right, we
encounter the background particles from different layers in the
following order: below, above, below, above. This situation
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FIG. 6. The red test particle sits on a solid layer in a background
of particles on dashed layers. The four closest background particles
to the test particle are shown: two on the layer above and two on
the layer below. Using the conventions of Eq. (25), this is the con-
figuration (baba). Because of the shape of the tips, the background
particles exclude a length of w(h) < w0. The length accessible to the
test particle is �x , as given in (25d).

is sketched in Fig. 6. We shall refer to this configuration as
(baba), and all others accordingly. The accessible lengths in
each case are

(abab) → �x = xa
R − xb

L − 2w(h), (25a)

(abba) → �x = xb
R − xb

L − 2w(h), (25b)

(baab) → �x = xa
R − xa

L − 2w(h), (25c)

(baba) → �x = xb
R − xa

L − 2w(h). (25d)

By symmetry, all four of these situations are realized with
equal probability, so that the average 〈�x〉 over all realizations
of the background is

〈�x〉 = 1
4

[
2
〈
xa

R − xa
L

〉 + 2
〈
xb

R − xb
L

〉 − 8w(h)
]
. (26)

The angle brackets here denote averaging over all positions
xa,b

R,L . Notice that the combinations xa,b
R − xa,b

L are both the
nearest-neighbor distance in the Tonks gas, x1. The average
of this is 〈x1〉 = 1/ν so that

log〈�x〉 = log [1/ν − 2w(h)]. (27)

We now have an expression for 	S, and the condition for a
smectic phase is

	S = log 2 + log

(
1 − νw0

1 − 2νw(h)

)
> 2. (28)

This can be cast as a condition on w(h):

2w(h) >
2

e2
w0 + 1

2ν
(e2 − 2) (29)

or, assuming that ν is relatively large, a looser condition is
2w(h) � w0. This is the result of the more detailed analysis
in Appendix A and is understood as comparing the length
excluded to the test particle by the background particles,
2w(h), to that excluded by the background to themselves, w0.
Crudely speaking, does the background allow enough room
for the test particle to muscle its way in between the layers?
Naturally, this will depend on the width of the particle’s shoul-

FIG. 7. A sketch of two particles on layers separated by h/2
colliding at their tips. The particles shown are boubas, but the geom-
etry is equivalent for any shape. The symmetric tip shape function,
s(x), is indicated in orange. The distance between the centers of the
two particles is shown in green; this is the excluded length, w(h).
Equation (32) for w(h) is found by considering the y coordinate of
the point P where the particles meet.

ders expressed through its tip geometry. This is quantified by
understanding the function w(h).

Consider a generic particle of width w0 whose tip has
a symmetric shape described by the function y = s(x). This
function describes the height of the tip above the midsection
of the particle at a position x along its width. We require
−w0/2 � x � w0/2, and symmetry enforces s(x) = s(−x).
We suppose that the full length of the particle is � and that the
total length of one tip is t . The function w(h) is determined by
finding the point P, indicated in Fig. 7, where two oppositely
oriented particle tips touch if the centers of the particles are
vertically separated by a distance h/2. Considering only the
lower particle we have

P = (w(h)/2, �/2 − t + s[w(h)/2]) (30)

and considering the upper particle we find

P = (w(h)/2, h/2 − �/2 + t − s[−w(h)/2]). (31)

These expressions must both represent the same point, hence

2s

(
w(h)

2

)
= h

2
− � + 2t . (32)

If we know the function s(x) describing the tip shape, then
we can find w(h). For boubas and kikis, s(x) is particularly
simple.

A bouba has a semicircular tip of radius w0/2 so t =
w0/2 and sB(x) =

√
( w0

2 )2 − x2, which leads to wB(h) =√
w2

0 − (h/2 − � + w0)2. For kikis, whose tips are triangular
with height t = w0/2, we have sK (x) = w0

2 − |x|, and hence
wK (h) = � − h

2 .
With the condition (A11) along with the functions wB(h)

and wK (h) we can find conditions for which values of h
boubas and kikis form smectics. For boubas

hB � 2l − (2 −
√

3)w0 ≈ 2� − 0.27w0 (33)

and for kikis

hK � 2� − w0. (34)
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Evidently, boubas will form a smectic for a larger layer spac-
ing h than kikis. Because we can relate h to the number density
h = ν/ρ̄, this implies that boubas make a smectic at a smaller
average density ρ̄ than kikis. It is essential to note that the
entropy difference arises from considering test rods that are
not on the background smectic layer. In this sense, it is the
nematic phase that is being changed, not the smectic. When
the tips are pointier there is more opportunity for a rod to find
space in a half layer between the smectic layers.

It is interesting to consider briefly the limiting case when
the particle tips become flat. Now the particles are rectangles
with dimensions w0 × �. The effective width for these shapes
has a step: w(h) = 0 for h � 2� and w(h) = w0 for h < 2�.
The calculation given above tells us that these rectangles form
a smectic when the layer spacing becomes h < 2�. However,
applying Frenkel’s rescaling argument [2], we can map the
rectangles onto a system of w0 × w0 squares. We would then
say that these squares form a smectic as soon as h < 2w0.
Nothing prevents this from happening in principle but such a
phase is not observed in simulations [29,30]. Though some
calculations do predict a smectic phase, it is expected to
be unstable to fluctuations for infinite systems [31]. In our
case, when the layer spacing is just larger than the transition
value 2w0, the system should be “nematic” with the dashed
and solid layers equally occupied. Given that these layers
are spaced by a little more than w0, the squares will be just
touching those on the layer above or below. In this way, the
order in the y direction is the same as would be observed in
a crystal but the difference between this state and a crystal
is the order in the x direction where we have a Tonks gas. It
could be argued that the instability shown by our calculation
when the layer spacing is decreased is actually the instability
to forming the crystal. Given that the particles can only occupy
layers separated by h/2 and h, this instability will artificially
give rise to a smectic phase for squares.

B. N-CB molecules

Finally, let us consider the N-CB molecules. We use the
same free energy construction as before for the boubas and
kikis. This time, we must also keep track of the degrees of
freedom for the test particle and background polymer tails.
For simplicity we ignore the size of the body of the molecule
and the self-excluded volume of the tail. We are lead to exactly
the same form of equation for p∗ as (20), and exactly the same
condition for the smectic phase, namely,

	Spoly ≡ 〈
log �poly

o

〉 − 〈
log �poly

x

〉
� 2. (35)

Here log �
poly
o is the entropy of the polymer tail of the test par-

ticle when it sits on a solid line in a background of particles on
solid lines, and log �

poly
x is the entropy when the test particle

is on a dashed (solid) line and the background particles are
on solid (dashed) lines. In this expression, the angle brackets
denote averaging over all positions of the background particle
bodies and all configurations of their polymer tails. Just as for
the boubas and kikis, we assume that the particle density on
each layer is ν.

To make progress, we make the same approximation as
before: 〈log �poly〉 ≈ log〈�poly〉. In this way, each term can
be understood as the entropy of the test polymer tail in a

fixed average background. Due to the excluded volume of the
background polymer tails, the presence of the background acts
to restrict the accessible configurations of the test polymer.
A simplified model for this is to say that the test polymer is
confined to a rectangular box with dimensions Lx × Ly. The
lengths Lx,y depend on whether we consider 〈�poly

o 〉 or 〈�poly
x 〉.

In the former case, the width in the x direction is the
average next-to-nearest-neighbor distance in the Tonks gas,
Lx

o = 2/ν. The height in the y direction in this case is the
distance between the two closest layers to that on which the
test particle sits, Ly

o = 2h. In the latter case, the width and
heights are halved. The width is the nearest-neighbor distance
in the Tonks gas Lx

x = 1/ν, and, if the test particle is on a
dashed (solid) layer, the height is the distance between the
two closest solid (dashed) layers Ly

x = h.
It is now a textbook polymer physics problem [23,32] to

compute the entropies of the polymers in these boxes. While
we can obtain expressions of 〈�poly

o 〉 and 〈�poly
x 〉 for any

polymer chain length lp (see Appendix B), let us focus for
now on two important limits: polymers much smaller than the
boxes, and those much longer. In the first instance we must
have lp � h, ν−1 and we find

〈�o〉 ∼ 2

ν
+ O(lp/h), and 〈�x〉 ∼ 1

ν
+ O(lp/h). (36)

Here, there is no smectic transition since 	S ≈ log 2 < 2.
In the second case, where the polymers are long, we must

have lp � h, ν−1. This leads to

〈�o〉 ∼ 26

π3ν
e−l2

p (ν2+h−2 )/4 (37a)

and

〈�x〉 ∼ 25

π3ν
e−l2

p (ν2+h−2 ). (37b)

Therefore the smectic condition is

	S = log 2 + 3

4
l2
p

(
1

h2
+ ν2

)
� 2. (38)

In the same way as for the boubas and kikis, this can be read
as a condition on the layer spacing, h. Namely, for a smectic,
we must have

h2 �
(

4

3l2
p

(2 − log 2) − ν2

)−1

∼ l2
p. (39)

So it follows that particles with longer polymer tails form a
smectic at larger layer spacings than those with shorter tails.
This implies that they also form at lower densities. The limit
of very short polymer tails also showed us that there are some
tails which are so short that they do not form smectics at all.
The physical reason for these differences is essentially the
same as that for the boubas and kikis; the longer polymer tails
make it harder for particles to penetrate between the smectic
layers.

We can also plot the full form of 	S as a function of lp/h at
fixed density, assuming that ρ̄ = h−2. This is shown in Fig. 8.
There we see that the smectic condition is met for longer
polymers, with values of lp/h � 1.

At this point one might raise concern about our choice of
box size. While the widths in the x direction are clear enough,
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FIG. 8. 	S plotted for a function of the ratio of the polymer tail
length to the layer spacing, lp/h. The blue curve is 	S and the orange
line is the value it must exceed for a smectic to form. This happens
for lp/h indicated by the red dashed line. This critical ratio is less
than, but close to, unity.

there may be some question about the chosen heights. The
background may be thought of as layers of polymer brushes of
some height H < h. It is intuitive to expect that these brushes
prevent the test polymer from reaching all the way to the
nearest layer, by virtue of the excluded volume interactions.
To capture this effect, the box height should be reduced by
an amount proportional to the brush height, h → h − αH ,
where α < 1. The brush height depends on lp and ν and, with
reference to the simple arguments of Alexander [33] and de
Gennes [34,35], as well as the more sophisticated results of
Milner, Witten, and Cates [36], it must increase when lp or ν

are increased. This modification only serves to make shorter
polymer tails worse at making smectics compared to longer
tails. While more involved treatments of the polymer tail en-
tropy are possible and will alter the details of our conclusions,
we do not expect them to change the underlying result that
longer polymer tails destabilize the nematic phase by making
the interstices between layers less accessible.

IV. CONCLUSIONS

We have explored which particles can form a smectic-A
phase by means of a simplified two-dimensional model. In this
model, we consider a single test particle in a fixed background
which restricts the positions of the test particle to a well-
defined region. The size of the region determines the entropy
of the test particle and, by means of a mean-field-like ap-
proximation, the free energy of the system. This construction
qualitatively includes the interactions between a large number
of particles allowing it to be applied to higher-density systems
for which approaches based on the virial expansion are not
valid. In particular this allows the nematic-smectic transition
to be treated on the same footing as the isotropic-nematic one.
We demonstrated that our construction is exactly consistent
with virial approaches to the I-N transition in the low-density
limit.

We considered the N-S transition for two different rigid
particle shapes and for N-CB molecules. The rigid parti-
cles chosen were boubas and kikis, shown in Fig. 2. These
model three-dimensional spherocylinders and ellipsoids,

respectively. It has been noted previously that ellipsoids do not
form a smectic but spherocylinders do. Similarly it is known
that 8-CB forms a smectic while 5-CB does not. Our model
for these molecules is a small body with a polymer tail of a
given length. It is expected then that longer polymer tails lead
to smectics at lower densities.

The analysis of our simplified model shows that particles
with “fatter” tips form smectics at lower densities than those
with “thinner” ones. The reason for this is that fatter tips
allow less space between the smectic layers to any rogue
interloper trying to make a new home away from its own
layer, thereby destabilizing the nematic at a given density.
This same reasoning applies to the N-CB molecules, where
it is the longer polymer tails which make the region between
the smectic layers less accessible.

Of course the approach that we have taken is only ap-
proximate and will not give accurate predictions for the
phase boundary. In the same way, we have not addressed the
smectic-crystal transition. This would complete the picture by
demonstrating that for kikis, say, the N-S transition actually
happens at a higher density than crystallization, but this is
currently beyond the reach of our simplified model.

Due to the nature of our simplifying approximations, the
details of our results may change. For example, when a contin-
uous range of particle positions is allowed, rather than just on
and halfway between the layers, the geometric criterion (29)
may be altered. Changes may also result in the move from
two to three dimensions. For example, due to the reduction
of degrees of freedom in two dimensions, the predicted order
of the phase transitions discussed may be incorrect. Despite
these potential limitations of our analysis, we refer to the
previous success of the Zwanzig model [27]. In that case, an
oversimplified model was able to predict the isotropic-nematic
transition in both two and three dimensions. Even though the
Zwanzig model does produce an unphysical, perfectly aligned
nematic phase [37] it has informed the understanding of the
competition between translational and orientational entropy
behind that transition, an understanding which would have
been hard sought if such a model had failed. In the same spirit,
we hope our arguments can elucidate the physics governing
which particles can form smectic phases.
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APPENDIX A: BOUBAS AND KIKIS

Here we compute 	S, from Eqs. (19) and (20), relevant for
the N-S transition of boubas and kikis without the approxima-
tion 〈log �〉 ≈ log〈�〉.

The first step is computing 〈log �o〉. This is given in
Eq. (22) in terms of P(x2), the distribution of next-nearest-
neighbor distance in the Tonks gas. This distribution may be
found exactly [28], and is given by

P(x2) = ν2(x2 − 2w0)

(1 − νw0)2
exp

(
− ν

1 − νw0
(x2 − 2w0)

)
(A1)
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for x2 � 2w0 and zero otherwise. Integrating, we have

〈log �o〉 = 1 − γ + log
1 − νw0

ν
, (A2)

where γ is the Euler-Mascheroni constant [38].
Next we require 〈log �x〉. As discussed in the main text,

we need to consider the four cases (25). It is convenient for
us to write these positions in terms of xi

1 = xi
L − xi

R, that is,
the nearest-neighbor distance in the Tonks gas in layer i. It is
also useful to introduce the separation of the closest particles
on the left, 	L = xa

L − xb
L. Note that, in order for “left” and

“right” to make sense, we must have |	L| � xi
1. This gives us

(abab) → �x = xa
1 − |	L| − 2w(h), (A3a)

(abba) → �x = xb
1 − 2w(h), (A3b)

(baab) → �x = xa
1 − 2w(h), (A3c)

(baba) → �x = xb
1 − |	L| − 2w(h). (A3d)

All of these are realized with equal probability, so that
the averaging 〈log �x〉 over all realizations of the background
results in

〈log �x〉 = 1

4

∫
dxa

1P(xa
1 )

∫
dxb

1P(xb
1 )

∫
d	LP(	L )

× {log[xa
1 − 2w(h)] + log[xb

1 − 2w(h)] + log[xa
1

− |	L| − 2w(h)] + log[xb
1 − |	L| − 2w(h)]}.

(A4)

Notice that the distributions P(xa
1 ) and P(xb

1 ) are the same and
normalized, so that first two terms in the square brackets are
the same as are the terms in the final pair. This leaves

〈log �x〉 = 1

2

∫
dx1P(x1)

∫
d	LP(	L ){log[x1 − 2w(h)]

+ log[x1 − |	L| − 2w(h)]}. (A5)

To take the integral over 	L we need its probability distri-
bution. Because the a layer and b layer are independent of
each other this must be uniform. The only restriction is on its
magnitude |	L| � x1. Hence,

〈log �x〉 = 1

2

∫
dx1P(x1)

∫ x1

0

d	L

x1
{log[x1 − 2w(h)]

+ log[x1 − |	L| − 2w(h)]} (A6)

and so

〈log �x〉 = −1

2
+

∫
dx1P(x1)

∫ x1

0
log[x1 − 2w(h)]. (A7)

This is now written in an analogous way with (22), only now
in terms of the distribution of nearest-neighbor separations in
a Tonks gas P(x1). This distribution was also worked out by

Tonks [28]:

P(x1) = ν

1 − νw0
exp

(
− ν

1 − νw0
(x1 − w0)

)
. (A8)

This is straightforward, although this time the result is not
quite as compact:

〈log �x〉 = −1

2
+ log

1 − νw0

ν
+

∫ ∞

0
dξ e−ξ log(ξ + α)

(A9)
with α = ν[w0 − 2w(h)]/(1 − νw0). While the ξ integral can
be written in terms of incomplete Gamma functions [38] it is
not particularly illuminating.

Now we have 	S, and the condition for a stable smectic
phase is

	S = 3

2
− γ −

∫ ∞

0
dξ e−ξ log(ξ + α) > 2. (A10)

The parameter α is a function of both the tip shape and
the density. Therefore, this inequality relates the density for
the N-S transition to the tip shape. When the integral in
this inequality becomes sufficiently negative, the inequality
is satisfied. The integral is positive for all positive α, but
becomes infinitely negative when α < 0. Thus, given ν � 0
and w0 � 0, the condition required for the smectic phase is

2w(h) � w0. (A11)

This is qualitatively the same as the relation (29) derived using
the approximations in the main text.

APPENDIX B: N-CB MOLECULES

Here we compute 	S for the N-S transition of N-CB
molecules. The approximation 〈log �〉 ≈ log〈�〉 is required
here to avoid a complicated self-consistent treatment of the
polymer. Within this approximation, each term in 	S can be
thought of as the entropy of a polymer in a two-dimensional
box with dimensions Lx × Ly. Finding this entropy is a stan-
dard problem [23] and the starting point is the polymer
Green’s function G(x, x′; y, y′|n) which solves

[
∂

∂n
− b2

6

(
∂2

∂x2
+ ∂2

∂y2

)]
G(x, x′; y, y′|n)

= δ(x − x′)δ(y − y′)δ(n) (B1)

and is subject to the boundary conditions at the walls of the
box:

G(x = 0, Lx, x′; y, y′|n) = G(x, x′; |y| = Ly/2, y′|n) = 0.

(B2)

Here the coordinates x′ and y′ represent the horizontal and
vertical positions of the start of the polymer chain. Note that
x′ may take any value allowed by the box, but we require
y′ = 0. The variable n represents the number of monomers
making up the chain and b measures the bond lengths between
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monomers. The entropy can be computed via

�(Lx, Ly) =
∫ Lx

0
dx

∫ Lx

0
dx′

∫ Ly/2

−Ly/2
dy G(x, x′; y, y′ = 0|n).

(B3)
The Green’s function is found by separation of variables G =
gx(x, x′|n)gy(y|n), with

gx(x, x′|n) = 2

Lx

∞∑
m=1

sin

(
mπx

Lx

)
sin

(
mπx′

Lx

)

× exp

(
−m2 π2nb2

6L2
x

)
(B4a)

and

gy(y|n) = 2

Ly

∞∑
m=0

cos

(
(2m + 1)πy

Ly

)

× exp

(
−(2m + 1)2 π2nb2

6L2
y

)
. (B4b)

Identifying the length of the polymer chain as l2
p =

π2nb2/6 and taking the integrals in (B3) we find

�(Lx, Ly) = 25

π3
Lx

∑
p∈Odd

∞∑
m=0

(−1)m

p2(2m + 1)

× exp

[
−l2

p

(
p2

L2
x

+ (2m + 1)2

L2
y

)]
. (B5)

Taking the limit that the polymer is much smaller than the box,
lp � Lx, Ly, yields

�(Lx, Ly) ∼ Lx. (B6)

For the opposite limit lp � Lx, Ly we find

�(Lx, Ly) ∼ 25

π3
Lx exp

[
−lp

(
1

L2
x

+ 1

L2
y

)]
. (B7)

These expressions reduce to (36) and (37) of the main text
when the appropriate box dimensions are used.
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[22] A. Ćwiek, S. Fuchs, C. Draxler, E. L. Asu, D. Dediu, K.
Hiovain, S. Kawahara, S. Koutalidis, M. Krifka, P. Lippus,
G. Lupyan, G. E. Oh, J. Paul, C. Petrone, R. Ridouane,
S. Reiter, N. Schümchen, Á. Szalontai, Ö. Ünal-Logacev, J.
Zeller et al., The bouba/kiki effect is robust across cultures
and writing systems, Phil. Trans. R. Soc. B 377, 20200390
(2022).

[23] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
(Oxford University, New York, 1986).

[24] J. G. Kirkwood, Critique of the free volume theory of the liquid
state, J. Chem. Phys. 18, 380 (1950).

064702-10

https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1103/PhysRevLett.52.287
https://doi.org/10.1103/PhysRevLett.57.1452
https://doi.org/10.1063/1.445973
https://doi.org/10.1080/00268979200102141
https://doi.org/10.1063/1.4891326
https://doi.org/10.1063/1.4996131
https://doi.org/10.1143/JPSJ.46.1709
https://doi.org/10.1103/PhysRevA.35.3095
https://doi.org/10.1103/PhysRevLett.62.800
https://doi.org/10.1103/PhysRevA.38.382
https://doi.org/10.1063/1.4921684
https://doi.org/10.1103/PhysRevA.21.1687
https://doi.org/10.1103/PhysRevLett.123.068001
https://doi.org/10.1039/P29760000097
https://doi.org/10.1021/jp065806l
https://doi.org/10.1103/PhysRevLett.107.148303
https://www.ingentaconnect.com/contentone/imp/jcs/2001/00000008/00000012/1244
https://doi.org/10.1098/rstb.2020.0390
https://doi.org/10.1063/1.1747635


WHAT PROMOTES SMECTIC ORDER: APPLYING MEAN- … PHYSICAL REVIEW E 107, 064702 (2023)

[25] S. F. Edwards, Statistical mechanics with topological con-
straints: I, Proc. Phys. Soc. 91, 513 (1967).

[26] S. F. Edwards, Statistical mechanics with topological con-
straints II, J. Phys. A Gen. Phys. 1, 15 (1968).

[27] R. Zwanzig, First-order phase transition in a gas of long thin
rods, J. Chem. Phys. 39, 1714 (1963).

[28] L. Tonks, The complete equation of state of one, two and three-
dimensional gases of hard elastic spheres, Phys. Rev. 50, 955
(1936).

[29] F. H. Ree and R. E. Taikyue, Statistical mechanics of the parallel
hard squares in canonical ensemble, J. Chem. Phys. 56, 5434
(1972).

[30] K. Wojciechowski and D. Frenkel, Tetratic phase in the planar
hard square system?, Computational Methods in Science and
Technology 10, 235 (2004).

[31] S. Belli, M. Dijkstra, and R. Van Roij, Free minimization of
the fundamental measure theory functional: Freezing of parallel
hard squares and cubes, J. Chem. Phys. 137, 124506 (2012).

[32] S. F. Edwards and K. F. Freed, The entropy of a confined
polymer. I, J. Phys. A 2, 145 (1969).

[33] S. Alexander, Polymer adsorption on small spheres: A scaling
approach, J. Phys. 38, 977 (1977).

[34] P. De Gennes, Scaling theory of polymer adsorption, J. Phys.
37, 1445 (1976).

[35] P. G. de Gennes, Conformations of polymers attached to an
interface, Macromolecules 13, 1069 (1980).

[36] S. T. Milner, T. A. Witten, and M. E. Cates, Theory
of the grafted polymer brush, Macromolecules 21, 2610
(1988).

[37] K. Shundyak, and R. van Roij, Isotropic-nematic transi-
tion in hard-rod fluids: Relation between continuous and
restricted-orientation models, Phys. Rev. E 69, 041703
(2004).

[38] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Dover, New York, 1964).

064702-11

https://doi.org/10.1088/0370-1328/91/3/301
https://doi.org/10.1088/0305-4470/1/1/303
https://doi.org/10.1063/1.1734518
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1063/1.1677059
https://doi.org/10.12921/cmst.2004.10.02.235-255
https://doi.org/10.1063/1.4754836
https://doi.org/10.1088/0305-4470/2/2/001
https://doi.org/10.1051/jphys:01977003808097700
https://doi.org/10.1051/jphys:0197600370120144500
https://doi.org/10.1021/ma60077a009
https://doi.org/10.1021/ma00186a051
https://doi.org/10.1103/PhysRevE.69.041703

