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Elastic constants of zero-temperature amorphous solids are given as the difference between the Born term,
which results from a hypothetical affine deformation of an amorphous solid, and a correction term, which
originates from the fact that the deformation of an amorphous solid due to an applied stress is, at the microscopic
level, nonaffine. Both terms are non-negative and thus it is a priori not obvious that the resulting elastic
constants are non-negative. In particular, theories that approximate the correction term may spuriously predict
negative elastic constants and thus an instability of an amorphous solid. Here we derive alternative expressions
for elastic constants of zero-temperature amorphous solids that are explicitly non-negative. These expressions
provide a useful blueprint for approximate theories for elastic constants and sound damping in zero-temperature
amorphous solids.
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I. INTRODUCTION

Elastic constants of zero-temperature crystalline solids
consisting of particles with pairwise additive interactions and
with one atom per unit cell are given by the well-known
Born formulas [1]. However, already for crystalline solids
with more than one atom per unit cell the elastic constants are
given as the difference between the Born term and a correction
term originating from an internal relaxation within the unit
cell upon deformation [2,3]. The correction term becomes
more important for amorphous solids which are completely
devoid of a crystalline lattice [4,5]. The correction term is
rationalized in terms of the so-called nonaffine displacement
field, which originates from the inherent disorder of amor-
phous solids [4–7]. In the following we will refer to the two
terms in the standard expression for the elastic constants of
zero-temperature amorphous solids [5,8,9] as the Born term
and the correction or nonaffine term.

Both the Born term and the nonaffine term are positive
definite. Thus, it is a priori not obvious whether their dif-
ference is non-negative, as elastic constants should be. This
problem becomes important if an approximate theory is used
to calculate the correction term. If such a theory overestimates
the magnitude of the correction term, it may predict a spurious
instability of the amorphous solid in question.

We recall that a similar situation occurred in the context
of the description of the dynamics of stochastic systems, e.g.,
overdamped colloidal suspensions and kinetically constrained
models. In this case, interaction-induced or constraint-induced
change of a relaxation rate was initially described in terms of
a correction term that was subtracted from the relaxation rate
of the noninteracting system. Approximate theories for the
correction term often resulted in a qualitatively incorrect de-
scription of the relaxation [10] or predicted spurious dynamic
transitions [11]. This situation was resolved after the formal
expression for the relaxation rate was rewritten in terms of a
new quantity called the irreducible memory function [12,13],
resulting in an expression that was explicitly non-negative.

This new formulation led to useful approximate descriptions
of strongly interacting colloidal suspensions [14].

Here we achieve a similar goal for the elastic constants of
zero-temperature amorphous solids. We derive alternative ex-
pressions for elastic constants that are explicitly non-negative.
The elastic constants are expressed as a ratio of the Born term
squared and a sum of the Born term and an alternative non-
affine correction term, which is positive definite. We expect
that the alternative expressions will allow for a reformulation
of existing approximate descriptions of sound propagation in
amorphous solids.

II. STATEMENT OF THE PROBLEM

We consider an amorphous zero-temperature solid consist-
ing of N particles interacting via a spherically symmetric
pairwise additive potential. We assume that particles’
positions correspond to a local minimum of the potential
energy, i.e., an inherent structure [15]. We are interested
in small displacements of the particles from their inherent
structure positions. The quantity that describes the response
of the system to external perturbations is the Hessian,

Hil = −∂Fi({Rm})

∂Rl
, (1)

where Ri, i = 1, . . . , N denote the inherent structure positions
of the particles and Fi({Rm}) is the total force acting on
particle i, which depends on the subset {Rm} of other particles,

Fi({Rm}) = − ∂

∂Ri

∑
j �=i

V (Ri j ), (2)

with Ri j = |Ri j | ≡ |Ri − R j | being the interparticle distance
and V (r) being the pair potential.

We note that each element Hi j is a 3 × 3 tensor; if needed,
we will refer to the components of Hi j and other tensors using
Greek indices, e.g., Hiα jβ = − ∂Fiα ({Rm})

∂Rjβ
.
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Translational invariance implies that uniform displace-
ments from the inherent structure positions do not induce
a restoring force. In other words, the Hessian matrix has
three linearly independent eigenvectors corresponding to
zero eigenvalue. The components of these eigenvectors do
not depend on the particles’ positions and the eigenvectors
can be chosen to point along directions of the coordinate
system,

Eα
0i = N−1/2α̂, (3)

where α̂ is a unit vector along the α axis.
In principle, there might be additional eigenvectors cor-

responding to zero eigenvalue, e.g., they would appear if
our amorphous solid consisted of disconnected clusters. We
assume that the three eigenvectors E0α are the only eigen-
vectors of the Hessian corresponding to zero eigenvalue. In
other words, we assume that the amorphous solid that we
consider is stable. However, our analysis would also work
for the rigid backbone of an amorphous solid which contains
“rattlers.”

Furthermore, we will assume that the solid is, on average,
isotropic. For this reason, it has only two independent elastic
constants or, equivalently, two independent speeds of sound.
To simplify the notation we formulate our approach as the the-
ory for the speeds of sound. The actual elastic constants, the
bulk modulus and the shear modulus, can be easily obtained
from the speeds of sound.

To derive expressions for the speeds of sound, we consider
the following question: if we apply an external periodic force
on the particles, what will be the resulting displacement field
in the limit of long wavelengths?

To be more specific, we assume that at initial time t = 0
we turn on a periodic force acting on the particles. Force on
particle i is given by

fi = êe−ik·Ri , (4)

where ê is a unit vector that is parallel, êL = k̂, or per-
pendicular, êT , to wave vector k for parallel (bulk) or
transverse (shear) perturbations. Note that we assumed a unit
amplitude of the force; since we are working in the har-
monic approximation, the strength of the force does not play
any role.

As a result of external force (4) the particles get displaced
from their inherent structure positions. To mimic the pro-
cedure used in computer simulations (sample deformation
followed by relaxation [16]), we assume that after the force is
turned on, displacements ui evolve according to overdamped
dynamics with relaxation time τ ,

τ∂t ui(t ) = −
∑

j

Hi j · u j (t ) + fi. (5)

Here ui is the displacement of particle i from its inherent
structure position Ri.

The dynamics described by Eqs. (5) is not the real dynam-
ics of the system. However, it is a useful auxiliary process that
allows us to reach the final state of the deformed system.

We are interested in the long-time limit of the displace-
ments. We will analyze the evolution defined by Eqs. (5) in

the Laplace space,

zτui(z) = −
∑

j

Hi j · u j (z) + fi/z. (6)

Writing Eq. (6), we used the fact that before the force was
turned on, the solid was un-deformed, i.e., ui(t = 0) = 0.

The formal solution of Eqs. (6) reads

ui(z) =
∑

j

[zτ + H]−1
i j · f j/z. (7)

In the small z limit, i.e., for zτ � 1, the displacement field
is given by

ui(z → 0) =
∑

j

[H]−1
i j · f j/z. (8)

Thus, the long-time limits of the displacements ui(t → ∞)
satisfy the following equations:

ui(t → ∞) =
∑

j

[H]−1
i j · f j . (9)

Equations (9) express force balance after deformation and
they may have been written directly. However, we find it
convenient to use Eqs. (6) as the starting point of our
analysis.

As discussed above, the real microscopic displacements are
in general nonaffine. However, on the basis of the macroscopic
theory of elasticity, we expect that after force (4) was applied,
in the limit of small magnitude of the wave vector k = |k|
there will be an affine component of the displacements that
will be linearly related to the force, with the coefficient of
proportionality that is proportional to the inverse of the prod-
uct of the square of the speed of sound and the square of the
wave vector k. In the small z limit the affine component of the
displacement field will be given by

uaff
i (z) = (k2c2)−1fi/z. (10)

To compare with relations derived from microscopic
considerations we rewrite Eq. (10) as follows:

k2c2uaff
i (z) = fi/z. (11)

Depending on whether the external force is parallel or perpen-
dicular to the wave vector k, one should use in Eqs. (10) and
(11) the longitudinal cL or the transverse cT speed of sound.

Our goal is to derive, in the limit of zτ → 0, a microscopic
version of Eq. (11). In this way we will obtain expressions
for the speeds of sound. In the next section we re-derive the
standard expression and in the following section we derive an
alternative expression that is explicitly positive definite.

III. RE-DERIVATION OF THE STANDARD EXPRESSION
FOR SPEEDS OF SOUND

We define projection operator P that selects the affine part
of the displacement field and orthogonal projection Q,

uaff
i = Pui = e−ik·Ri ê

1

N

∑
j

eik·R j ê · u j, (12)

Qui = ui − Pui. (13)
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Next, we apply P to both sides of Eq. (6) and we also insert
P + Q = 1 between the Hessian and the displacement field,

zτPui(z) = −
∑

j

PHi j · (P + Q)u j (z) + Pfi/z

≡ −
∑

j

PHi j · (P + Q)u j (z) + fi/z. (14)

Then, we apply apply Q to both sides of Eq. (6) and again
we insert the sum of P and Q between the Hessian and the
displacement field,

zτQui(z) = −
∑

j

QHi j · (P + Q)u j (z). (15)

Finally, we formally solve Eq. (15) for Qui(z), substitute
the result into Eq. (14), and in this way we obtain{

zτ + PHP − PHQ 1

zτ + QHQQHP
}
Pu = f/z, (16)

where to simplify the notation we omitted summations over
particles and indices of the Hessian and the displacement and
force fields.

To recover standard expressions for the speeds of sound we
need to investigate the small wave vector limit of the second
and third term at the left-hand side of Eq. (16) and then take
the small zτ limit. The sum of the second and third terms will
give the product of the squares of the wave vector and the
speed of sound, see Eq. (11).

Restoring summation over particles and the indices, we
can analyze the second term at the left-hand side of (16) as
follows:∑

j

PHi jP · Pu j

= 1

N2
êe−ik·Ri

∑
m,l

ê · Hlm · êe−ik·Rlm
∑

j

eik·R j ê · u j

=
[

k2

2N

∑
l

∑
m �=l

ê · ∂2V (Rlm)

∂R2
l

· ê(k̂ · Rlm)2 + o(k2)

]
Pui,

(17)

where we used the fact that the zeroth order in k term van-
ishes due to translational symmetry and the first-order term
vanishes due to i ↔ j symmetry.

For an isotropic system tensorial quantity

V (k̂) = 1

2N

∑
l

∑
m �=l

∂2V (Rlm)

∂R2
l

(k̂ · Rlm)2 (18)

consists of two independent components, longitudinal and
transverse. These components are proportional to Born ap-
proximations for the longitudinal and transverse speed of
sound squared,

V (k̂) = c2
LBk̂k̂ + c2

T B(1 − k̂k̂), (19)

where cLB and cT B are given by

c2
LB = 1

2N

∑
i

∑
j �=i

k̂ · ∂2V (Ri j )

∂R2
i

· k̂(k̂ · Ri j )
2 (20)

and

c2
T B = 1

4N
[1 − k̂k̂] :

∑
i

∑
j �=i

∂2V (Ri j )

∂R2
i

(k̂ · Ri j )
2, (21)

where the double dot product denotes contraction of the two
tensors. Combining Eqs. (17)–(19), we get the following ex-
pression for the small wave-vector limit of the second term at
the left-hand side of Eq. (16),∑

j

PHi jP · Pu j

= [
c2

LBk2(k̂ · ê)2 + c2
T Bk2(1 − (k̂ · ê)2)

]
Pui. (22)

The analysis of the third term at the left-hand side of
Eq. (16) is a bit more tedious; it is presented in Appendix A.
The final result for the small wave vector and the subsequent
small zτ limit of the third term is

−
∑
j,l,m

PHilQ[zτ + QHQ]−1
lm QHm jP · Pu j

= {
�c2

Lk2(k̂ · ê)2 + �c2
T k2[1 − (k̂ · ê)2]

}
Pui, (23)

where the contributions to the speeds of sound due to non-
affine effects, �cL and �cT , can be written in terms of
tensorial field W j ,

W j (k̂) =
∑
l �= j

∂2V (Rjl )

∂R2
j

k̂ · R jl , (24)

that quantifies the magnitude of the nonaffine response, see
Appendix A. The expressions for �c2

L and �c2
T read

�c2
L = −k̂ · 1

N

∑
l,m

Wl (k̂) · [H]−1
lm · Wm(k̂) · k̂, (25)

�c2
T = −1

2
[1 − k̂k̂] :

1

N

∑
l,m

Wl (k̂) · [H]−1
lm · Wm(k̂). (26)

As discussed in Appendix A, terms
∑

l,m Wl (k̂) · [H]−1
lm ·

Wm(k̂) in Eqs. (25) and (26) should be understood as∑
l Wl (k̂) · Ul (k̂), where Wl (k̂) = ∑

m Hlm · Um(k̂). The lat-
ter equation has a unique solution since Wm(k̂) is orthogonal
to all eigenvectors of the Hessian corresponding to zero eigen-
value. We note that since the Hessian is non-negative definite,
contributions (25) and (26) are negative definite.

Combining Eq. (16) and Eqs. (22) and (23) and taking
the zτ → 0 limit, we recover relation (11) between the affine
component of the displacement field and the external force,
with speeds of sound squared given by

c2
L = c2

LB − 1

N

∑
l,m

k̂ · Wl (k̂) · [H]−1
lm · Wm(k̂) · k̂, (27)

c2
T = c2

T B − 1

N

∑
l,m

êT · Wl (k̂) · [H]−1
lm · Wm(k̂) · êT . (28)
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Expressions (27) and (28) for the speeds of sound squared
are equivalent to the standard expressions for elastic constants
of zero-temperature amorphous solids [3,5,8]. As discussed
earlier, expressions (27) and (28) are not explicitly non-
negative and approximate theories for the second terms
in these expressions may lead to spurious predictions of
instabilities.

IV. ALTERNATIVE EXPRESSION FOR SPEEDS OF SOUND

We now derive alternative expressions for speeds of sound
squared which make their non-negative property explicit.

We start by rewriting Eq. (14) as follows:

Pui(z) =
∑

j

[PHP]−1
i j [−zτPu j (z) + f j/z]

−
∑

j,l

[PHP]−1
i j PH jl · Qul (z). (29)

Then, we substitute the right-hand side of Eq. (29) into

Eq. (15),

zτQui(z) = −
∑

j,l

QHi jP[PHP]−1
jl [−zτPul (z) + fl/z]

−
∑

j

[
QHi j −

∑
l,m

QHil

× P[PHP]−1
lm PHm j

]
· Qu j (z). (30)

Next, we solve Eq. (30) for Qui,

Qui(z) = −
∑
l,m, j

{zτ + QHQ − QHP[PHP]−1PHQ}−1
il

× QHlmP[PHP]−1
m j · [−zτPu j (z) + f j/z]. (31)

Finally, we substitute the right-hand side of Eq. (31) into
Eq. (29) and solve for Pu, and in this way we obtain the
following relation:

⎧⎨
⎩zτ + [PHP]

[
PHP + PHQ 1

zτ + QHQ − QHP[PHP]−1PHQQHP
]−1

[PHP]

⎫⎬
⎭Pu = f/z, (32)

where, once again, to simplify the notation we omitted
summations over particles and indices of the Hessian, and
the displacement and force fields. Equation (32) is the micro-
scopic version of Eq. (11). It is the alternative to Eq. (16) that
we were looking for.

We note that the structure of the matrix acting on Pu is
very similar to that obtained by Kawasaki [13]. This matrix
was obtained by simple manipulation of the same equations,
Eqs. (14) and (15), that were used to obtain the standard
relation between Pu and f/z, Eq. (16). In particular, although
a person familiar with Kawasaki’s analysis can clearly see
in Eq. (32) an object that could be called an “irreducible
Hessian,” we arrived at Eq. (32) without introducing such a
concept.

We emphasize that the above formal construction makes
physical sense only if operator H − HP[PHP]−1PH is non-
negative definite. We will return to this question at the end of
this section.

Again, to recover the alternative expressions for the speeds
of sound we need to investigate the small wave-vector limit of
the second term at the left-hand side of Eq. (32) and then take
the small zτ limit. The second term will become the product
of the squares of the speed of sound and the wave vector, see
Eq. (11).

We note that most objects involved in the small wave-
vector limit of the second term at the left-hand side of Eq. (32)
were already discussed in the context of the small wave-vector
limit of Eq. (16). In Appendix B we discuss the additional
term, HP[PHP]−1PH, and additional steps needed to derive
the small limit of the second term at the left-hand side of
Eq. (32).

Using the results of Appendix B we obtain the following
expressions for the speeds of sound squared:

c2
L = c4

LB

c2
LB + 1

N

∑
l,m k̂ · Wl (k̂) · [H − δLH]−1

lm · Wm(k̂) · k̂
,

(33)

c2
T = c4

T B

c2
T B + 1

N

∑
l,m êT · Wl (k̂) · [H − δTH]−1

lm · Wm(k̂) · êT
,

(34)

where

δLHlm = 1

N
Wl (k̂) · k̂c−2

LB k̂ · Wm(k̂), (35)

and

δTHlm = 1

N
Wl (k̂) · êT c−2

T BêT · Wm(k̂). (36)

Equations (33) and (34) are the expressions for the speeds
of sound squared that we propose as alternatives to standard
expressions (27) and (28).

Finally, we need to examine the question of the non-
negative definite character of the matrices that enter into
Eqs. (33) and (34). We note that, as discussed in Appendix B,
matrices H − δLH and H − δTH are obtained as k → 0 limits
of the following matrix:

Hi j (k) −
∑
m,n

Hin(k) · ê

[ ∑
k,l

ê · Hkl (k) · ê

]−1

ê · Hm j (k),

(37)

064608-4



ELASTIC CONSTANTS OF ZERO-TEMPERATURE … PHYSICAL REVIEW E 107, 064608 (2023)

with ê = êL and ê = êT . Next, we recall that the Hessian
is non-negative definite. It follows that the wave vector–
dependent Hessian H(k) is also non-negative definite and thus
can be written in the following way in terms of its eigenvalues
ω2

a � 0 and corresponding eigenvectors Eai, where a labels
eigenvectors.

Hi j (k) =
∑

a

ω2
aEaiEa j . (38)

Using (38) we can write a contraction of the matrix (37) with
an arbitrary vector ai as follows:

∑
a

[∑
i

ωαEai · ai

]2

−
{∑

a

[∑
i ωaEai · ai

][∑
i ωaEai · ê

]}2

∑
b

[∑
i ωbEbi · ê

]2 .

(39)

Cauchy-Schwarz inequality implies that expression (39) is
non-negative definite. Thus, matrices H − δLH and H − δTH
are also non-negative definite, which makes our expressions
for speeds of sound squared, Eqs. (33) and (34), well defined.

V. DISCUSSION

We derived exact formulas for elastic constants of zero-
temperature elastic solids. In contrast to standard expressions,
our formulas are explicitly non-negative.

In practical numerical calculations, elastic constants of
zero-temperature elastic solids are determined by explicit de-
formations of these solids. This procedure requires some care
since one needs to balance between two opposite goals: the
need to impose small enough deformation to ensure linear
response and the need to impose large enough deformation to
generate a statistically meaningful response signal. However,
it is simpler to implement than using standard exact formulas.
We expect that our alternative formulas will also not be com-
petitive with the explicit deformation procedure. However,
we hope that these formulas will inspire future theoretical
analyses of both elastic constants and speeds of sound and
of sound damping in zero-temperature elastic solids.

There were several theoretical analyses of sound propaga-
tion in zero-temperature amorphous solids. In particular, the
authors of Refs. [17–20] used different diagrammatical anal-
yses to analyze sound propagation, i.e., speeds of sound, and
sound attenuation in zero-temperature amorphous solids. Our
present contribution suggests that resummations of classes
of diagrams should be attempted that would reproduce the
structure of our formulas for speeds of sound. We hope to
develop such theories in the near future.
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APPENDIX A: ANALYSIS OF THE THIRD
TERM IN EQ. (16)

The third term at the left-hand side of Eq. (16) involves
“vertices” PHilQ and QHm jP and the inverse of the pro-
jected Hessian [zτ + QHQ]−1

lm . In the small wave-vector limit
the vertices are proportional to the magnitude of the wave
vector and can be expressed in terms of tensorial field W j ,

W j (k̂) =
∑
l �= j

∂2V (Rjl )

∂R2
j

k̂ · R jl . (A1)

The action of the vertices on an arbitrary vector ai defined at
each inherent structure position reads∑

j

QHi jPa j = −i[kWi(k̂) + o(k)] · Pai, (A2)

∑
j

PHi jQ · a j = i[kPWi(k̂) + o(k)] · ai. (A3)

Tensorial field W j is closely related to vector field � j,βδ

introduced by Lemaître and C. Maloney [5],

� j,βδ = −
∑
l �= j

∂2V (Rjl )

∂Rjβ∂R j
R jlδ. (A4)

Vector field � j,βδ describes forces due to an affine deforma-
tion. Specifically, � j,βδ is proportional to the force on particle
j resulting from a deformation along the β direction that
linearly depends on the δ coordinates. The αβ component of
W j can be expressed in terms of contraction of α component
of vector � j,βγ with k̂,

W jαβ (k̂) =
∑
l �= j

∂2V (Rjl )

∂Rjα∂Rjβ
Rjlδ k̂δ, (A5)

where the Einstein summation convention over repeated
Greek indices is adopted.

It follows that if we keep only the leading terms in the
magnitude of the wave vector in the vertices, we can rewrite
the third term at the left-hand side of Eq. (16) as

k2PWi(k̂) · [zτ + QHQ]−1
i j · W j (k̂) · Pu j

= k2e−ik·Ri ê
1

N

∑
lm

ê · Wl (k̂) · [zτ + Q1H(k)Q1]−1
lm

× ·Wm(k̂) · ê
1

N

∑
j

eik·R j ê · u j

= k2 1

N

∑
l,m

ê · Wl (k̂) · [zτ+Q1H(k)Q1]−1
lm ·Wm(k̂) ·êPui,

(A6)

where we introduced wave vector–dependent Hessian matrix
H(k),

Hil (k) = Hil e
ik·(Ri−Rl ), (A7)
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and a (orthogonal) projection operator Q1 which acts on an
arbitrary vector ai as follows:

Q1ai = ai − êN−1
∑

j

ê · a j . (A8)

Finally, we show that in the small wave-vector
limit projection operators Q1 in

∑
l,m ê · Wl (k̂)[zτ +

Q1H(k)Q1]−1
lm Wm(k̂) · ê can be dropped. To this end we

use the procedure described by Ernst and Dorfman [21]. We
use the following operator identity:

1

zτ + H(k)Q1
= 1

zτ + H(k)

+ 1

zτ + H(k)Q1
H(k)P1

1

zτ + H(k)
,

(A9)

where projection operator P1 acts on an arbitrary vector ai as
follows:

P1ai = êN−1
∑

j

ê · a j . (A10)

Using Eq. (A9) and recalling that WlQ1 = Wl , we rewrite∑
l,m ê · Wl (k̂) · [zτ + Q1H(k)Q1]−1

lm · Wm(k̂) · ê as follows:∑
l,m

ê · Wl (k̂) · [zτ + H(k)Q1]−1
lm · Wm(k̂) · ê

=
∑
l,m

ê · Wl (k̂) · [zτ + H(k)]−1
lm · Wm(k̂) · ê

+
∑

l,m,k,n

ê · Wl (k̂) · [zτ + H(k)Q1]−1
lk · Hkn(k)·

× P1[zτ + H(k)]−1
nm · Wm(k̂) · ê. (A11)

In the second term at the right-hand side of Eq. (A11), we note
that ∑

n

Hkn(k)P1 = [−ikWk (k̂) + o(k)]P1. (A12)

Furthermore, we note that

zτN−1
∑
n,m

ê · [zτ + H(k)]−1
nm · Wm(k̂) · ê

= −ikN−1
∑
n,m

ê · Wn(k̂) · [zτ + H(k)]−1
nm · Wm(k̂) · ê

+ O(k). (A13)

Combining Eqs. (A11)–(A13) we obtain∑
l,m

ê · Wl (k̂) · [zτ + H(k)]−1
lm · Wm(k̂) · ê

= zτ
∑

l,m ê · Wl (k̂) · [zτ+H(k)Q1]−1
lm · Wm(k̂) · ê

zτ − k2
∑

l,m ê · Wl (k̂) · [zτ+H(k)Q1]−1
lm · Wm(k̂) · ê

.

(A14)

Equation (A14) implies that in the small wave-vector limit we
can drop projections Q1 in the last line of Eq. (A6). Note that
in the same limit we have H(k) → H.

The final issue concerns the small zτ limit of the expression∑
l,m ê · Wl (k̂) · [zτ + H]−1

lm · Wm(k̂) · ê. We recall that the
Hessian has zero eigenvalues. However, the small zτ limit
of

∑
l,m ê · Wl (k̂) · [zτ + H]−1

lm · Wm(k̂) · ê is well defined for
the following reason. First, we note that∑

l,m

ê · Wl (k̂) · [zτ + H]−1
lm · Wm(k̂) · ê

=
∑

l

ê · Wl (k̂) · Ul (k̂) · ê, (A15)

where Ul (k̂) · ê satisfies the following equation:

Wl (k̂) · ê =
∑

m

[zτ + H]lm · Um(k̂) · ê. (A16)

We note that Wm(k̂) · ê is orthogonal to the space spanned by
the eigenvectors of H and thus in the zτ → 0 limit the solution
of Eq. (A16) is well defined.

We conclude that in the small wave vector and small zτ
limit the last line of Eq. (A6) can be written as

k2 1

N

∑
l,m

ê · Wl (k̂) · [H]−1
lm · Wm(k̂) · ê. (A17)

Finally, we note that for an isotropic system tensorial quan-
tity ∑

l,m

Wl (k̂) · [H]−1
lm · Wm(k̂) (A18)

consists of two independent components, longitudinal and
transverse. These components are the contributions to the
squares of the speeds of sound due to nonaffine effects. They
are the differences between the actual speeds of sound squared
and their Born values,

�c2
L = −k̂ · 1

N

∑
l,m

Wl (k̂) · [H]−1
lm · Wm(k̂) · k̂, (A19)

�c2
T = −1

2
[1 − k̂k̂] :

1

N

∑
lm

Wl (k̂) · [H]−1
l,m · Wm(k̂).

(A20)

APPENDIX B: SMALL WAVE-VECTOR LIMIT
OF THE SECOND TERM IN EQ. (32)

We start with the analysis of term PHQ{zτ + QHQ −
QHP[PHP]−1PHQ}−1QHP . Following the transforma-
tions similar to those used in writing Eq. (A6), if we keep
only the leading terms in the magnitude of the wave vector in
“outside” vertices PHQ and QHP , we can rewrite this term
as

k2 1

N

∑
l,m

ê · Wl (k̂) · [zτ + Q1H(k)Q1

− Q1H(k)P1[P1H(k)P1]−1P1H(k)Q1]−1
lm · Wm(k̂) · êP,

(B1)

where wave vector–dependent Hessian is defined in Eq. (A7)
and projection operators P1 and Q1 are defined in Eqs. (A10)
and (A8), respectively.
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Next, we use an identity analogous to Eq. (A9) to write the following relation:∑
l,m

ê · Wl (k̂) · [zτ + H(k)Q1 − H(k)P1[P1H(k)P1]−1P1H(k)Q1]−1
lm · Wm(k̂) · ê

=
∑
l,m

ê · Wl (k̂) · [zτ + H(k) − H(k)P1[P1H(k)P1]−1P1H(k)]−1
lm · Wm(k̂) · ê

+
∑

l,m,k,n

ê · Wl (k̂) · [zτ + H(k)Q1 − H(k)P1[P1H(k)P1]−1P1H(k)Q1]−1
lk

× ·[H(k) − H(k)P1[P1H(k)P1]−1P1H(k)]kn

× ·P1[zτ + H(k) − H(k)P1[P1H(k)P1]−1P1H(k)]−1
nm · Wm(k̂) · ê. (B2)

Then we note that ∑
n

[H(k) − H(k)P1[P1H(k)P1]−1P1H(k)]knP1 = 0, (B3)

which implies that the second term at the right-hand side of Eq. (B2) vanishes. It follows that projections Q1 in Eq. (B1) do not
contribute and can be dropped.

To complete the analysis of term PHQ{zτ + QHQ − QHP[PHP]−1PHQ}−1QHP we need to consider the small wave-
vector limit of H(k)P1[P1H(k)P1]−1P1H(k). We have∑

i, j

Hki(k)P1[P1H(k)P1]−1
jl P1H jn(k) =

∑
i

Hki · êeik·Rki
{
c2

LBk2(k̂ · ê)2 + c2
T Bk2[1 − (k̂ · ê)2]

}−1 1

N

∑
j

eik·R jn ê · H jn

= Wk (k̂) · ê
{
c2

LB(k̂ · ê)2 + c2
T B[1 − (k̂ · ê)2]

}−1 1

N
ê · Wn(k̂) + O(k). (B4)

Thus, the small wave-vector limit of term PHQ{zτ + QHQ − QHP[PHP]−1PHQ}−1QHP reads

k2 1

N

∑
l,m

ê · Wl (k̂) ·
[

zτ + H − 1

N
W (k̂) · ê × {

c2
LB(k̂ · ê)2 + c2

T B[1 − (k̂ · ê)2]
}−1

ê · W (k̂)

]−1

lm

· Wm(k̂) · êP (B5)

To write down the expression for the second term at the left-hand side of Eq. (32) we need to include PHP terms. The
resulting formula is rather long. To simplify it a bit, we will write it for the case of the transverse deformation, i.e., for ê = êT ,

[PHP]

{
PHP + PHQ 1

zτ + QHQ − QHP[PHP]−1PHQQHP
}−1

[PHP]

∣∣∣∣∣
T

→ k2c2
T B

{
k2c2

T B + k2 1

N

∑
lm

êT · Wl (k̂) · [zτ + H − δTH]−1
lm · Wm(k̂) · êT

}−1

c2
T Bk2P (B6)

where δTH reads

δTH = 1

N
W (k̂) · êT c−2

T BêT · W (k̂). (B7)

Finally, we substitute expression (B6) into Eq. (32), take the small zτ limit, and obtain the microscopic version of Eq. (11), with
the square of the transverse speed of sound given in Sec. IV, Eq. (34). The equation for the longitudinal speed of sound can be
obtained by substituting êT → êL ≡ k̂.
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