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We investigate the synchronization of active rotors. A rotor is composed of a free-rotating arm with a particle
that releases a surface-active chemical compound. It exhibits self-rotation due to the surface tension gradient
originating from the concentration field of the surface-active compound released from the rotor. In a system with
two active rotors, they should interact through the concentration field. Thus, the interaction between them does
not depend only on the instantaneous positions, but also on the dynamics of the concentration field. By numerical
simulations, we show that in-phase and antiphase synchronizations occur depending on the distance between the
two rotors. The stability of the synchronization mode is analyzed based on phase reduction theorem through
the calculation of the concentration field in the co-rotating frame with the active rotor. We also confirm that the
numerical results meet the prediction by theoretical analyses.
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I. INTRODUCTION

Self-propelled particles have been intensively investigated
for decades both experimentally and theoretically [1,2]. Mo-
tions of living organisms such as cells, bacteria, fish, birds,
and insects attract much interest as examples of the self-
propulsion. For such motions, several mechanisms on the
motion are suggested, e.g., hydrodynamic interaction due to
the surface deformation [3,4], momentum exchange with the
substrate [5,6], and the tactic motions [7–9]. As for the tactic
motions, they are classified into several types such as chemo-
taxis, phototaxis, mechanotaxis, geotaxis, and so on. Here, we
focus on the chemotactic motion, in which the direction of
motion is determined by the concentration gradient. For posi-
tive and negative chemotaxes, the object moves in the positive
and negative directions of the gradient of the concentration
field, respectively. If the object releases a chemical compound
around itself and exhibits negative chemotaxis, then the rest
state where the object stands still can become unstable since
the object is likely to move away from the original position
with higher concentration. The motion can be sustained since
the particle motion can keep the anisotropy in the concentra-
tion field around the particle. This is one of the mechanisms
for the self-propulsion with the taxis [10].

An experimental example for such self-propulsion with
negative chemotaxis is a camphor particle floating at a water
surface. The camphor particle releases the camphor molecules
at the water surface and the molecules reduce the surface
tension. The object is pulled toward the region with higher
surface tension reflecting lower camphor concentration, which
can be understood as negative chemotaxis [11–16]. Several
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types of active rotors, or self-propelled rotors, were recently
reported using camphor or some other chemicals with surface
activity [17–29]. For example, an elliptic camphor paper can
rotate around an axis penetrating a hole at the center of the
paper [17,18]. We also reported a camphor rotor, in which a
plastic plate with two or more camphor particles can freely
rotate around an axis penetrating at the center of the plate
[19,20]. Some other types of rotors using camphor or other
surface-active compounds have also been reported.

As theoretical approaches for the camphor particle motion,
the reaction-diffusion equation for camphor concentration
coupled with the Newtonian equation for a camphor particle
motion has often been adopted [14,15,30,31]. We previously
discussed the bifurcation of a camphor rotor by considering
the time evolution for the camphor concentration coupled with
the Newtonian equation for the rotation of the arm attached
with camphor particles [19,20]. We theoretically derived the
simplified ordinary differential equation on the angle of the
camphor rotor using the perturbation method and showed
that the self-propelled rotation emerges through supercritical
pitchfork bifurcation by changing the friction coefficient as
a bifurcation parameter. Sharma and co-authors recently re-
ported the results of experiments and numerical simulation
based on the simple mathematical model. In their experi-
mental system, the two rotors made of rectangular camphor
papers were closely located, and they observed the desyn-
chronization and antiphase synchronization in our definition,
i.e., the particles alternately come close to the other rotor. In
their numerical simulation, they assume that a camphor rotor
has an intrinsic angular velocity and interacts with the other
rotor by a Yukawa-type potential depending on their relative
position. They succeeded in reproducing their experimental
results [21]. They also investigated the interaction between
the multiple rotors and reported many interesting states such
as synchronous, quasiperiodic, and chaotic states [22–25].
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FIG. 1. Schematic illustration for the active rotors and definition
of phases. (a) A single rotor. (b) Two coupled rotors which rotate in
the same direction (counterclockwise). (c) Two coupled rotors which
rotate in different directions. The first (left) and second (right) ones
rotate counterclockwise and clockwise, respectively.

As mentioned above, a single rotor composed of the parti-
cle with a surface-active compound rotates due to the surface
tension gradient at the water surface, and the surface ten-
sion is a function of the concentration of the compound. In
the typical experiments with rotors with camphor particles,
the rotation period of the rotors is of the order of 1 s and
the effective diffusion length of the concentration field is
several tens of millimeters. Thus, the characteristic time for
the chemical compound to diffuse to the other rotor is compa-
rable to the rotation periods. Therefore, we consider that the
interaction through the concentration field is important when
the distance between rotors is large. Thus, here we discuss
the dynamics of camphor rotors including the time evolu-
tion of the concentration field. We found that the in-phase
or antiphase synchronization mode occurs depending on the
distance between the rotors. In addition, we succeeded in the
mathematical analysis based on the phase description.

Our manuscript is constructed as follows: We first describe
the mathematical model for the active rotors in Sec. II and then
show the results of numerical simulation based on the model
in Sec. III. Then, we perform the theoretical analyses using
the phase reduction. The procedure and results of the analyses
are described in Sec. IV. Then, we discuss the validity of the
phase description by directly calculating the phase coupling
function using numerical simulation in Sec. V. Finally, we
summarize the results and show a possible extension of our
model in Sec. VI.

II. MATHEMATICAL MODEL

We construct a mathematical model for a system with
symmetric active rotors, which can rotate in either clockwise
or counterclockwise direction, based on the previous studies
[14,15,31]. We mainly consider a two-rotor system, but also
consider a single-rotor one to clarify the characteristics of
a composing rotor. Our model comprises the time-evolution
equation for the configurations of the rotors with particles
(camphor particles) that release a surface-active compound
(camphor molecules), and that for the concentration of a
surface-active compound.

The ith particle can move along a circle with a radius of a
and the center position of �i. Therefore, the particle position
can be described only by using one variable φi, which is called
the phase of the ith particle. We define the origin and positive
direction of each phase as schematically shown in Fig. 1. For
a single-rotor system as in Fig. 1(a), we set �1 = 0 and thus

we can express the position of the particle position r1 as

r1 = �1 + ae(φ1) = ae(φ1). (1)

For a two-rotor system, as in Figs. 1(b) and 1(c), we set �1 =
−(L/2)ex and �2 = (L/2)ex. For the symmetric expression
between the first and second rotors on the time evolution of
each phase, the origins of the phases are set so that φi = 0
corresponds to the direction toward the center of the other
rotor, and positive directions of the phase are set as the rotation
direction of each rotor. That is to say, the positions of the two
particles r1 and r2 are expressed using the phases φ1 and φ2 as

r1 = �1 + ae(φ1) = −L

2
ex + ae(φ1), (2)

r2 = �2 − ae(±φ2) = L

2
ex − ae(±φ2). (3)

In Eq. (3), the positive and negative signs correspond to the
rotation in the same direction [Fig. 1(b)] and in the opposite
direction [Fig. 1(c)], respectively. Here, we set the Cartesian
coordinates so that the origin meets the midpoint of the centers
of the two rotors and the line connecting the centers of the two
rotors meets the x axis. The unit vector in the x and y axes is
set as ex and ey, respectively, and e(θ ) is a unit vector in the
direction of θ , i.e., e(θ ) = cos θex + sin θey.

The time-evolution equation for the rotor is obtained based
on the Newtonian equation with the overdamped scheme. That
is to say, the equation is written as

ηiA
dri

dt
= ηiAvi = Fu,i + Fc,i, (4)

where vi is the velocity of the particle composed of the ith
rotor, ηi is the friction coefficient per area for the ith rotor,
and A is the area of the particle. The velocity vi is expressed
using the phase φi as

v1 = a
dφ1

dt
e
(
φ1 + π

2

)
, (5)

v2 = a
dφ2

dt
e
(
φ2 ± π

2

)
, (6)

where the positive and negative signs correspond to the cases
with the same and opposite rotation directions, respectively.
Fu,i and Fc,i are the force exerted on the ith particle due
to the surface tension gradient and the constraint force in
the direction of e(φi ). The force due to the surface tension
gradient is expressed using area integration as

Fu,i =
∮

∂�i

[−�un]d	

=
∫∫

�i

[−�∇u]dA

= − �

∫∫
R2

(∇u)S(r − ri )dA, (7)

where u is the concentration field of the surface-active chem-
ical compound, �i is the region of the particle composing the
ith rotor, ∂�i is the periphery of �i, and n is the outward nor-
mal unit vector at the particle periphery. dA and d	 are the area
and line elements. The surface tension should be a decreasing
function of the concentration of the surface-active compound.
Here, we assume a linearity between surface tension and the
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concentration, where the proportionality constant is −�. S(·)
is a level function. In the numerical simulation, we adopt a
smoothed step function which has values close to unity inside
the particle and values close to zero outside of it, i.e.,

S(�) =

⎧⎪⎪⎨
⎪⎪⎩

1, |�| � R − ε

1 − (|�| − R + ε)2/(2ε2), R − ε < |�| � R
(|�| − R − ε)2/(2ε2), R < |�| < R + ε

0, |�| � R + ε,

(8)

where R is the radius of a particle of the surface-active
compound and ε is a smoothing factor. Then, we obtain the
evolution equation by calculating the vector product of Eq. (4)
with ae(φi ) as

η1Aa2 dφ1

dt
= (r1 − �1) × F1

= ae(φ1) × (Fu,1 + Fc,1)

= ae
(
φ1 + π

2

)
· Fu,1 (9)

and

η2Aa2 dφ2

dt
= ±(r2 − �2) × F2

= ∓ae(±φ2) × (Fu,2 + Fc,2)

= ∓ae
(
±φ2 + π

2

)
· Fu,2

= ae
[
±

(
φ2 − π

2

)]
· Fu,2. (10)

Here, the upper and lower signs correspond to the rotation
in the same rotation direction and the opposite rotation di-
rection, respectively. The operator “×” denotes the vector
product in two dimensions, i.e., α × β = αxβy − αyβx for
α = αxex + αyey and β = βxex + βyey. In the calculation, we
used that the constraint force Fc,1 is parallel to e(φ1) and thus
Fc,1 × e(φ1) = 0. We also used that Fc,2 is parallel to e(±φ2)
and thus Fc,2 × e(±φ2) = 0.

The dynamics of the concentration field is described as

∂u

∂t
= ∇2u − u + 1

A

N∑
i=1

S(r − ri ), (11)

where the first, second, and third terms on the right side
correspond to the diffusion, evaporation, and supply of the
surface-active chemical compound. S(r − ri )/A denotes the
supply of the surface-active compound from the ith particle
located at ri, and N = 1 for a single-rotor system and N = 2
for a two-coupled rotor system.

It should be noted that we used the equations with dimen-
sionless variables. The length, time, and concentration are
normalized with the diffusion length

√
D/κ , the characteristic

time of sublimation, 1/κ , and the ratio between the supply rate
and sublimation rate, f /κ . Here, D is the effective diffusion
constant of the surface-active chemical compound [32,33],
κ is the sublimation rate, and f is the supply rate of the
compound for each disk.
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FIG. 2. Numerical results for a single rotor. (a) Time series of
dφ1/dt for η1 = 0.05 (red), 0.1 (green), 0.15 (cyan) and 0.2 (blue).
(b) The stable angular velocity ω depending on the friction coef-
ficient η1. A single rotor exhibited a rotation with a finite angular
velocity for η1 < ηc � 0.17, while it stopped for η1 > ηc.

III. NUMERICAL SIMULATION

Numerical simulation was performed based on the model
in Sec. II. For the numerical simulation, we adopted the Euler
method for the dynamics of the rotors in Eqs. (9) and (10)
and with an explicit method for the dynamics of the con-
centration in Eq. (11). The program code was prepared by
ourselves in the C language. The calculation was performed
in the region with −X/2 � x � X/2 and −Y/2 � y � Y/2.
The Robin boundary condition ∇u · nb + u = 0 was adopted
[34], where nb is the outward normal unit vector at the
boundary. The initial condition was set as u = 0 in all of the
calculation region. In order to stabilize the rotation direction,
we fixed dφi/dt = 20 for 0 � t � 1. Due to the asymmetry
in the concentration field around the particle maintained by
the rotational motion, we succeeded in obtaining the stably
rotating rotors. φ1 and φ2 at t = 0 were set to be 0 and
π/2, respectively, so that the convergence to the in-phase and
antiphase synchronization modes could be easily obtained.
The parameters were fixed as � = 1, R = 0.1, a = 0.2, and
ε = 0.025. The spatial mesh and time step were �x = 0.025
and �t = 0.0001. The calculation region was X = 16 and
Y = 10.

First, we performed a numerical simulation for a single
rotor. In Fig. 2(a), we show the time series of dφ1/dt for η1 =
0.05, 0.1, 0.15, and 0.2. For η1 = 0.05, 0.1, and 0.15, dφ1/dt
converged to a finite positive value, while dφ1/dt decayed to
zero for η1 = 0.2. We also confirmed that at t = 10, dφ1/dt
reached a steady value. Therefore, we defined a stable angular
velocity ω as dφ1/dt at t = 100. In Fig. 2(b), the plot of ω

against the friction coefficient η1 is shown. The results suggest
that a single rotor exhibited a stable rotation at a finite constant
angular velocity for η1 < ηc, while it stopped for η1 > ηc,
where ηc � 0.17. This can be understood as a supercritical
pitchfork bifurcation just as shown in the previous study [19].

Then, we fixed η1 = η2 = 0.1 and calculated the behavior
of the coupled system. We demonstrated the two cases: (i)
the two rotors rotate in the same direction [cf. Fig. 1(b)] and
(ii) they do so in the opposite directions [cf. Fig. 1(c)]. In
order to clarify the mode of synchronization, we detected the
time τ (i)

μ at which the rotor i passes through the line segment
connecting �1 and �2 for the μth time. Then, the phase
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FIG. 3. Snapshots representing the particle position and camphor
concentration at t = 1000, at which the coupled rotors for L = 2 and
3 reach the stable synchronization mode. (a) L = 2 and (b) L = 3 in
the case with the same rotation direction. (c) L = 2 and (d) L = 3 in
the opposite rotation direction. The yellow arrows show the rotation
direction. The cross points of the yellow dotted lines correspond to
the centers of the rotors, �1 and �2. The corresponding videos are
available in the Supplemental Material (SM) [35].

difference is defined as

�φ = 2π
τ (2)
μ − τ (1)

ν

τ
(1)
ν+1 − τ

(1)
ν

, (12)

where μ and ν holds τ (1)
ν � τ (2)

μ < τ
(1)
ν+1.

We changed L and calculated the dynamics for the coupled
rotors until t = 10 000. The snapshots, after the synchronized
state becomes stable, are shown for L = 2 and 3 in each
rotation direction in Fig. 3. The time evolution of �φ is shown
in Fig. 4. In both cases, with the same and opposite rotation
directions, the in-phase synchronization (�φ = 0) was ob-
served for L = 2 and 4, while the antiphase synchronization
(�φ = π ) was observed for L = 3. The relaxation time to the
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FIG. 4. Numerical results for coupled rotors. Time series of �φ

are plotted for (a) the case with the same rotation direction and (b) the
case with the opposite rotation direction. The distance between the
two rotor centers L was (a) L = 2 (red), (b) L = 3 (green), and (c)
L = 4 (cyan). In both cases, in-phase synchronization was observed
for L = 2 and 4, while antiphase synchronization was observed for
L = 3.
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FIG. 5. Numerical results for coupled rotors. The phase dif-
ferences �φ at t = 5000 (light green), 10 000 (yellow), 15 000
(orange), and 20 000 (red) are plotted in (a) the case with the same ro-
tation direction and (b) the case with the opposite rotation direction.
In-phase synchronization (�φ = 0) and antiphase synchronization
(�φ = π ) alternate with an increase in L.

synchronized state was intensively dependent on the distance
L between the two rotors.

In order to clearly show the dependence of the synchro-
nization mode on the distance L, we plotted �φ at t = 5000,
10 000, 15 000, and 20 000 against L in Fig. 5. It clearly
exhibits that the in-phase and antiphase synchronization al-
ternates with an increase in L. The preferable synchronization
mode was almost the same in both cases. In Fig. 5, the phase
difference was not converged for the region greater than 4
and those close to the transition points between the in-phase
and antiphase synchronization. This should be because, in
these regions, the interaction between the two rotors was so
small that it takes much time to reach the stable synchronized
state of the rotors. In such a case, synchronization cannot be
observed in actual systems due to the inevitable fluctuation.

In the above paragraphs, we only showed the numerical
simulation results on the synchronization of the two identical
rotors. In the synchronization of nonlinear oscillators, it is
known that the synchronization can be observed for the two
oscillators with slightly different intrinsic angular velocities
[36,37]. Thus, we considered the two slightly different rotors
by fixing η1 = 0.1 and varying η2 when L = 2. We measured
the averaged angular velocities ω1 and ω2 over 100 < t < 200
and calculated the difference between them �ω = ω2 − ω1.
The plots of �ω against η2 − η1 are shown in Figs. 6(a) and
6(b) in the case with the same and opposite rotation direc-
tions, respectively. We observed the synchronization ranges in
−0.0005 � η2 − η1 � 0.0005, where �ω = 0. We also mea-
sured the phase difference �φ = φ2 − φ1 when the two rotors
synchronized. As shown in Figs. 6(c) and 6(d), the phase
differences �φ decreased with an increase in η2 − η1, and
they are 0 when η2 = η1. This means that perfect in-phase
synchronization was realized for the two identical rotors,
while in-phase synchronization with a slight phase shift was
realized for the two rotors with slightly different intrinsic
angular velocities. These results suggest that the behavior of
the coupled two-rotor system is translated in terms of the
synchronization of the two nonlinear oscillators.

IV. THEORETICAL ANALYSIS

In order to discuss the mechanism of the alternation of the
stable synchronization modes depending on L, we perform the
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FIG. 6. Numerical results on the synchronization for two coupled
rotors with different intrinsic angular velocities by setting η1 �= η2

with L = 2. Here, we fixed η1 = 0.1 and varied η2. (a), (b) The dif-
ference �ω in the averaged angular velocities depending on η2 − η1

in the cases with (a) the same and (b) the opposite rotation directions.
(c), (d) Phase difference for �φ when the two rotors synchronized
(|�ω| < 0.01) depending on η2 − η1 in the cases with (c) the same
and (d) the opposite rotation directions.

theoretical analysis to discuss the synchronization of the two
active rotors based on the phase reduction method. Hereafter,
we only consider the case with two identical rotors, i.e., η1 =
η2 = η. The model in Eqs. (1)–(11) is used, but a point source
is adopted, i.e., R → +0 as

∂u

∂t
= ∇2u − u +

N∑
i=1

δ(r − ri ), (13)

in the place of Eq. (11), where δ(·) is the Dirac’s delta
function.

Since the time-evolution equation for the concentration
field u in Eq. (11) is linear, u is described as the summation of
u1 and u2, which originate from the supply from the particles
1 and 2, respectively. That is to say,

u = u1 + u2, (14)

where
∂ui

∂t
= ∇2ui − ui + δ(r − ri ), (15)

for i = 1, 2.
As for the time evolution of φi, Eqs. (9) and (10) give

ηa2 dφ1

dt
= ae

(
φ1 + π

2

)
· 1

A
Fu,1 (16)

and

ηa2 dφ2

dt
= ae

[
±

(
φ2 − π

2

)]
· 1

A
Fu,2. (17)

The force originating from the surface tension Fu,i is also
decomposed into two terms,

Fu,i = Fu,i,1 + Fu,i,2, (18)

in the same way as in the concentration u. Under the point-
source approximation,

1

A
Fu,i, j = −�

A

∫∫
R2

(∇u j )δ(r − ri )dA,

→ −�∇u j |r=ri , (19)

for i �= j. It should be noted that the expression in Eq. (19) for
i = j does not hold since the force Fu,i,i/A shows the logarith-
mic divergence and we should introduce a small positive value
corresponding to the particle radius [19,38]. Nevertheless,
from the physical point of view, the ith rotor should rotate
with a constant angular velocity for t → ∞ when it is driven
only by Fu,i,i. We define the terminal angular velocity to be ω

and then the following equations hold:

1

ηAa
e
(

φ1 + π

2

)
· Fu,1,1 = ω, (20)

for rotor 1, and

1

ηAa
e
[

±
(

φ2 − π

2

)]
· Fu,2,2 = ω, (21)

for rotor 2. The positive and negative signs correspond to the
same and opposite rotation directions, respectively.

Hereinafter, the effect of the concentration field of the
surface-active compound released from the other rotor is
treated as a perturbation. We first calculate the concentration
field of the chemical compound released from one rotor and
then the force originating from the concentration field exerting
on the other particle.

For the construction of the concentration field generated
by one camphor rotor, we consider that a single rotor is ro-
tating at a constant angular velocity ω, that is, the position is
described as r = ae(φ1) = ae(ωt + φ0). We introduce a co-
rotating frame with the rotor, where the variables in the frame
are expressed with tildes. The single point source is located at
r̃ = aẽx and the concentration field ũ in the co-rotating frame
should be in a steady state. Here, ẽx is a unit vector in the
x̃ direction in the co-rotating frame. Then, the steady-state
concentration field should hold,

−ω
∂ ũ

∂θ̃
= ∇̃2ũ − ũ + δ(r̃ − aẽx ), (22)

where ∇̃ is the nabla operator in the co-rotating frame. After
lengthy calculation, we obtain

ũ(r̃, θ̃ ) =
{

ũin(r̃, θ̃ ), r̃ < a
ũout (r̃, θ̃ ), r̃ � a,

(23)

where

ũin(r̃, θ̃ ) = 1

2π

∞∑
n=−∞

Kn(a
√

1 − inω)In(r̃
√

1 − inω)einθ̃

(24)
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and

ũout (r̃, θ̃ ) = 1

2π

∞∑
n=−∞

In(a
√

1 − inω)Kn(r̃
√

1 − inω)einθ̃ .

(25)

Here, In(·) and Kn(·) are the modified Bessel functions of
the first and second kinds with the degree of n, respectively.
The detailed derivation and notes for the Bessel function with
complex parameters are shown in Appendix A.

Based on Eq. (25), we obtain the asymptotic form of the
concentration field far from the rotor. Here we consider r̃ 	
1 	 a. That is to say, we consider the case that the distance
between two rotors is much greater than the diffusion length
and the arm of the rotor is much less than the diffusion length.
We take into account the order up to O(a). Using Eq. (25), we
obtain the asymptotic form as

ũ(r̃, θ̃ ) � 1

2
√

2π r̃
e−r̃ + a

2
√

2π r̃
ρ1/4e−r̃

√
ρ cos(χ/2)

× cos

(
θ̃ − χ

4
+ r̃

√
ρ sin

χ

2

)
+ O(a2). (26)

Here, we set 1 − iω = ρe−iχ , that is, ρ = √
1 + ω2 and χ =

arctan ω. The detailed calculation is found in Appendix B.
In the laboratory frame, the asymptotic form of the concen-

tration field generated by a rotor, which is located at the origin,
whose phase is φ, and which rotates in the counterclockwise
rotation, is described as

u(r, θ, φ) � 1

2
√

2πr
e−r + a

2
√

2πr
ρ1/4e−r

√
ρ cos(χ/2)

× cos

(
θ − φ − χ

4
+ r

√
ρ sin

χ

2

)
+ O(a2),

(27)

for r 	 1 and t → ∞. It should be noted that the first term
with O(1) does not depend on time and that the second term
with O(a) depends on time, which can induce the synchro-
nization between multiple rotors.

We adopt the asymptotic form in Eq. (27) for u j to calculate
Fu,i, j (i �= j) and consider the interaction between two rotors
in Eq. (19). Considering that the asymptotic form of u j is
described as a function of φ j and that the position ri is a
function of φi, the force Fu,i, j is a function of φi and φ j ,
i.e., Fu,i, j (φi, φ j ). We assume that the interaction is so weak
that the phase difference hardly changes in one period 2π/ω

and we can adopt the averaging method in the phase
description [39].

First, we calculate the time evolution of φ1 from Eqs. (9)
and (20) as

dφ1

dt
= 1

ηAa
e
(

φ1 + π

2

)
· Fu,1

= ω + 1

ηAa
e
(

φ1 + π

2

)
· Fu,1,2(φ1, φ2),

� ω + ω

2πηAa

∫ 2π/ω

0
e
(

φ1 + π

2

)
· Fu,1,2(φ1, φ2)dt

= ω + 1

2πηAa

×
∫ 2π

0
e
(

φ1 + π

2

)
· Fu,1,2(φ1, φ1 + �φ)dφ1

≡
{
ω + Gs(�φ) (same rotation direction)

ω + Go(�φ) (opposite rotation direction).
(28)

Here, we set �φ = φ2 − φ1 and calculate the integral under
the assumption that �φ is constant. It should be noted that
Gs(�φ) and Go(�φ) are different since Fu,1,2 depends on the
rotation direction of rotor 2. In the same manner, we obtain
from Eqs. (10) and (21) as

dφ2

dt
� ω + 1

2πηAa

×
∫ 2π

0
e
[
±

(
φ2 − π

2

)]
· Fu,2,1(φ2 − �φ, φ2)dφ2

=
{
ω + Gs(−�φ) (same rotation direction)

ω + Go(−�φ) (opposite rotation direction),
(29)

where the positive and negative signs in the second term on
the right side correspond to the cases with the same and op-
posite rotation directions, respectively. Gs(�φ) and Go(�φ)
are the so-called phase coupling functions in terms of coupled
oscillators [37].

In the case with the same rotation direction, the second
term on the right side in Eq. (29) is calculated as

Gs(�φ) � �ρ1/4e−√
ρL cos(χ/2)

4η
√

2πL

×
{

1

2L
sin

[
�φ + χ

4
− L

√
ρ sin

(
χ

2

)]

− √
ρ sin

[
�φ + 3χ

4
− L

√
ρ sin

(
χ

2

)]}

≡ gs(�φ), (30)

which is plotted in Fig. 7(a). The detailed calculation is shown
in Appendix C. Then, we have

dφ1

dt
�ω + gs(�φ), (31)

dφ2

dt
�ω + gs(−�φ). (32)

By calculating the difference between two equations, we ob-
tain the time-evolution equations for the slow dynamics of
�φ as

d�φ

dt
�gs(−�φ) − gs(�φ) ≡ hs(�φ), (33)
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FIG. 7. Plots of (a) gs, (b) go, (c) hs, and (d) ho against �φ for
L = 2, 2.5, 3, and 3.5. We adopt ω = 13.23.

where

hs(�φ) = �ρ1/4e−√
ρL cos(χ/2)

2η
√

2πL
sin �φ

×
{

− 1

2L
cos

[
−χ

4
+ L

√
ρ sin

(
χ

2

)]

+ √
ρ cos

[
−3χ

4
+ L

√
ρ sin

(
χ

2

)]}

≡ �ρ1/4e−√
ρL cos(χ/2)

2η
√

2πL
Cs sin �φ

≡ h(1)
s sin �φ. (34)

As shown in Fig. 7(c), �φ = 0 and π are fixed points of
Eq. (33) and their stability is determined by the sign of Cs

since the factors other than Cs are positive. That is to say, the
fixed point at �φ = 0 is stable when Cs < 0 and it is unstable
when Cs > 0. On the other hand, the fixed point at �φ = π

is unstable when Cs < 0 and it is stable when Cs > 0. Thus,
when Cs < 0 and Cs > 0, in-phase and antiphase synchro-
nization should occur, respectively. It should be noted that Cs

depends only on ω and L since ρ and χ are functions of ω, as
shown just below Eq. (26). Cs and h(1)

s for η = 0.1 are plotted
as a function of L in Fig. 8, where ω is set to be constant at
13.23 from the numerical results in Fig. 2.

In the case with the opposite rotation direction, we obtain,
in the same manner as in the case with the same rotation
direction,

Go(�φ) � −�ρ1/4e−√
ρL cos(χ/2)

4η
√

2πL

×
{

3

2L
sin

[
�φ + χ

4
− L

√
ρ sin

(
χ

2

)]

5

0

–5
2 53

L

(a)

Cs

4

5

0

–5
2 53

L

Co

4

(b)
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–0.06
2 53
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4 2 53 4

(d)
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(1)

0.02

0
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FIG. 8. Plots of (a) Cs, (b) Co, (c) h(1)
s , and (d) h(1)

o against L. Here,
we adopt ω = 13.23. Positive (red) and negative (cyan) signs repre-
sent the preference of the antiphase and in-phase synchronization,
respectively.

+ √
ρ sin

[
�φ + 3χ

4
− L

√
ρ sin

(
χ

2

)]}

≡ go(�φ), (35)

which leads to

d�φ

dt
� go(−�φ) − go(�φ) ≡ ho(�φ). (36)

Here, we have calculated ho(�φ) as

ho(�φ) = �ρ1/4e−√
ρL cos(χ/2)

2η
√

2πL
sin �φ

×
{

3

2L
cos

[
−χ

4
+ L

√
ρ sin

(
χ

2

)]

+ √
ρ cos

[
−3χ

4
+ L

√
ρ sin

(
χ

2

)]}

≡ �ρ1/4e−√
ρL cos(χ/2)

2η
√

2πL
Co sin �φ

≡ h(1)
o sin �φ. (37)

The plots of go(�φ) and ho(�φ) are shown in Figs. 7(b) and
7(d). In this case, �φ = 0 and π are also the fixed points. We
can discuss the stability of the synchronization mode in the
parallel manner, and thus the sign of the coefficient Co plays an
important role. To exemplify the stable synchronization mode,
Co are also plotted against L in Fig. 8. The signs of Cs and
Co almost coincide for fixed L, which means that the stable
synchronization mode is the same in the cases with the same
and opposite rotation directions for each L.
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FIG. 9. (a) Snapshot of the concentration field for a single rotor
rotating at a constant angular velocity at t = t0 � 100.1436, when
φ1 = 0 first holds after t = 100. (b) Averaged concentration field ū
over a period. (c) Difference �u between the concentration field u in
(a) from the averaged field ū in (b). (d) Enhanced profile of (c), where
the color range for concentration is magnified. The region with the
size 8 × 8 is shown. Corresponding videos for (a), (c), and (d) are
available in the SM [35].

V. DISCUSSION

Here, we discuss the mechanism on the synchronization
of the coupled rotors based on the theoretical results. The
concentration field of the surface-active compound that one
rotor releases is expressed in Eq. (27). The first term on
the right side does not depend on the phase, but the second
term does. The effect of the dynamics of the other rotor
is approximately obtained by averaging the effect over one
period. In such an averaging process, the effect of the first
term is canceled out and only the second term matters. This
means that the periodically changing concentration field only
affects the stability of the synchronization mode. To visualize
the time-dependent component of the concentration field, we
numerically calculated the averaged concentration field ū,

ū(x, y) = 1

T

∫ t0+T

t0

u(x, y, t )dt, (38)

where t0 was the time when the rotor motion reached the sta-
tionary state and corresponded to φ1 � 0. Figure 9 shows the
plot of �u(x, y, t0), where �u(x, y, t ) = u(x, y, t ) − ū(x, y).
The time-dependent component �u has a spiral structure,
which is consistent with the second term on the right side of
Eq. (27). The pitch of the spiral L0 is almost double of the
length L for which the stable synchronization mode changes.
Considering that such spiral structure mainly comes from the
second term on the right-hand side in Eq. (27), the pitch L0 is
estimated from

L0
√

ρ sin
χ

2
= 2π. (39)

Actually, L0 is calculated as 2.54 with ω = 13.23. This value
for L0 well corresponds to both the results by numerical sim-
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FIG. 10. Plots of (a) Gs, (b) Go, (c) Hs, and (d) Ho against �φ.
The results with L = 2 (red), L = 2.5 (orange), L = 3 (green), and
L = 3.5 (cyan) are shown in each panel.

ulations and theoretical analyses, where the stability of the
synchronization mode changes every �1.2 in L.

Next, we directly calculated the phase coupling function
using the numerical simulation in order to justify the ap-
proximation adopted in the theoretical analysis. We directly
calculated the functions Gs(�φ) and Go(�φ) in Eqs. (28) and
(29). Hs(�φ) and Ho(�φ) are defined as

Hi(�φ) = Gi(−�φ) − Gi(�φ), (40)

where i denotes s or o. The plots for Gs(�φ), Go(�φ),
Hs(�φ), and Ho(�φ) obtained from the numerical calculation
are shown in Fig. 10. In the calculation, we first calculated the
dynamics of the ith rotor only considering the concentration
field released from itself until it reached a stationary angular
velocity, and then calculated the force Fu, j,i working on the
jth particle rotating at the given angular velocity, which was
the same as the ith rotor’s. Using the obtained force, Gs(�φ)
and Go(�φ) were calculated by averaging over a period. The
numerical simulation was performed in the same procedure as
in Sec. II. We detected τ (1)

ν just after t = 100 and calculated
the average from t = τ (1)

ν to τ
(1)
ν+1. Gi and Hi were calculated

for �φ = 2πλ/360, where λ = 0, . . . , 359, and the averaging
was performed for each time step during one period. The
functions Hs(�φ) and Ho(�φ) are odd functions, which take
the value of zero at �φ = 0, π and have one positive and
one negative peak. In order to discuss the stability in the
synchronization mode, the slopes at �φ = 0, π are important.
Therefore, we consider the Fourier sine expansion of the func-
tions as

Hi(�φ) =
∞∑

k=1

Ĥ (k)
i sin k�φ, (41)

where i denotes s or o. The first-mode coefficient determines
the stability of the synchronization mode; the in-phase and
antiphase synchronization is stable for Ĥ (1)

i < 0 and Ĥ (1)
i > 0,

respectively. In Fig. 11, Ĥ (1)
s and Ĥ (1)

o are plotted against L,
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FIG. 11. Plots of Ĥ (1)
s and Ĥ (1)

o against L. The positive and nega-
tive values are indicated with red and cyan points, respectively. The
positive Ĥ (1)

s or Ĥ (1)
o means that the antiphase synchronization state

is stable, while the negative Ĥ (1)
s or Ĥ (1)

o means that the in-phase
synchronization state is stable.

which is close to the plot in Figs. 8(c) and 8(d) obtained by
theoretical analysis.

In the calculation of the phase coupling function shown in
the previous paragraph, we assume that the two rotors rotate
at a constant angular velocity, i.e., intrinsic angular velocity;
however, the angular velocity of the rotor should be affected
by the concentration field originating from the other rotor.
Therefore, we also calculated the phase coupling function
including the effect of the change in the angular velocity
and found that the time evolution of the phase difference is
qualitatively the same as the one shown in Figs. 10 and 11.
The details are shown in Appendix D.

Here, we discuss the parameter set used in the numerical
simulation. From the previous reports on experiments [40], the
diffusion length is considered to be several tens of millimeters.
Considering that the unity in the length scale is set to be the
diffusion length, the arm length of the rotor and the distance
between the rotors are estimated to be several millimeters and
several centimeters, respectively. These scales are in the same
scale adopted in the experimental setup [23]. The timescale
is normalized by the characteristic evaporation time, which is
around several seconds. The angular velocity of the rotors and
the characteristic time for the relaxation time to the synchro-
nization mode should be affected by the combination of the
particle size, supply rate of the chemicals, and proportionality
coefficient between the surface tension and concentration.
Since these parameters are difficult to be directly measured
from the experiments, the more precise correspondence to the
experimental system should be done as a future study.

In the present system, the stable synchronization mode
changes depending on the distance between the two rotors.
There have been several studies of similar behaviors in the
other systems, such as the cell thickness pattern in slime
mold [41] and the coupled system of a flickering candle flame
[42,43]. The time delay in the interaction plays an important
role in the former case, while the nonlinear coupling manner
is dominant in the latter case. In the coupling between the
camphor rotor discussed in the present paper, the interaction
between two rotors is through the concentration field that
obeys the linear equation, and thus the time delay seems to
play an important role in the present system. Actually, the
spiral structure shown in Fig. 9 is the result of the supply from
the rotating rotor and diffusion. Due to the linearity of the

equation, we succeeded to write the time-delay effect directly
through the concentration field, and such time-delay effect is
reduced to the interaction term in the phase dynamics.

VI. CONCLUSION

We investigated the coupled active rotors, which sponta-
neously exhibit rotation due to the surface tension gradient
originating from the surface-active chemicals released from
itself. It has been reported that by experiments, such a coupled
rotor system shows both in-phase and antiphase synchroniza-
tion, but the mechanism was not fully clarified. We consider
the mathematical model which includes the time evolution of
the concentration field and the motion of the rotors, and obtain
the results that the stable synchronization mode alternates
between in-phase and antiphase synchronization with an in-
crease in the distance between the two rotors. By adopting the
phase description, which has often been used for the coupled
oscillator systems, we derive the time evolution equation for
the phase difference between the two rotors. The theoreti-
cal results suggest the alternate stable synchronization mode
depending on L, which well corresponds to the numerical
calculation results. We also directly evaluated the phase cou-
pling function from the numerical calculation and confirmed
that our theoretical approach works well. We hope that our
results will be reproduced in the experimental systems with
two active rotors with well-controlled intrinsic angular veloc-
ities. As for the extension of the present study, three-or-more
rotor systems should be interesting since the system has many
possible stable modes and may exhibit chaotic behaviors. As
another extension, the theoretical description for the case with
strong interaction should be interesting. In such a case, the
rotation of each rotor should change to the reciprocal motion
along an arc and such reciprocal motion of the two rotors can
synchronize.
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APPENDIX A: DERIVATION OF CONCENTRATION FIELD
IN A CO-ROTATING FRAME WITH A SINGLE ROTOR

In this section, we derive a steady concentration field in
a co-rotating frame with a single rotor with an angular ve-
locity ω. The positions in the original system and in the
co-rotating system are denoted as r = t (r cos θ, r sin θ ) and
r̃ = t (r̃ cos θ̃ , r̃ sin θ̃ ), respectively. Then, we have

r̃ = R(−ωt )r, (A1)

where R(ψ ) is a matrix for rotation in a two-dimensional
system, i.e.,

R(ψ ) =
(

cos ψ − sin ψ

sin ψ cos ψ

)
. (A2)
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In other words, we have the relation as

θ̃ = θ − ωt . (A3)

Then the operator for the time derivative is rewritten in the r̃
system as

∂

∂t
+ ω

(− sin ωt cos ωt
− cos ωt − sin ωt

)
r · ∇̃

= ∂

∂t
+ rω

[
sin(θ − ωt )

− cos(θ − ωt )

]
· ∇̃

= ∂

∂t
+ r̃ω

(
sin θ̃

− cos θ̃

)
· ∇̃

= ∂

∂t
− ωr̃ẽθ · ∇̃. (A4)

Here, ∇̃ is the nabla operator in the r̃ system and ẽθ is a unit
vector in the co-rotating system, ẽθ = t (− sin θ̃ , cos θ̃ ).

The position of the point source ã in the co-rotating frame
is no longer dependent on time and is written as

ã = aẽx, (A5)

where ẽx is a unit vector along the x̃ axis in the r̃ system.
Hereafter, we omit the tilde (˜) for the variables in the

co-moving frame. In order to consider the steady-state con-
centration field u(r, θ ) in the co-rotating system, we set the
time derivative to be 0. Therefore, the equation to be consid-
ered is explicitly written as

−ω
∂u

∂θ
= ∇2u − u + δ(r − a). (A6)

The homogeneous equation for (A6) is expressed as

−ω
∂u

∂θ
= ∇2u − u. (A7)

By assuming that Eq. (A7) has a solution in the form of

u(r, θ ) = fn(r)einθ , (A8)

we obtain

d2 fn

dr2
+ 1

r

dfn

dr
− n2

r2
fn − (1 − inω) fn = 0. (A9)

By setting r̂ = r
√

1 − inω, we get

d2 fn

dr̂2
+ 1

r̂

dfn

dr̂
− n2

r̂2
fn − fn = 0, (A10)

which is the so-called modified Bessel equation and the solu-
tion is given as

fn(r̂) = AnIn(r̂) + BnKn(r̂). (A11)

Thus, fn(r) is described as

fn(r) = AnIn(r
√

1 − inω) + BnKn(r
√

1 − inω). (A12)

Then, the general solution of Eq. (A7) is given as

u(r, θ ) =
∞∑

n=−∞
[AnIn(r

√
1 − inω) + BnKn(r

√
1 − inω)]einθ ,

(A13)

where An and Bn are complex constants. Considering that
u is real, An = A∗

−n and Bn = B∗
−n should hold, where the

superscript “∗” indicates the complex conjugate.
It is notable that the solution of Eq. (A9) should be com-

plex. If we set it to be

fn(r) = pn(r) + iqn(r), (A14)

then we obtain

d2 pn

dr2
+ 1

r

d pn

dr
− n2

r2
pn − pn − nωqn = 0, (A15)

d2qn

dr2
+ 1

r

dqn

dr
− n2

r2
qn − qn + nωpn = 0. (A16)

Considering that the modified Bessel function of the first kind,
In(·), is analytic in C, and the modified Bessel function of
the second kind, Kn(·), is analytic in C except negative real
numbers, the following relations hold:

In(z∗) = [In(z)]∗, (A17)

Kn(z∗) = [Kn(z)]∗. (A18)

These expressions are derived from Eq. (A13) considering
that In(z) does not diverge at |z| → 0 and that Kn(z) does not
diverge at |z| → ∞ for Re(z) > 0. Now we set

1 − inω = ρe−iχn , (A19)

where ρ > 0 and −π/2 < χn < π/2 holds, and define
√

1 − inω = √
ρe−iχn/2. (A20)

Then, we can show that Kn(r
√

1 − inω) does not diverge for
r → ∞.

Thus, we can describe

uin(r, θ ) = A0I0(r) + 2
∞∑

n=1

Re[AnIn(r
√

1 − inω)einθ ],

(A21)

for r < a, and

uout (r, θ ) = B0K0(r)

+ 2
∞∑

n=1

Re[BnKn(r
√

1 − inω)einθ ], (A22)

for r > a.
The coefficients An and Bn are determined by the condition

that u and ∇u are continuous at r = a and that u satisfies
the inhomogeneous equation in Eq. (A6). From the continuity
condition for u, we obtain

AnIn(a
√

1 − inω) = BnKn(a
√

1 − inω), (A23)

and thus we newly set Cn so it holds that

An = CnKn(a
√

1 − inω) (A24)

and

Bn = CnIn(a
√

1 − inω). (A25)
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Then, we calculate the difference in the derivative in the r direction. Note that

lim
r→a−0

∂uin

∂r
= Ĉ0K0(â0)I1(â0) + 2

∞∑
n=1

Re

[
ĈnKn(ân)

In−1(ân) + In+1(ân)

2
einθ

]
(A26)

and

lim
r→a+0

∂uout

∂r
= −Ĉ0I0(ân)K1(ân) − 2

∞∑
n=1

Re

[
ĈnIn(ân)

Kn−1(ân) +Kn+1(ân)

2
einθ

]
, (A27)

where ân = a
√

1 − inω and Ĉn = Cn
√

1 − inω. Considering that Ĉ0 = C0 and â0 = a, we obtain

lim
r→a−0

∂uin

∂r
− lim

r→a+0

∂uout

∂r
= C0[K0(a)I1(a) + K1(a)I0(a)]

+ 2
∞∑

n=1

Re{Ĉn[Kn(ân)In+1(ân) + Kn+1(ân)In(ân) + Kn(ân)In−1(ân) + Kn−1(ân)In(ân)]einθ }

= C0

a
+ 2

∞∑
n=1

Re

[
Ĉn

ân
einθ

]
= C0

a
+ 2

∞∑
n=1

Re

[
Cn

a
einθ

]
. (A28)

Therefore, we set Cn = 1/(2π ) for all n, and we obtain

lim
r→a−0

∂uin

∂r
− lim

r→a+0

∂uout

∂r
= 1

2πa

∞∑
n=−∞

einθ = 1

a
δ(θ ), (A29)

which corresponds to the considered situation.
Considering that ∫ 2π

0
In(r

√
1 − inω)einθ dθ = 0, (A30)∫ 2π

0
Kn(r

√
1 − inω)einθ dθ = 0, (A31)

for any nonzero integer n, and that∫ [
ω

∂u

∂θ
+ ∇2u − u + δ(r − aex )

]
dr = −

∫
u(r)dr + 1 = 0, (A32)

we can explicitly execute the integration of u(r) as∫ 2π

0

∫ ∞

0
u(r, θ )dr = 2π

[∫ a

0

1

2π
K0(a)I0(r)rdr +

∫ ∞

a

1

2π
I0(a)K0(r)rdr

]

= 2π

[
1

2π
K0(a)aI1(a) + 1

2π
I0(a)aK1(a)

]
= a[K0(a)I1(a) + I0(a)K1(a)] = 1, (A33)

which satisfies Eq. (A32).
Therefore, the steady-state concentration field for a single point source at r̃ = aẽx in the co-rotating frame is written as

uin(r, θ ) = 1

2π
K0(a)I0(r) +

∞∑
n=1

Re

[
1

π
Kn(a

√
1 − inω)In(r

√
1 − inω)einθ

]

= 1

2π

∞∑
n=−∞

Kn(a
√

1 − inω)In(r
√

1 − inω)einθ , (A34)

for r < a, and

uout (r, θ ) = 1

2π
I0(a)K0(r) +

∞∑
n=1

Re

[
1

π
In(a

√
1 − inω)Kn(r

√
1 − inω)einθ

]

= 1

2π

∞∑
n=−∞

In(a
√

1 − inω)Kn(r
√

1 − inω)einθ , (A35)

for r > a, which are Eqs. (24) and (25) in the main text. In the calculation, we used the equalities given in Ref. [44].
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APPENDIX B: DERIVATION OF THE ASYMPTOTIC FORM

Here, we derive the asymptotic form of the concentration field far from the source (r 	 1) for a � 1.
Considering the Maclaurin expansion of In(z) is given as [44]

In(z) =
∞∑

k=0

1

k!�(n + k + 1)

(
z

2

)n+2k

, (B1)

the leading term of In(z) is

In(z) = 1

2nn!
zn. (B2)

Therefore, we only need to consider n = 0 and n = ±1 as far as we consider the first order of a. Consider that the asymptotic
form of Kn(z) is

Kn(z) ∼
√

π

2z
e−z

∞∑
k=0

�(n + k + 1/2)

k!�(n − k + 1/2)

1

(2z)k
, (B3)

for | arg z| < 3π/2 [44]. Here, �(·) is the gamma function. For n = 0 and n = 1, we obtain

K0(z) =
√

π

2z
e−z

[
1 − 1

8z
+ O

(
1

z2

)]
, (B4)

K1(z) = K−1(z) =
√

π

2z
e−z

[
1 + 3

8z
+ O

(
1

z2

)]
. (B5)

Then, we only need to consider the terms with n = 0,±1. By setting χ = χ1 = −χ−1, we obtain

uout (r, θ ) = 1

2π

[
K0(r) + a

2
√

ρe−iχ/2K1(r
√

ρe−iχ/2)eiθ + a

2
√

ρeiχ/2K1(r
√

ρeiχ/2)e−iθ

]
+ O(a2) (B6)

� 1

2π

[√
π

2r
e−r + a

2
√

ρe−iχ/2

√
π√

2rρ1/4e−iχ/4
e−r

√
ρe−iχ/2

eiθ + a

2
√

ρeiχ/2

√
π√

2rρ1/4eiχ/4
e−r

√
ρeiχ/2

e−iθ

]
+ O(a2)

= 1

2
√

2πr
e−r

[
1 + a

2
ρ1/4er[1−√

ρ cos(χ/2)](ei[θ−χ/4+r
√

ρ sin(χ/2)] + e−i[θ−χ/4+r
√

ρ sin(χ/2)] )

]
+ O(a2)

= 1

2
√

2πr
e−r + a

2
√

2πr
ρ1/4e−r

√
ρ cos(χ/2) cos

(
θ − χ

4
+ r

√
ρ sin

χ

2

)
+ O(a2), (B7)

and thus we obtain Eq. (26) in the main text. Here, we only considered the leading terms in Eqs. (B4) and (B5), and used
Eq. (A20). In the case that the phase of the rotor is φ1, we obtain Eq. (27) by replacing θ with θ − φ1.

APPENDIX C: CALCULATION OF THE PHASE
DESCRIPTION

Here, we show the detailed calculation of the time evolu-
tion using the averaging method. From Eqs. (19) and (29),
we need to obtain −∇u · e(φ2 − π/2)|r=r2 . Thus, we first
calculate the gradient of the concentration field in the polar
coordinates,

∇u = ∂u

∂r
e(θ ) + 1

r

∂u

∂θ
e
(
θ + π

2

)
. (C1)

The asymptotic form in Eq. (27) is separated into two parts,

u(r, θ, φ1) = u(0)(r) + u(1)(r, θ, φ1)a + O(a2), (C2)

where

u(0)(r) = 1

2
√

2πr
e−r (C3)

and

u(1)(r, θ, φ1) = 1

2
√

2πr
ρ1/4e−r

√
ρ cos(χ/2)

× cos
(
θ − φ1 − χ

4
+ r

√
ρ sin

χ

2

)
. (C4)

Considering that u(0) does not depend on φ1 or φ2, −∇u(0) ·
e(φ2 − π/2)|r=r2 is a function of only φ2 and not φ1. As
a result of the averaging, the dependence on φ2 should be
omitted and it gives only a constant value. Therefore, u(0) only
secondarily affects the stability of the synchronization mode.

Therefore, we consider the effect by u(1). First we calculate
the gradient of u(1) as

∇u(1) =
[
− 1

2r
u(1) − √

ρu(1) cos
χ

2
− √

ρû(1) sin
χ

2

]
e(θ )

− 1

r
û(1)e

(
θ + π

2

)
, (C5)

where we set

û(1) = 1

2
√

2πr
ρ1/4e−√

ρ cos(χ/2)r

× sin

[
θ − φ1 − χ

4
+ √

ρ sin

(
χ

2

)
r

]
. (C6)

Hereafter, we separately calculate the two cases, i.e., the
case with the same rotation direction and that with the op-
posite rotation direction. First, we consider the case with the
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same rotation. We calculate ∇u1 · e(φ2 − π/2) at r = r2 = Lex − ae(φ2). Considering that r =
√

L2 + a2 − 2La cos φ2 and
tan θ = −a sin φ2/(L − a cos φ2) in the polar coordinates, we obtain

−∇u(1) · e
(
φ2 − π

2

)∣∣∣∣
r=r2

= − ∂u(1)

∂r
e(θ ) · e

(
φ2 − π

2

)∣∣∣∣
r=r2

− 1

r

∂u(1)

∂θ
e
(
θ + π

2

)
· e

(
φ2 − π

2

)∣∣∣∣
r=r2

=
(

1

2r
+ √

ρ cos
χ

2

)
u(1) sin(φ2 − θ )|r=r2 −

[
1

r
cos(φ2 − θ ) − √

ρ sin
χ

2
sin(φ2 − θ )

]
û(1)|r=r2 .

(C7)

By considering the Maclaurin expansion of r and θ with respect to a, we obtain

r = L + O(a) (C8)

and

θ = O(a). (C9)

Therefore, we obtain

sin(φ2 − θ ) = sin φ2 + O(a), (C10)

cos(φ2 − θ ) = cos φ2 + O(a). (C11)

We also calculate u(1) and û(1) at r = r2 as

u(1)|r=r2 = ρ1/4e−√
ρ(L−a cos φ) cos(χ/2)

2
√

2π (L − a cos φ2)
cos

[
− a

L
sin φ2 − φ1 − χ

4
+ √

ρ(L − a cos φ2) sin

(
χ

2

)]

= ρ1/4e−√
ρL cos(χ/2)

2
√

2πL
cos

[
−φ1 − χ

4
+ √

ρ sin

(
χ

2

)
L

]
+ O(a) (C12)

and

û(1)|r=r2 = ρ1/4e−√
ρ(L−a cos φ2 ) cos(χ/2)

2
√

2π (L − a cos φ)
sin

[
− a

L
sin φ2 − φ1 − χ

4
+ √

ρ(L − a cos φ2) sin

(
χ

2

)]

= ρ1/4e−√
ρL cos(χ/2)

2
√

2πL
sin

[
−φ1 − χ

4
+ √

ρ sin

(
χ

2

)
L

]
+ O(a). (C13)

Equation (C7) with Eqs. (C10)–(C13) leads to

− ∇u(1) · e
(
φ2 − π

2

)∣∣∣∣
r=r2

= ρ1/4e−√
ρL cos(χ/2)

2
√

2πL

{
− 1

2L
sin

[
−φ2 − φ1 − χ

4
+ L

√
ρ sin

(
χ

2

)]

− 1

2L
cos φ2 sin

[
−φ1 − χ

4
+ L

√
ρ sin

(
χ

2

)]
+ √

ρ sin φ2 cos

[
−φ1 − 3χ

4
+ L

√
ρ sin

(
χ

2

)]}
+ O(a), (C14)

and thus Eqs. (29) and (C2) give

dφ2

dt
� ω + �ρ1/4e−√

ρL cos(χ/2)

4η
√

2πL

{
− 1

2L
sin

[
�φ − χ

4
+ L

√
ρ sin

(
χ

2

)]
+ √

ρ sin

[
�φ − 3χ

4
+ L

√
ρ sin

(
χ

2

)]}
. (C15)

Considering geometric symmetry, we obtain

dφ1

dt
� ω + �ρ1/4e−√

ρL cos(χ/2)

4η
√

2πL

{
− 1

2L
sin

[
− �φ − χ

4
+ L

√
ρ sin

(
χ

2

)]
+ √

ρ sin

[
−�φ − 3χ

4
+ L

√
ρ sin

(
χ

2

)]}
.

(C16)

From these equations, we obtain the time evolution of �φ = φ2 − φ1 as

d�φ

dt
= �ρ1/4e−√

ρL cos(χ/2)

2η
√

2πL
sin �φ

{
− 1

2L
cos

[
− χ

4
+ L

√
ρ sin

(
χ

2

)]
+ √

ρ cos

[
−3χ

4
+ L

√
ρ sin

(
χ

2

)]}
, (C17)
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which corresponds to Eq. (34). In the calculation, we use

cos(�φ + �) − cos(−�φ + �) = 2 cos � sin �φ. (C18)

Next, we consider the case with the opposite rota-
tion directions. In this case, we have to obtain −∇u ·
e(−φ2 + π/2)|r=r2 . The polar coordinates corresponding
to r2 change as r =

√
L2 + a2 − 2La cos φ2 and tan θ =

a sin φ2/(L − a cos φ2). Then, we obtain

− ∇u(1) · e
(

− φ2 + π

2

)∣∣∣∣
r=r2

= −∂u(1)

∂r
e(θ ) · e

(
−φ2 + π

2

)∣∣∣∣
r=r2

− 1

r

∂u(1)

∂θ
e
(

θ + π

2

)
· e

(
−φ2 + π

2

)∣∣∣∣
r=r2

=
(

1

2r
+ √

ρ cos
χ

2

)
u(1) sin(φ2 + θ )|r=r2

+
[

1

r
cos(φ2 + θ ) + √

ρ sin
χ

2
sin(φ2 + θ )

]
û(1)|r=r2 .

(C19)

Equations (C8)–(C11) do not change irrespective of the rota-
tion direction within the order of O(1), and thus we can adopt
the expression in Eqs. (C12) and (C13). Therefore, we obtain

−∇u(1) · e
(
−φ2 + π

2

)∣∣∣
r=r2

= ρ1/4e−√
ρL cos(χ/2)

2
√

2πL

×
{
− 1

2L
sin

[
−φ2 − φ1 − χ

4
+ L

√
ρ sin

(χ

2

)]

+ 3

2L
cos φ2 sin

[
−φ1 − χ

4
+ L

√
ρ sin

(χ

2

)]

+√
ρ sin φ2 cos

[
−φ1 − 3χ

4
+ L

√
ρ sin

(χ

2

)]}

+ O(a). (C20)

Equations (28) and (C2) give

dφ2

dt
� ω + �ρ1/4e−√

ρL cos(χ/2)

4η
√

2πL

×
{

3

2L
sin

[
�φ − χ

4
+ L

√
ρ sin

(
χ

2

)]

+ √
ρ sin

[
�φ − 3χ

4
+ L

√
ρ sin

(
χ

2

)]}
. (C21)

In the same manner as that with the same rotation direction,
the time-evolution equation is obtained by considering the
geometric symmetry as

dφ1

dt
� ω + �ρ1/4e−√

ρL cos(χ/2)

4η
√

2πL

×
{

3

2L
sin

[
−�φ − χ

4
+ L

√
ρ sin

(
χ

2

)]

+√
ρ sin

[
−�φ − 3χ

4
+ L

√
ρ sin

(
χ

2

)]}
. (C22)

From these equations, the time-evolution equation for �φ is
obtained as in Eq. (37).

APPENDIX D: PHASE COUPLING FUNCTION
INCLUDING THE TIME CHANGE IN ANGULAR

VELOCITY

In this section, we discuss the phase coupling function con-
sidering the time change in the angular velocity. We calculated
the dynamics of one rotor (rotor 1) taking into consideration
the concentration field of chemicals generated by the other
rotor (rotor 2), though the position of the particle composed
of rotor 2 is approximated to be located at the center of it,
i.e., r2(t ) = �2, in order to neglect the dependence of φ2. In
this case, the angular velocity of the first rotor dφ1/dt is no
longer constant, but depends on the phase of the rotor 1, φ1.
Thus we have to define a new phase ϕi, which is defined by
dϕi/dt = 2π/T , where T is a period. ϕi is described as a
monotonous increasing function of φi. The functions Gs(�ϕ)
and Go(�ϕ) are defined as

Gs(�ϕ) = 1

2πηa

∫ 2π

0
e
(

ϕ2 − π

2

)

· Fu,1,2(φ2 + �ϕ, ϕ2)dϕ2, (D1)

Go(�ϕ) = 1

2πηa

∫ 2π

0
e
[

−
(

ϕ2 − π

2

)]

· Fu,1,2(φ2 + �ϕ, ϕ2)dϕ2. (D2)

Here, we calculated the force Fu,1,2 by taking the rotation
of rotor 2 into consideration. Then, the time-evolution equa-
tion of �ϕ is expressed as

d�ϕ

dt
= Gi(−�ϕ) − Gi(�ϕ) ≡ Hi(�ϕ), (D3)
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–0.3
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–0.3

FIG. 12. Plots of (a) Gs, (b) Go, (c) Hs, and (d) Ho against �ϕ.
The results with L = 2 (red), L = 2.5 (orange), L = 3 (green), and
L = 3.5 (cyan) are shown in each panel.
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where i denotes s or o. The parameters for the simulation
were the same as in Sec. V. The plots of Gs(�ϕ), Go(�ϕ),
Hs(�ϕ), and Ho(�ϕ) obtained by the numerical simulation
are shown in Fig. 12. From Figs. 12(a) and 12(b), Gs(�ϕ) and
Go(�ϕ) are less than those in Figs. 10(a) and 10(b). This is due
to the interaction through the concentration field and shows
that the effect by the concentration field from the other rotor
reduces the averaged angular velocity. Despite the difference
in Gs(�ϕ) and Go(�ϕ), Hs(�ϕ) and Ho(�ϕ) in Figs. 12(c)
and 12(d) are almost the same as those in Figs. 10(c) and
10(d). In the same manner as in the previous paragraph, we
consider the Fourier expansion of Hs(�ϕ) and Ho(�ϕ) as

Hi(�ϕ) =
∞∑

k=1

Ĥ(k)
i sin k�ϕ, (D4)

where i denotes s or o. In Fig. 13, Ĥ(1)
s (�ϕ) and Ĥ(1)

o (�ϕ)
are plotted against L, which are almost the same as those in
Figs. 8 and 11. This indicates that the decrease in the averaged

2 53

(a)

4 2 53 4

(b)

s
(1)

o
(1)

0.02

–0.06

0.02

0

–0.06

0

^^

FIG. 13. Plots of Ĥ(1)
s and Ĥ(1)

o against L. The positive and neg-
ative values are indicated with red and cyan points, respectively. The
positive Ĥ(1)

s or Ĥ(1)
o means that the antiphase synchronization state

is stable, while the negative Ĥ(1)
s or Ĥ(1)

o means that the in-phase
synchronization state is stable.

angular velocity does not matter for the stable synchronization
mode, but the interaction between the rotor position and time-
dependent concentration field, which is shown in Figs. 9(c)
and 9(d), plays an important role.
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