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Hydrodynamic approximations for driven dense colloidal mixtures in narrow pores
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The system of driven dense colloid mixtures is studied in one-, two-, and three-dimensional geometries. We
calculate the diffusion coefficients and mobilities for each particle type, including cross-terms, in a hydrodynamic
limit, using a mean-field-type approximation. The set of nonlinear diffusion equations are then solved. In one
dimension, analytical results are possible. We show that in mixtures, the “Brazil nut” phenomenon, or depletion
of larger particles by force of smaller ones, appears quite generically. We calculate the ratchet current and
quantify the capability of sorting particles according to their size. We also indicate that the “Brazil nut” effect
lies behind the possibility of perfect separation, where large and big particles travel in strictly opposite direction.
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I. INTRODUCTION

Suspensions of colloid particles flowing through con-
strained environments find numerous technological applica-
tions [1–5]. One of the basic tasks in this important area is
sorting the mixture of colloid particles according to their size,
shape, chirality, and other properties. Among the prominent
sorting strategies let us mention the purely hydrodynamic
Segre-Silberberg effect [3,6], the dynamic lateral displace-
ment method [7], or the ratchet mechanism [8–15]. In this
work we focus on the latter method. It is based on the flow of
colloidal suspension through a pore (or rather huge ensemble
of pores pierced through a membrane) under the influence of
periodic external unbiased driving [1,16]. The rectification of
the ratchet current is due to asymmetric geometry of the pore.
Depending on the particle size, pore diameter, and frequency
of the driving, the dynamics of the particles can be dominated
by Brownian motion [8,11], by hydrodynamics [13], or by a
combination of both [14,15].

Such systems are fairly well understood on one-particle
level, thus describing low-density colloidal suspensions.
However, dense colloid mixtures pose serious problems, and
many of them remain only partially resolved [17–19]. Here
the area touches on one side the mechanics of granular (or in
general particulate) matter [20], on another side the geome-
try of sphere packings [21–23], and on yet another side the
stochastic dynamics of exclusion processes [24,25].

In this work,we consider particles moving along a tube
which is not plain and straight but is shaped and structured
in various ways. The particles can be grains of sand of size
around one millimeter falling down by gravity or electro-
statically charged colloid particles of micrometer size driven
by external electric field or blood cells flowing in a vein
or something analogous. The particles scatter and interact
among each other. They may move freely or get jammed.
They may concentrate in certain places and leave other places
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nearly void. Here we aim at describing such a complex swirl
in a schematic and highly simplified way. The buildup of a
schematic description proceeds in several steps. In the first
step we replace the Newtonian mechanics of the particles
accompanied by energy dissipation and interaction with sur-
rounding fluid (be it air or water or oil or anything else) by
purely stochastic process. We also replace the irregular shapes
of the particles by perfect spheres. Elastoplastic properties
of the particles as well as fluid-mediated hydrodynamic inter-
actions between them are replaced by simple requirement that
the centers of the spheres may not come closer than the sum of
their radiuses. In the second step we discretize the Euclidean
space, dividing it into cells of finite size. Specific position of
particles within a single cell is neglected and we retain just
information on which cell contains which particle. Particles
hop between cells stochastically. In the third step we take a
look at the system from a distance. We cannot distinguish
each single cell any more but they look like a continuum.
In this view the dynamics becomes deterministic again and
is described by (nonlinear) partial differential equations. All
nontrivial features of the particles we started with, i.e., their
size, weight, mobility, etc., are embodied in the nonlinearities
of these equations. The only task which remains now is to
solve the equations, either numerically or, in a lucky case,
analytically. The aim of this work is to provide a host of such
solutions.

We shall suppose that the movement of the colloid particles
is purely stochastic, reducing the hydrodynamic effects to bare
homogeneous external drift or constant bias in hopping rates.
This is a radical trivialization of the problem, as the hydrody-
namics of the fluid medium surrounding all the particles not
only provides a driving force, but also substantially changes
the inter-particle interactions, providing a long-range and fun-
damentally nonadditive contribution to particle-particle and
particle-wall interaction. Treating these effects is a separate
and difficult task, therefore we shall skip it completely in this
work.

Therefore, we base our models on the ground of stochas-
tic exclusion processes. The prominent representative of
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this set of models is the asymmetric simple exclusion pro-
cess (ASEP), which was solved exactly by several methods
[26–35]. The most stunning feature of this model is the ab-
sence of spatial correlations in stationary state. It was shown
that this feature is moderately robust, in the sense that various
generalizations of ASEP suggested in the literature [36–42] on
one side do exhibit spatial correlations, but on the other side
these correlations are short-ranged and in a few special cases
can be calculated exactly by a cluster mean-field approxima-
tion [36,37,41]. In these cases the correlations decay with a
strictly exponential tail.

In a recent series of papers [43–45] we suggested an-
other generalization of ASEP, following earlier works of
Refs. [46–52], where the generalized symmetric exclusion
process was investigated. The core of the generalization con-
sists in allowing not just one particle on a lattice point, but a
number not exceeding a fixed limit k. Moreover, we allowed
several species of particles characterized by different sizes.
In this case the exclusion constraint means that the sum of
sizes of all particles on a single site cannot exceed the limit k.
Most importantly, we found that in such generalized ASEP
model the long-range correlations in stationary state decay
algebraically, with an exponent whose value is conjectured to
be exactly 2. Despite the long-range correlations, the mean-
field and cluster mean-field approximations were found to be
reasonably reliable in calculation of nearest-neighbor corre-
lations as well as particle currents. Indeed, currents depend
explicitly only on short-range correlations and the nontrivial
long-range correlations enter just indirectly.

This fact encourages us to perform a continuous approxi-
mation of the generalized ASEP model. The coarse-graining
procedure with proper scaling limit leads to hydrodynamic
equations in which only long-wavelength modes associated
with locally conserved quantities survive, while all the fast-
decaying short-wavelength modes are projected out [53]. To
establish the validity of the hydrodynamic limit is a difficult
task, but there are cases where it is resolved with mathematical
rigor [46,47,53]. There are various sources of difficulties. For
example, the long-range stationary correlations may easily
spoil the scaling limit. We found that such correlations are in-
deed present in the generalized ASEP model studied here [45].
Fortunately, for the one-component variant of our generalized
ASEP, with slightly different hopping rates, the existence of
hydrodynamic limit was proved [47], which encourages us
to assume that the hydrodynamic limit is well defined also
in our case, and especially for systems with several types of
particles.

Hydrodynamic equations are just expressions of conserva-
tion laws. For each conserved quantity the temporal change
of its local density equates to the divergence of the associated
current. The form of the equations may differ depending on
the number and type (scalar, vector, etc.) of the conserved
quantities. In this article it will be the set of a few scalars,
namely the densities of particles of several types. The currents
are themselves functionals of all the densities. These are the
constitutive relations characteristic of the model in question.
In the simplest case such functional is local and depends on
derivatives of the densities up to a finite order.

At this point we must stress that the coarse-graining and
continuum limit can be performed in (at least) two different

scaling regimes [48]. In the Eulerian scaling, time is scaled
linearly with space, while in diffusion scaling time scales with
square of space. In diffusion scaling we assume that in the cur-
rent functional the first spatial derivative is connected to the
diffusion coefficient, while higher derivatives are irrelevant in
renormalization-group sense. However, in Eulerian scaling we
assume that already the first spatial derivative is irrelevant and
the dynamics is ballistic. To study the fluctuations, diffusion
term is added phenomenologically, together with Gaussian
noise, whose properties are related to the diffusion coefficient
via fluctuation-dissipation theorem. This way we arrive at
fluctuating hydrodynamics [54–60]. Alternative route is taken
in the macroscopic fluctuation theory [61,62] which is based
on assumption that not only the microscopic dynamics of the
system, but also its adjoint dynamics possess well-defined
hydrodynamic limit. (This is trivially satisfied for reversible
dynamics, as it is self-adjoint.)

In our work we shall follow the path of diffusion scaling.
Then, the basic step in solving the model in question is to
establish the density dependence of the transport coefficients.
Let us stress once more, that in principle the long-range corre-
lations may lead to nonvanishing higher spatial derivatives or
nonlocality, but we proceed assuming these effects irrelevant.

Calculation of diffusion and mobility coefficients is sim-
plified in models with gradient property [53]. For nongradient
systems with reversible dynamics, variational procedure is in
principle exact [53] but computationally demanding [52,63].
Unfortunately, the models investigated in this work are not
gradient and not reversible, so we have to resort to approxima-
tions. In a low-density limit it is possible to use perturbative
approach [64], but here we need a solution for entire range
of allowed densities. Mean-filed-type approximations often
lead to results which deviate very little from exact numbers
[50,51,65,66]. However, we should be careful in interpreting
the results. For example, when investigating subtle effects,
like Casimir forces [67–69], such tiny deviations translate in
substantial differences [66,70]. However, the argument based
on variational principle [53] suggests that the mean-filed-type
approximations give weak but exact upper bound on the true
diffusion coefficient [52,63].

The aim of our work is calculation of transport coeffi-
cients for generalized ASEP model with several types of
particles differentiated by their size and with cell capacity
k, 1 < k < ∞. The calculation relies on a mean-field-type
approximation, neglecting spatial correlations in a nonequi-
librium state. We then apply the obtained formulas to specific
examples of driven colloid mixtures in quasi one-dimensional
narrow pores. When mapped on piecewise one-dimensional
geometries, it is possible to obtain analytical results. One of
the specific questions investigated will be the possibility of
perfect separation of particles according to their size.

II. FROM CONTINUOUS TO DISCRETE MODEL
AND BACK

A. Local mixing approximation

In our previous work [45] we studied the system of dense
colloid mixture using an approach we called local mixing
approximation. It consists in emulating the stochastic motion
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of hard spherical particles by a discrete generalized ASEP. Let
us briefly recall the idea here. For more details, we refer the
reader to Ref. [45]. For simplicity, the formulas written in this
subsection will describe movement in one dimension only, but
we shall consider general dimension in the following.

We consider the system of spherical colloid particles inter-
acting by steric repulsion. The particles may be of different
sizes, the diameter of ith particle being di. In absence of other
particles, each particle taken individually would perform a
Brownian motion with bias. For the coordinate xi of the center
of ith particle we have a standard stochastic equation

dxi(t ) = fidt + dWi(t ), (1)

where Wi(t ) is an ensemble of independent Wiener processes,
(dWi )2 = 2Didt . The diffusion coefficient Di and the drift fi

depend only on the diameter of the particle (they are both
inversely proportional to di). In the following we shall classify
the particles into M types according to their diameter. Then,
the transport coefficients will be denoted D0α and f0α for
all particles which belong to type α. The “0” in the index
indicates, that the diffusion coefficient and drift pertain to
noninteracting Brownian motion.

The hard-sphere interaction between particles is expressed
by the constraint

|xi(t ) − x j (t )| > 1
2 (di + d j ), (2)

which must be valid at all times. The trajectories produced
by the process (1) but violating Eq. (2) are forbidden. This
constraint makes the dynamics nontrivial. We may describe
it formally as follows. Let us suppose we find the probability
measure μ0[{xi(t )}N

i=0] in the space of all possible trajectories
xi(t ), i = 1, . . . , N , t ∈ [t0, t1] of the ensemble if N particles,
which started at time t0 and ended at time t1. The measure μ0

is generated by the stochastic process (1). Then, in this space
of trajectories we define the indicator function χ [{xi(t )}N

i=0]
such that χ = 1 if Eq. (2) is satisfied for all i, j and all
t ∈ [t0, t1]. Otherwise, χ = 0. Then the proper measure of our
process in the space of all trajectories is

μ
[{xi(t )}N

i=0

] = 1

�
μ0

[{xi(t )}N
i=0

]
χ

[{xi(t )}N
i=0

]
, (3)

where the number � ensures the proper normalization.
We performed practical computer simulation of this pro-

cess in our previous work [45]. Interested readers may find
the details on the numerical implementation there.

To simplify the situation, we emulate the continuous pro-
cess (1) by a discrete one. To this end, we partition the space
into disjoint cells and neglect the dynamics of the particles
within the cells. The particles can hop from one cell to the next
one with rates depending on the particle type. The position of
the ith particle evolves according to

xi(t ) − xi(0) = S+(t ) − S−(t ), (4)

where S+(t ) and S−(t ) are Poisson processes with rates aα

and bα , respectively. The rates depend only in the type α of
the particle i. They are related to the properties of the process
(1) as aα − bα = f0α , aα + bα = 2D0α . For simplicity, we fix
the unit length as the cell size.

The constraint (2) is taken into account by the requirement
that only certain configurations of particles can enter into the

cell. More specifically, we fix a cell capacity k and weight
factors cα which are related to particle diameters. If there are
nα particles of type α inside a cell, then we require that the
cell capacity is not exceeded, i.e.,

M∑
α=1

cαnα � k. (5)

This constraint must be satisfied at all cells and all times.
Trajectories produced by the process (4) but violating the
constraint (5) are forbidden.

Such an approximation effectively assumes that the dy-
namics within cell is fast, so that the particles are mixed on
the level of cells and for description of the global behavior of
the mixture it is sufficient to consider inter-cell hopping con-
strained by the condition (5). Hence, the name local mixing
approximation.

In our previous work [45] we compared the simulation
results coming from the continuous stochastic process (1),
(2) with those of the discrete process (4), (5). This com-
parison indicates how the parameters k and cα should be
chosen to get optimal match of the continuous and discrete
processes.

B. Hydrodynamic approximation

Hydrodynamic approximation assumes that relative
changes of particle concentrations are small on the scale of
lattice constant. It is a nontrivial problem of mathematical
physics, whether a well-defined hydrodynamic limit exists
[53]. Intuitively, we expect that dynamics of slow modes
related to conserved quantities (in our case densities of
particles of each type) give rise to hydrodynamic equations of
diffusion type, while all other fast modes are effectively
averaged out. There is quite important set of models in which
the existence of hydrodynamic limit is proved rigorously [53].
However, here we remain on rather heuristic level. The task is
to calculate density dependence of transport coefficients, i.e.,
the diffusion coefficients and drifts. In our derivation we rely
on Refs. [50,51,65,66], but we generalize these results for the
case of multicomponent system. More detailed derivation of
our formulas using an alternative method will be published
elsewhere [71].

In the following we suppose there are just two types of
particles, called “small” and “big,” with size factors cs = 1,
cb = 2. Therefore, the number of ns of small and nb of big
particles in a single cell must satisfy the constraint ns + 2nb �
k. The key quantities in the derivation of transport coefficients
are the probabilities

Ps = Prob{ns + 2nb = k},
Pb = Prob{ns + 2nb � k − 1} (6)

of such configurations that do not accommodate any extra
small and big particle, respectively. In a homogeneous station-
ary state these probabilities are functions of average densities
ρs and ρb of small and big particles. In hydrodynamic limit,
densities are (slowly changing) functions of coordinate, and
so are also Ps(ρs, ρb) and Pb(ρs, ρb). The two-component
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diffusion problem is governed by equations

∂

∂t
ρs

= ∇· [DSS (ρs, ρb)∇ρs + DSB(ρs, ρb)∇ρb − fs(ρs, ρb)ρs],

∂

∂t
ρb

= ∇· [DBS (ρs, ρb)∇ρs + DBB(ρs, ρb)∇ρb − fb(ρs, ρb)ρb],

(7)

and the transport coefficients can be expressed, using methods
of Refs. [50,51], as

fs = f0s[1 − Ps(ρs, ρb)]

fb = f0b[1 − Pb(ρs, ρb)]

DSS = D0s

[
1 − Ps(ρs, ρb) + ρs

∂

∂ρs
Ps(ρs, ρb)

]
(8)

DSB = D0sρs
∂

∂ρb
Ps(ρs, ρb)

DBS = D0bρb
∂

∂ρs
Pb(ρs, ρb)

DBB = D0b

[
1 − Pb(ρs, ρb) + ρb

∂

∂ρb
Pb(ρs, ρb)

]
.

We denoted D0s and D0b are diffusion coefficients of pure
system of small and big particles at infinite dilution, and
similarly f0s and f0b drift of small and big particles at infinite
dilution.

Besides the long-wavelength hydrodynamic limit we ap-
ply also mean-field approximation, neglecting correlations in
occupation of neighbor sites. We addressed this question in
our earlier work [43], where we investigated the generalized
ASEP model with several types of particles. It was proved
there that in the mean-field approximation, the probabilities of
one-site configurations follow truncated Poisson distribution
in the case of one type of particles, double truncated Poisson
distribution in the case of two types of particles, etc. There-
fore, we apply the multiple truncated Poisson distribution as
the essence of the mean-filed approximation we make.

Therefore, in this approximation, the probability of having
ns small and nb big particles in one cell is given by double
truncated Poisson distribution

P(ns, nb) = λns
s λ

nb
b

Zns!nb!
, (9)

where

Z (λs, λb) =
k∑

ns=0

[(k−ns )/2]∑
nb=0

λns
s λ

nb
b

ns!nb!
(10)

is the partition function. The two parameters λs and λb of the
double Poisson distribution, which belong to the small and big
particles, respectively, fix the average densities. Borrowing
a term from equilibrium statistical physics, we shall call the
parameters λs and λb fugacities, keeping in mind that they are
just numbers that parametrize the probability distribution.

There is a one-to one correspondence between the pair
of fugacities λs and λb and the pair of particle densities ρs

and ρb. Indeed, the fugacities determine the probability dis-
tribution of on-site particle configurations and this in turn
determines the average densities. Therefore, we suppose that
the dynamics in hydrodynamic limit can be formulated using
time-and-position-dependent fugacities λs(x, t ) and λb(x, t )
instead of time-and-position-dependent densities ρs(x, t ) and
ρb(x, t ). These two formulations are translated one to the other
by the functions which express stationary and homogeneous
densities through fugacities

ρs = Rs(λs, λb) ≡ λs
∂ ln Z (λs, λb)

∂λs
,

ρb = Rb(λs, λb) ≡ λb
∂ ln Z (λs, λb)

∂λb
. (11)

These formulas follow directly from the probabilities given by
Eqs. (9) and (10).

In stationary state it leads to a great simplification. Indeed,
as can be checked by insertion of Eqs. (11) and (8) into
diffusion Eq. (7) with ∂ρs/∂t = ∂ρb/∂t = 0, the stationary
state satisfies the equations for fugacities

∇ ·
[(

R2
α (λs, λb)

λα (x)

)(
D0α

∇λα (x)

λα (x)
− f0α

)]
= 0. (12)

The index α ∈ {s, b} denotes the particle type. Equations (12)
are still coupled through the functions R2

α (λs, λb), but do not
contain cross-diffusion terms. This fact serves us as a basis for
further calculations.

To avoid confusion, we also stress that at the same time
as the hydrodynamic approximation is made, the particles
become effectively pointlike. Therefore, no effects can occur
stemming from the incommensurability of particle size and
spatial period of the geometry, as it was observed in Ref. [72]
and also in our earlier work [73].

III. TOY EXAMPLES: PIECEWISE
ONE-DIMENSIONAL GEOMETRY

A. Simplifications in 1D

On a one-dimensional segment, the stationary currents of
all types of particles are constants independent of position.
This makes the one-dimensional geometry fundamentally
different from higher dimensions. The diffusion equations for-
mulated for fugacities (12) can be written as

jα
λα (x)

R2
α (λs(x), λb(x))

= −D0α

∂λα (x)

λα (x)∂x
+ f0α, (13)

where jα is the constant current of the particles of type α

along the segment. Equations (13) are simplified with re-
spect to Eq. (12) in the sense that they are of first order in
spatial derivative. However, a serious complication remains
here, namely the fact that the equations mix the dependence
on all particle types through the functions R2

α (λs(x), λb(x))
which contain fugacities of all particle types as arguments.
This complication is absent in two special situations we shall
study in the following two subsections.

B. One type of particles in sawtooth potential

Equations (13) are particularly simple, if we allow just one
type of particle. At the same time, the drift can be spatially
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dependent. Thus, we have the equation

D0
∂λ(x)

λ(x)∂x
= f0(x) − j

λ(x)

R2[λ(x)]
. (14)

We suppose the drift term has the form f0(x) = F − ∂V (x)
∂x ,

where F is constant external force and V (x) is a periodic
potential. As a simplest choice we use the sawtooth form

V (x) = v

L+
x for x ∈ (0, L+),

V (x) = − v

L−
x for x ∈ (−L−, 0),

V (x + L+ + L−) = V (x) ∀x.

(15)

In this case the drift is a piecewise constant function and this
enables us to find the solution in terms of closed analytic
formulas. The differential Eq. (14) together with the periodic
condition λ(−L−) = λ(L+) yields the pair of transcendental
equations for the two fugacities λ0 ≡ λ(0) and λ1 ≡ λ(L+)∫ λ0

λ1

R2(λ)dλ(
v

L+
− F

)
λR2(λ) + jλ2

= L+
D0

,

∫ λ0

λ1

R2(λ)dλ(
v

L−
+ F

)
λR2(λ) − jλ2

= L−
D0

. (16)

When solved, we obtain the average particle density ρ =∫ L+
−L−

ρ(x)dx/(L− + L+) as

ρ = D0

L− + L+

∫ λ0

λ1

[
1(

v
L+

− F
)
λR2(λ) + jλ2

+ 1(
v

L−
+ F

)
λR2(λ) − jλ2

]
R3(λ)dλ. (17)

We calculated the current-density diagram for the simplest
case k = 2 where the function determining density in terms of
fugacity is

R(λ) = λ + λ2

1 + λ + 1
2λ2

. (18)

We show a typical behavior in Fig. 1. As expected, the
density dependence of the current has a maximum. Although
the detailed form of the current-density curve depends on
parameters of the model like the force F and geometry de-
termined by L+, L−, the position of the maximum remains
nearly unchanged. We also observe that for average den-
sity approaching either ρ → 0 or ρ → 2 the dependence is
linear, because it corresponds to the regimes of nearly inde-
pendent particles and nearly independent holes, respectively.
However, when the density increases from zero, we observe
enhancement of the current over the linear asymptotics. Such
interaction-induced enhancement can be easily understood if
we realize that free particles become partially trapped around
the minimum of the potential V (x), which leads to decrease in
current. Such trapping is less severe for particles interacting
by exclusion, because the effective capacity of the trap is
limited by the exclusion principle. Indeed, for k = 2 we must
have ρ(x) � 2 everywhere, including the neighborhood of
the minimum of the potential, while for free particles ρ(x)

j/
F

0.4

0.3

0.2

0.1

0

ρ

j/
F

21.510.50

0.4

0.3

0.2

0.1

0

FIG. 1. Density dependence on the particle current in one-
dimensional geometry with sawtooth potential (15) with parameters
k = 2, D0 = 0.1, v = 0.5. In the upper panel we use shape parame-
ters L+ = 0.7, L− = 0.3 and force F = 0.3 (solid line), F = −0.3
(dotted line), F = 0.6 (dot-dashed line), and F = −0.6 (dashed
line). In the lower panel we use force parameters F = 0.5 (solid line,
dot-dashed line) and F = −0.5 (dashed line, dotted line) and shape
L+ = 0.7, L− = 0.3 (solid line, dotted line) and L+ = 0.9, L− = 0.1
(dot-dashed line, dashed line).

can be arbitrarily large. Less particles trapped means more
current, hence the superlinear increase of current for small
densities. Analogous behavior is also observed close to the
maximum density (which is 2 in this case), due to trapping of
interacting holes. Although there is no particle-hole symmetry
in this model, holes behave in a qualitatively similar manner
as particles.

For L+ > L− the “easy” direction of the flow under the in-
fluence of external driving F is positive, i.e., rightward. From
Fig. 1 we can see that such intuitive reasoning holds true not
just for nearly free particles, but at all densities. We observed,
by varying the parameters of geometry as well as driving and
diffusion coefficient, that this conclusion is generic. If we
switch the external driving regularly between the values |F |
and −|F |, then the current averaged over many periods will
exhibit the ratchet effect. For very slow switching the ratchet
current is just the combination of stationary currents

jrat = 1
2 ( jF=|F | + jF=−|F |). (19)

We show in Fig. 2 the ratchet current for several sets of
the parameters of the model. As we already mentioned, the
current is always larger in the “easy” direction, independently
of the average density, so there is no current reversal at higher
densities, contrary to the geometries we shall study later in
this paper. Interesting feature, which we observed quite gener-
ically with the sawtooth potential, is the presence of two
inflection points at intermediate densities. This is related to the
already mentioned fact that the current behaves superlinearly
both near the zero and near the maximum density. For small
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ρ

1
0
0
0

j r
a
t

0.80.60.4

2.8

2.6

2.4

ρ

j r
at

21.510.50

0.03

0.02

0.01

0

FIG. 2. Density dependence on the ratchet current in one-
dimensional geometry with sawtooth potential (15). The diffusion
coefficient is D0 = 0.1 and the geometry parameter v = 0.5. The
other parameters are L+ = 0.7, L− = 0.3, and F = 0.3 (dotted line),
L+ = 0.7, L− = 0.3, and F = 0.5 (dashed line), L+ = 0.7, L− = 0.3,
and F = 0.6 (dash-dotted line), L+ = 0.9, L− = 0.1, and F = 0.5
(solid line). In the inset, detail of the same data, for L+ = 0.7,
L− = 0.3, and F = 0.3.

enough driving F , the effect may even lead to weak nonmono-
tonicity of the ratchet current, as shown in the inset of Fig. 2.

C. Two types of particles in pocket geometry

Another easily soluble case corresponds to particles in the
pocket geometry sketched in Fig. 3. On a straight line (we
shall call it backbone), at regularly spaced points at distance
L of each other, tilted segments of length W are attached.
These segments represent dead ends, so that no current can
flow through them in stationary state, but they act as traps
accumulating certain portion of particles, thus reducing the
current along the backbone. We shall call these segments
pockets.

The pockets are tilted to the left at angle α. This has
the effect that if the drift due to external field is f on the
backbone, it is − f cos α on the pocket. The geometry is not
strictly one-dimensional, but it is piecewise one-dimensional,
as it is composed by linear segments joined at discrete points.
therefore, we can use the general Eq. (13) on each segment
separately and then guarantee appropriate gluing at the joints,
by imposing proper boundary conditions at the ends of each
segment.

The fact that no current flows through the pockets makes
the Eq. (13) particularly simple inside the pockets, namely

D0s
∂λs(x)

λs(x)∂x
= − f0s cos α,

D0b
∂λb(x)

λb(x)∂x
= − f0b cos α. (20)

FIG. 3. Scheme of the pocket geometry. On a straight line (back-
bone) at regular distances L, segments of length W are attached
(pockets). The pockets are tilted at angle α.

We denoted f0s and f0b the drift at infinite dilution on the
backbone for small and big particles, respectively, and we
have taken into account tilting of the pockets as shown in
Fig. 3. The coordinate x parametrizes the position on the
pocket, starting with x = 0 at the joint with the backbone and
increasing toward x = W at the end of the pocket.

Technically, the most important point is that the fugacities
for small and big particles decouple, so each equation of
the pair (20) can be solved separately. The exponential de-
pendence, or barometric formula, which holds for densities
in the case of noninteracting particles, holds for fugacities
when interaction is taken into account by our hydrodynamic
approximation. Therefore,

λs(x) = λs0e−x f0s cos α/D0s ,

λb(x) = λb0e−x f0b cos α/D0b . (21)

The average densities and currents (which flow along the
backbone) depend on just two parameters, namely the fugac-
ities λs0 ≡ λs(0) and λb0 ≡ λb(0). Of course, the densities,
and therefore also the fugacities, are constant throughout the
backbone and these uniform values are equal to the boundary
value at x = 0 for the pockets. We obtain

ρs = LRs(λs0, λb0) + ∫ W
0 Rs(λs(x), λb(x))dx

L + W
,

ρb = LRb(λs0, λb0) + ∫ W
0 Rb(λs(x), λb(x))dx

L + W
(22)

for the average densities of small and big particles, respec-
tively, where the dependence of fugacities on the coordinate
x along the pocket is given by Eq. (21). For the currents, we
obtain simple formulas

js = f0s
R2

s (λs0, λb0)

λs0
,

jb = f0b
R2

b(λs0, λb0)

λs0
. (23)

We focused on the specific case k = 3, where

Rs(λs, λb) = λs + λ2
s + 1

2λ3
s + λsλb

1 + λs + 1
2λ2

s + 1
6λ3

s + λb + λsλb
,

Rb(λs, λb) = λb + λsλb

1 + λs + 1
2λ2

s + 1
6λ3

s + λb + λsλb
. (24)

Especially, we are interested in how the geometry, i.e., the
length and angle of inclination of the pockets, influences the
stationary current along the backbone. In Figs. 4 and 5 we
show the dependence of the currents of small and big particles
on the average density of small particles, with average density
of big particles fixed. Having in mind the ratchet effect, we
plot the results for both orientations of the driving, i.e., for
f0 = | f0| and for f0 = −| f0|. In all these results we assume
that both diffusion coefficient and drift of big particles are
half of those of small particles. This way we take into account
the fact that transport coefficients are inversely proportional to
particle size. Therefore, D0s = D0, D0b = D0/2, f0s = f0, and
f0b = f0/2.

In Fig. 4 we compare results for several lengths W of the
pocket. Let us first look at the current of small particles. As
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FIG. 4. Dependence of the current of small (upper panel) and big
(lower panel) particles on the average density of small particles, for
average density of big particles ρb = 0.1. The transport parameters
are f0 = 1, D0 = 1 and geometry parameters L = 1, cos α = 0.7.
The dashed lines correspond to the “+” sign in front of js and jb (i.e.,
positive current), solid lines correspond to the “−” sign in front of js

and jb (i.e., negative current). The lines are marked by symbols which
correspond to parameters W = 1 (�), W = 3 (�), and W = 5 (�). In
the inset in the lower panel, local density of small (solid line) and big
(dashed line) particles within the pocket. The transport parameters
are f0 = −1, D0 = 1, the geometry parameters are L = 1, W = 5,
cos α = 0.7, and the average densities ρs = 2 and ρb = 0.1.
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FIG. 5. Dependence of the current of small (upper panel) and big
(lower panel) particles on the average density of small particles, for
average density of big particles ρb = 0.1. The transport parameters
are f0 = 1, D0 = 1 and geometry parameters L = 1, W = 1. The
dashed lines correspond to the “+” sign in front of js and jb (i.e.,
positive current), solid lines correspond to the “−” sign in front of js

and jb (i.e., negative current). The lines are marked by symbols which
correspond to parameters cos α = 0.1 (�) and cos α = 0.9 (�).
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FIG. 6. Phase diagram of the ratchet currents of small and
big particles in the pocket geometry with parameters L = 1, W =
1 cos α = 0.7, D0 = 1. The region of full separation, i.e., when the
ratchet current of small particles is positive, while the ratchet current
of big particles is negative, is delimited by a pair of lines ρsc2(ρb) and
ρsc1(ρb). Two pairs of lines are shown for two different forces f0. For
f0 = 1 it is the pair of solid line (from below) and dashed line (from
above). For f0 = 5 the shapes of the lines in the pair are indicated
by symbols. The symbols × indicate the line delimiting the region
from above, the symbols + indicate the line delimiting the region
from below. Note that the lower lines nearly coincide for f0 = 5
and f0 = 1, while the upper lines slightly differ for this two values
of f0.

expected, the “easy” direction is positive, i.e., rightward, as
long as cos α > 0. This means that for small ρs the absolute
value of the current is larger for f0 = | f0| than for f0 = −| f0|.
However, contrary to the case of sawtooth potential inves-
tigated in the previous section, in the pocket geometry this
holds only for densities ρs < ρsc1. At the critical density ρsc1
the ratchet current of small particles changes sign. This can
be described by saying that the “easy” direction for holes in
opposite to the “easy” direction for particles. Similar picture
holds also for big particles. The ratchet current is positive
for ρs < ρsc2 and negative beyond the second critical density
ρsc2. For the data shown in Fig. 4 we observe that ρsc2 < ρsc1.
Therefore, there is an interval of densities ρs ∈ (ρsc2, ρsc1)
where ratchet current of small particles is positive, while
ratchet current of big particles is negative. Figure 4 shows the
situation for just one fixed value of the density of big particles
ρb. For other values of ρb the critical densities ρsc2 and ρsc1
may change or even disappear. We can display the situation
by a phase diagram in the axes ρs and ρb. The two critical
densities, as functions of ρb, i.e., ρsc2(ρb) and ρsc1(ρb), de-
fine lines which delimit the region of densities for which the
ratchet currents of small and big particles have opposite sign
(we shall call it region of full separation). In this region we
have ρsc2(ρb) < ρs < ρsc1(ρb). We show the phase diagram
in Fig. 6 for two sets of parameters. As we can see, the region
of full separation forms a diagonal band extending from big
ρs and small ρb to big ρb and small ρs. If we imagine a device
intended for separation of big particles from small particles in
a mixture using ratchet effect in our pocket geometry, then it
indeed separates the two types of particles perfectly, as long
as the densities remain in the region of full separation. The
diagonal shape of the region means, that during the sepa-
ration process the densities of small and big particles may
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in principle evolve so that they remain all the time in the
region of full separation and at the end all big particles are
accumulated at one end and all small particles at the opposite
end of the device. Of course, practical application of such
scenario would require significant amount of fine tuning of the
apparatus.

In Fig. 6 we can also see that increasing the driving force
from f0 = 1 to f0 = 5 has only very small influence on the
shape of the region of full separation. If we look back to Fig. 4,
we observe that the critical densities ρsc2 and ρsc1 depend
very little on the geometric parameter W (the length of the
pocket). The shape of the curves js and jb as functions of ρs
varies significantly when we increase W , but the density at
which the two curves corresponding to positive and negative
f0 cross, remains nearly the same. Similar conclusion can be
deduced from Fig. 5, where the current is shown for several
inclinations α of the pocket. Again, the current itself does
depend on the angle α, but the critical densities remain nearly
unchanged. All these observations imply that the shape of the
region of full separations, as shown in Fig. 6 is very robust and
nearly independent of the details of the geometry and of the
strength of the driving f0. Let us also note that a phase diagram
very similar to Fig. 6 was obtained in our previous work
[43] where we studied a discrete model by direct numerical
simulations.

Let us turn once more to Fig. 4. For W = 1 the depen-
dence of js on ρs is concave, but for W = 3 inflection point
appear and this is even more pronounced for W = 5. It corre-
sponds to enhancement of the particle current over the linear
dependence. We observed this phenomenon on the previous
section in the model with sawtooth potential (see Fig. 1). The
explanation is again the same. Indeed, repulsive interaction
between particles prevents them from filling the pockets be-
yond the maximum density, therefore more particles remain
on the backbone and these extra particles are responsible
for the interaction-induced enhancement of the current. A
bit more subtle is the effect observed in the dependence of
the current of big particles on ρs. For negative, i.e., leftward
driving, f0 < 0, and for W = 3 and W = 5, we observe that
the current of big particles increases when density of small
particles increases. This seems counterintuitive, as one would
guess that small particles act as obstacles for the movement
of big ones. However, the actual scenario is more tricky. The
small particles quickly fill the pockets thus forcing the big
particles to remain in the backbone. This is illustrated in
the inset in Fig. 4. We can see how the densities of small
and big particles depend on the position inside the pocket.
The driving is f0 = −1, i.e., the particles are pushed into
the pocket. While the density of small particles increases
monotonously when we proceed from the entrance to the
end of the pocket, the big particles behave differently. Ini-
tially, their density increases a little, but when we proceed
deep inside the pocket, the density of big particles decreases
substantially. Small particles push the big ones out of the
pocket, countering and reversing the effect of the driving
force. As a result, the current of big particles is enhanced.
Note that this is analogous to the Brazil nut phenomenon,
occurring frequently in shaken mixtures of granular mat-
ter [74]. We shall encounter this effect at several occasions
later.

FIG. 7. Scheme of the two-dimensional channel geometry. The
channel is composed of periodically repeating teeth, each tooth con-
sisting of 15 squares drawn by the thin lines. The edges of the squares
have unit length. In the continuous description, the position of the
particles can be anywhere within the area delimited by the borders
shown as the thick lines. In the discrete description, the number of
particles within each square must satisfy the condition (25).

IV. TWO-DIMENSIONAL CHANNELS

A. Geometry

Let us now turn to more realistic geometries. In this sec-
tion we shall consider channels with periodically varying
profile in the horizontal direction, but with uniform height
in the vertical direction, comparable with the size of the
particles. Therefore, the movement of the particles can be
considered effectively two-dimensional. Such structures are
routinely fabricated using PDMS soft lithography [9,75] and
this is the experimental situation we have in mind in our
theoretical modeling.

We shall investigate the dynamics of particles in 2D chan-
nel with geometry sketched in Fig. 7. The channel consists
of a series of identical teeth. Each tooth is composed of 15
equal square cells. The edge of a single square sets the unit of
length.

B. Discrete model

In the discrete formulation we performed Monte Carlo
simulations of the generalized ASEP model in the geometry
shown in Fig. 7. The dynamical variables are the numbers
of particles in each of the square cells which must obey the
exclusion constraint (5). Specifically, each square cell has
capacity k = 3, there are just two types of particles (small
and big). The small particles have size factor cs = 1, the big
ones have cb = 2. Therefore, in each cell the number of small
particles ns and big particles nb must satisfy the constraint

ns + 2nb � k. (25)

The sets of hopping rates are, in the direction right, left, up,
down, respectively, denoted a, b, c, d for small particles and
A, B, C, D for big particles. We always fix c = d , C = D. To
keep compatibility with continuous description, the free diffu-
sion coefficients and drifts are D0s = (a + b)/2 = (c + d )/2,
f0s = a − b for small particles and D0b = (A + B)/2 = (C +
D)/2, f0s = A − B for big particles. Moreover, as the prop-
erties of Brownian motion imply that the diffusion coefficient
and mobility are both inversely proportional to particle radius,
we fix the relation between the hopping rates of small and big
particles as A = a/2, B = b/2, C = c/2, and D = d/2. There-
fore, there are just two free parameters of the model, namely
D0 ≡ D0s and f0 ≡ f0s. The average density of particles of
type α is ρα = Nα/(15L), where L is the number of teeth in
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FIG. 8. Particle current in the one-component system (small par-
ticles only) in the two-dimensional teeth geometry shown in Fig. 7.
The diffusion coefficient is D0 = 1 and the driving f0 = 1 (symbols
+ and × and sign “+” in front of js) and f0 = −1 (symbols �
and � and sign “−” in front of js). The points show the results of
the Monte-Carlo simulation of the discrete model (symbols × and
�) and solution of the Eq. (12) using COMSOL software in the
continuous formulation (symbols + and �).

the sample, each comprising 15 cells, and Nα the number of
particles of type α in the simulation.

C. Continuous formulation in hydrodynamic approximation

In the continuous formulation, we solved numerically the
set of Eq. (12) in stationary state in the channel delimited by
thick lines in the scheme shown in Fig. 7. We fix the x axis
along the channel and y axis perpendicular to it. Consistently
with the discrete formulation, there are just two types of
particles, and we consider the simplest nontrivial case k = 3.
The functions Rα (λs, λb) are given by the formulas (24). To
keep the transport coefficients consistent with the discrete
model, we fix the diffusion coefficients D0s = 2D0b = D0 and
drift f0s = 2 f0b = f0. The boundaries (thick lines) impose
reflecting boundary conditions. The teeth repeat periodically,
so that we impose periodic conditions on the fugacities λα (x +
5, y) = λα (x, y), as each tooth has length 5 in the x direction.
The numerical solution is performed using the COMSOL
software. The average density of particles of type α is just
the integral of the local density over one tooth divided by the
area of the tooth, ρα = ∫

tooth ρα (x, y)dxdy/15.

D. Comparison

First, we studied the one-component system with small
particles only. We show in Fig. 8 the current of particles as a
function of average density. As expected, we observe the max-
imum of the current, which lies at different position depending
on the sign of the drift f0. When the orientation of the drift is
switched periodically, a ratchet effect occurs. If the frequency
of switching is very small, then we may use the adiabatic
approximation and calculate the ratchet current as arithmetic
mean of the currents for f0 = | f0| and f0 = −| f0|. The ratchet
current calculated in such a way can be grasped from Fig. 8
directly. We can see that in the geometry of Fig. 7 the ratchet
current is positive for small densities, corresponding to the
easy direction toward the right. At a density around ρs � 1.8
the ratchet current changes sign and becomes negative. Recall
that the change of sign of the ratchet current is absent in the
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FIG. 9. Current of the small (upper panel) and big (lower panel)
particles in the two-dimensional teeth geometry shown in Fig. 7. The
diffusion coefficient is D0 = 1 and the driving f0 = 1 (symbols +
and × and sign “+” in front of js) and f0 = −1 (symbols � and �
and sign “−” in front of js). The average density of big particles is
ρb = 0.5. The points show the results of the Monte-Carlo simulation
of the discrete model (symbols × and �) and solution of the set
of Eq. (12) using COMSOL software in the continuous formulation
(symbols + and �).

one-dimensional model investigated in the last section, but
occurs in the pocket geometry. This indicates that the pocket
geometry indeed grasps essential features of the 2D systems.

Comparing the results of discrete and continuous ap-
proaches, we can see that the hydrodynamic approximation
slightly overestimates the current, but the difference remains
rather small. Moreover, it is interesting to note that the density
at which the ratchet current changes sign is nearly equal for
the discrete and continuous formulations. All of this suggests
that the hydrodynamic approximation is fairly reliable for
one-component colloid suspensions.

Next we simulated the mixed system of small and big
particles. We show in Fig. 9 how the current of small and
big particles depend on the average density of small particles,
with average density of big particles fixed. As expected, we
can observe the maximum in the current of small particles
and monotonous decrease in the current of big particles. Sim-
ilarly to one-component system, comparison of the results for
positive and negative drift tells us what is the ratchet current
like in adiabatic approximation. Again, we observe current
reversal in the ratchet current of small particles. The current
reversal for big particles is absent in Fig. 9, but this is a special
feature of the particular choice of the density of big particles
ρb = 0.5. For a generic ρb, also the current of big particles
exhibits the change of sign. Thus, also the mixed system of
small and big particles is qualitatively very close when we
compare the piecewise-one-dimensional pocket geometry and
the two-dimensional tooth geometry.

Comparing the results for the discrete and continuous mod-
els, we can see that the agreement is significantly worse
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FIG. 10. Local densities of small (a, b) and big (c, d) particles,
obtained from continuous formulation (a, c) and from discrete model
(b, d) in the two-dimensional teeth geometry shown in Fig. 7. The
transport coefficients are D0 = 1, f0 = −1. The average density of
small particles is ρs = 1.2 and the average density of big particles is
ρb = 0.5. The color encoding for the local densities is given by the
legends on the right-hand side.

than in the case of one-component system, although qualita-
tively the behavior remains comparable. Such observation is
consistent with the results we obtained recently [45] on one-
dimensional generalized ASEP model. Indeed, in Ref. [45]
we showed that the mean-field and Kirkwood approxima-
tions are excellent for one-component system, but become
quantitatively off by several tens of percent if we work with
two-component system. In Ref. [45] we identified the source
of the disagreement to be long-range correlations which de-
velop due to indirect interaction of one type of particles
mediated by the other type of particles. We believe that the
same mechanism is responsible for the difference between
discrete and continuous models also here.

In Fig. 10 we can see the spatial distribution of small and
big particles within one tooth. The orientation of the drift
is leftward and this corresponds to marked accumulation of
small particles at the left edge of the tooth. On the contrary,
big particles are localized mostly near the middle of the tooth.
This is another manifestation of the phenomenon analogous
to Brazil nut effect. Indeed, small particles accumulated next
to the left edge of the tooth prevent the big particles from
entering the leftmost region. The big particles, which are
also a priori pushed leftward, remain at a half way. This
phenomenon can be seen in both discrete and continuous
models. Also other details of the local density are very sim-
ilar in discrete and continuous variants, so we can conclude
that the continuous description works well in terms of spatial
distribution of the particles.

V. THREE-DIMENSIONAL GEOMETRIES

A. Mixture of particles in a container: The Brazil nut effect

In static case, i.e., with strictly zero current everywhere,
the equations for fugacities (12) decouple. For example, we
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FIG. 11. The Brazil nut effect: local densities of small (solid line)
and big (dot-dashed line) particles in a cylinder of height h = 1.5
with vertical axis along the z coordinate. The average densities are
ρs = 1.4 for small particles and ρb = 0.01 for big particles. The
transport coefficients are D0 = 1, f0 = 6.

consider a mixture of two types of particles in a cylindric
container, with vertical axis, under influence of gravity. We
identify the vertical direction with the z axis and we have
homogeneous field f0x = f0y = 0, f0z = − f0. The solution of
Eq. (12) is trivial,

λs(x, y, z) = λs0 e− f0
D0

z
,

λb(x, y, z) = λb0 e− f0
D0

z
, (26)

and the densities of particles are deduced directly from
Eq. (26) using the functions (24) as

ρs(x, y, z) = Rs
(
λs0 e− f0

D0
z
, λb0 e− f0

D0
z)

,

ρb(x, y, z) = Rb
(
λs0 e− f0

D0
z
, λb0 e− f0

D0
z)

. (27)

We show in Fig. 11 the typical density profile of small and
big particles. In this example we assume that there are just few
big particles, i.e., the average concentration of big particles is
much smaller than the concentration of small ones. The small
particles accumulate at the bottom, with diffuse but steep drop
of density around a depth analogous to a “liquid level.” Then,
the big particles accumulate around this “liquid level,” thus
resembling big particles floating on the top of the bulk of
small particles. This is just what is observed in the Brazil
nut phenomenon. However, there is a fundamental difference.
In the Brazil nut experiments [74], one uses shaken granular
material, while in our model, we deal with Brownian particles
under the influence of thermal fluctuations.

In this formulation, the Brazil nut effect occurs in a static
regime with no macroscopic current. As we have seen in the
last two sections, it can be observed also in nonequilibrium
situations. So, we can conjecture that it is a generic feature of
mixed systems of small and big particles.

B. Axially symmetric pore

Now we consider the mixture of small and big particles
inside an axially symmetric pore, with driving parallel to the
axis. We use cylindrical coordinates with axis z coinciding
with the axis of the pore and radial coordinate r. All quantities
will be symmetric with respect to rotation around the axis, so
the dependence on the azimuthal angle φ is absent. The pore is
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FIG. 12. The profile of the axially symmetric pore. The z axis
coincides with the axis of the pore. The geometry is characterized by
parameters d (average diameter), 
 (spatial frequency), A (depth of
the profile), and B (asymmetry of the profile).

delimited by a periodic wall, r < h(z), h(z) = h(z + 2π/
).
For simplicity, we shall use a sawtooth-type boundary, as
sketched in Fig. 12. There are three geometric parameters,
d specifying the average diameter of the pore, 
 the spatial
frequency, A depth of the profile, and B asymmetry of the
profile. Specifically, we have

h(z) = d

2

(
1 + A

(
2z

z1
− 1

))
, z ∈ (0, z1),

h(z) = d

2

(
1 − A

(
2z

z2
+ 1

))
, z ∈ (−z2, 0), (28)

where we denoted z1 = (1 − B)π/
 and z2 = (1 + B)π/
.
We solved the transport Eq. (12) using the COMSOL soft-

ware. From a technical point of view, the axial symmetry
facilitated substantially the numerical solution. In Fig. 13 we
show the current of small and big particles as a function of the
average density of small particles. Comparing the results for
rightward and leftward driving, we can immediately infer the
properties of the ratchet current in adiabatic approximation
(i.e., when periodic flipping of the orientation of the drift
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FIG. 13. Current of small (upper panel) and big (lower panel)
particles in axially symmetric pore with geometry defined by
Eq. (28). The geometric parameters are d = 0.3, 
 = 20, A = 0.3,
B = 0.8, the transport coefficients are D0 = 0.2, f0 = 5 (symbols +,
sign “+” in front of ja and jb) and f0 = −5 (symbols ×, sign “−” in
front of ja and jb). The average density of big particles is ρs = 0.5.

FIG. 14. Spatial distribution of the particle densities for small
particles (upper panel) and big particles (lower panel) inside one
spatial period of the pore with profile defined by Eq. (28). The color
encoding for local densities is given by the legends on the right-
hand side. The geometric parameters are d = 0.3, 
 = 20, A = 0.3,
B = 0.8, the transport coefficients are D0 = 0.2, f0 = −5, and the
average particle densities are ρs = 1.5, ρs = 0.5.

occurs very slowly). We can see that the ratchet current of
both small and big particles is positive if the density of small
particles is small enough. This corresponds to moving in the
easy direction dictated by the geometry sketched in Fig. 12.
Indeed, the easy direction is rightward as long as the asymme-
try parameter B > 0, which is the case for the data in Fig. 13.
When the density of small particles increases, the ratchet
current of big particles becomes negative first and the ratchet
current of small particles later. This means that there is an
interval of densities ρs in which the ratchet effect carries the
small and big particles in opposite directions, thus enabling
full separation of the particle types. This is the same effect as
observed already in the piecewise one-dimensional geometry
with pockets, studied in Sec. III C. Also the whole current-
density diagram of a 3D system, Fig. 13, is qualitatively very
similar to corresponding diagram for pocket geometry, Fig. 5.
This indicates that the pocket geometry, when properly cali-
brated, can bring useful information even on the behavior of
3D systems. We would like to consider that a late justification
of our earlier studies of generalized ASEP models in pocket
geometry presented in our previous work [43].

We also looked at the detailed distribution of densities of
small and big particles in the pore. Due to the symmetry,
the density depends only on the axial and radial coordinates.
Thus, we show in Fig. 14 the densities in a plane containing
the axis of the pore. We also assume periodicity of the density
along the axis and show just one spatial period of the pore. In
the case shown in Fig. 14 the drift goes leftward and we can
see accordingly the accumulation of small particles at the left
wall of the pore. The big particles, however, are concentrated
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around the middle of the period, manifesting once again the
Brazil nut phenomenon. Indeed, the spatial distributions of
particles in 3D geometry in Fig. 14 and in 2D geometry in
Fig. 10 are qualitatively very similar.

VI. CONCLUSIONS

We formulated a hydrodynamic approximation for move-
ment of dense colloidal suspension of Brownian particles.
The formulation goes in two steps, first approximating the
true Brownian motion with steric repulsion of particles by
a discrete stochastic model, the generalized asymmetric ex-
clusion process (ASEP), and then performing hydrodynamic
limit in this generalized ASEP model. The approximation is
formulated for mixtures of particles of various types, differing
by size, diffusion coefficient and drift. In practical calculation,
we worked with just two types of particles (we called them
small particles and big particles). An important feature of
our approach is that the transport equations are formulated in
terms of fugacities corresponding to the particle types, rather
than in terms of particle densities. In such formulation, there
are situations in which the equations for several particle types
decouple and each particle type can be treated independently.
We investigated several such situations.

We studied the model in one-, two-, and three-dimensional
geometries. In a truly 1D system, we placed the driven one-
component system (small particles only) on a line under the
influence of periodic sawtooth potential. In this case, the trans-
port equation can be solved explicitly. We observed several
interesting features of the dependence of current on average
density. For small densities, current grows faster than linearly
with density of particles. At certain density the current reaches
a maximum and then decreases when the density approaches
its maximum dictated by the cell capacity. Close to the max-
imum density, we can look at the current-density diagram as
showing the dependence of current on the density of holes.
Again, we observe that the current increases faster than lin-
early with the density of holes. This superlinear behavior at
both low and high densities can be easily interpreted as a
consequence of steric repulsion of particles. Indeed, noninter-
acting particles accumulate near the minima of the sawtooth
potential. This leads to suppression of the current, because
particles trapped at the minimum must overcome a potential
barrier. Steric repulsion puts a limit to the accumulation of
particles anywhere, therefore less particles are located at the
minima and the spatial distribution of particle density is more
uniform. Hence, less particles are slowed down by the poten-
tial barrier and the current may be higher.

We also studied the piecewise one-dimensional case of
pocket geometry. In this setting, linear segments (called pock-
ets) are appended at regularly spaced points to a straight line.
In stationary state the current is constant and nonzero only on
the straight line, while it is zero in the pockets. This is one
of the cases when transport equations for different types of
particles decouple and are solved independently. In this case,
the solution of the equations is particularly easy. In fact, the
spatial dependence of fugacities for both small and big parti-
cles follow the barometric formula, familiar from the problem
of free Brownian particles in static gravitational field. From
this observation we deduced the current-density diagram for

both types of particles and density dependence of the ratchet
currents in adiabatic approximation. In this case, the ratchet
current changes sign at certain value of the density. There is
a region of densities in which the ratchet currents of small
and big particles are oriented in opposite direction, therefore
enabling (in principle) perfect separation of the two particle
types. In the two-dimensional diagram with densities of small
and big particles on horizontal and vertical axes, respectively,
we can identify the region where the ratchet currents point
in opposite side. Interestingly, this region forms a strip going
diagonally from pure small particles to pure big particles. This
indicates that we can start with a mixture of small and big
particles and separating gradually the one from the other, we
can achieve full separation, as long as we remain, during the
process, all the time within the strip. Note that similar diagram
was obtained by simulations of generalized ASEP model in
our previous work [43].

In this work we limited our study of the ratchet effect to
adiabatic approximation. In reality, however, the direction-
switching frequency is finite and represents an important
parameter of the experimental setup. It would be in prin-
ciple straightforward to extend our analysis to arbitrary
time-dependent driving by solving the full time-dependent
nonlinear diffusion Eq. (7). However, currently we do not see
a way to obtain analytic results and the only way would be
numerical solution. This could not be complicated using the
COMSOL software but we leave it for future work. We expect
that the ratchet current would be a decreasing function of fre-
quency, ultimately approaching zero for very fast switching.
However, we cannot exclude a stochastic resonance leading
to a maximum current at finite frequency. This question must
be answered by a specific detailed computation.

In a two-dimensional geometry, we placed the particles in
a periodic tooth-shaped channel. We compared the contin-
uous hydrodynamic description with simulation of discrete
generalized ASEP model in the same geometry. The re-
sults are quantitatively close to each other. In the case of
one-component system (small particles only), the agreement
is very good. However, for mixed small and big particles,
the agreement worsens, as the continuous description cannot
take into account complicated long-range correlations. This
is similar to our observation we made in our recent work on
generalized ASEP model [45].

However, the continuous hydrodynamic description cor-
rectly describes one important phenomenon involving correla-
tions between small and big particles, which is the Brazil nut
effect. It is manifested in depletion of big particles from the ar-
eas where small particles concentrate. For example, it implies
that the driven small particles in the tooth-shaped channel
accumulate at the posterior walls of the teeth, as expected,
but the big particles are mostly located around the middle of
each tooth, rather than at the posterior wall. The reason is that
the small particles accumulate easily and the big particles do
not find enough space at places occupied already by small
ones. In this respect, the discrete and continuous descriptions
are in full accord. This may be understood well, because
the Brazil nut phenomenon reflects purely local correlations.
Such correlations are well described by the continuous theory,
contrary to the long-range correlations, as shown by us also in
Ref. [45].
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We also looked at truly three-dimensional, though sim-
plified, geometries. We investigated explicitly the Brazil nut
effect, mentioned earlier, in static case of the mixture of small
and big particles in a cylindric container in homogeneous axial
external field. The external field can be viewed as gravitational
force. Then, the small particles are concentrated at the lower
part of the container, resembling a liquid in a half-filled bottle,
while the big particles look as if they floated on top of the
surface of the small-particle liquid. Note, however, that the
real experiments with the Brazil nut phenomenon [76–78]
are made with shaken granular matter of two different sizes
of grains, while our theory works with Brownian particles
agitated by thermal fluctuations. There is no trivial corre-
spondence between these two situations, but rather just an
analogy. The Brazil nut effect in shaken granular mixtures was
amply studied by molecular dynamics (e.g., Refs. [78–80]) or
schematic Monte Carlo simulations (e.g., Ref. [74]). These
studies take into account many more details of the process
than our method, but comparison of stationary density pro-
files (e.g., Ref. [80]) shows striking similarity to our results.
Therefore, our method grasps reasonably well the stationary
state. However, there is much more to Brazil nut effect, for
example conduction eddies [79], friction and arching [80],
that our approach cannot explain.

The most realistic case we studied in this paper was the
mixture of small and big particles in an axially symmet-
ric pore with periodically variable diameter. The variation
of the diameter follows a sawtooth pattern. Therefore, the
axial section of the pore resembles the two-dimensional
tooth geometry investigated earlier. Numerical solution of
the transport equations provided concentration dependence of
the current of small and big particles, which is qualitatively
very similar to both the two-dimensional tooth channel ge-
ometry and the one-dimensional pocket geometry. Also the
spatial distribution of the small and big particles in the axial

section of the pore is very similar to what is observed in the
two-dimensional system.

This observation provides an a posteriori justification of
the generalized ASEP model in pocket geometry, which we
introduced in Ref. [43]. Most importantly, the full three-
dimensional solution exhibits qualitatively the same behavior
of the ratchet current. This implies that such a setup can
be indeed used for separation of dense mixtures of col-
loid particles according to their size. Quantitatively, however,
the ratchet current in realistic three-dimensional geometry is
smaller than in a model one-dimensional setup, because the
wider sections of the pore, which play the role of pockets
seen in one-dimensional model, cannot be made arbitrarily
voluminous, while in one-dimensional case we are not lim-
ited in increasing the depth of the pockets. This implies that
we actually could model the three-dimensional case by one-
dimensional pocket geometry, but with the provision that the
depth of the pocket must be appropriately calibrated and we
should expect that the pockets are relatively shallow.

Finally, let us briefly mention a direction for future re-
search. It is natural, instead of periodically driven Brownian
particles, to consider active particles which possess internal
drive and change direction stochastically [81,82]. They were
already widely studied in complex geometries [5] and espe-
cially the ratchet effect was explored [83–87], following the
experiments with rectification of bacterial movement (see,
e.g., Ref. [88]). It would be interesting to use the methods
developed in our work to dense ensembles of active particles.
We leave this question for future work.
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