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Fine-tuning of colloidal polymer crystals by molecular simulation
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Through extensive molecular simulations we determine a phase diagram of attractive, fully flexible polymer
chains in two and three dimensions. A rich collection of distinct crystal morphologies appear, which can be finely
tuned through the range of attraction. In three dimensions these include the face-centered cubic, hexagonal close
packed, simple hexagonal, and body-centered cubic crystals and the Frank-Kasper phase. In two dimensions the
dominant structures are the triangular and square crystals. A simple geometric model is proposed, based on the
concept of cumulative neighbors of ideal crystals, which can accurately predict most of the observed structures
and the corresponding transitions. The attraction range can thus be considered as an adjustable parameter for the
design of colloidal polymer crystals with tailored morphologies.
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I. INTRODUCTION

Crystallization is one of the most intriguing physicochem-
ical processes in science and technology. While of paramount
importance in materials design and engineering, key aspects
of the phenomenon remain rather poorly understood. Thus, it
is imperative to establish a connection between behavior at the
level of atoms and molecules, the ensuing ordered structures,
and eventually the macroscopic properties of the end material.

Very recently through the emergence of “digital alchemy”
[1] the concept has been tackled through a new perspec-
tive: one starts from the target morphologies and searches,
mainly through computational tools, for the molecular shape
and size that would produce them [2]. Such reverse engi-
neering methods, combined with robust algorithms, machine
learning, and predictive modeling have led to significant ad-
vances in the computer-aided design of soft materials made
of self-assembled colloids and nanoparticles [3,4]. As an al-
ternative, the shape and size of hard-body objects can be
effectively replaced by fine tuning the pairwise interactions
between the species, be they particles or atoms, in order
to achieve the desired geometric patterns [5–7]. These sim-
ulation breakthroughs have been accompanied by vigorous
progress in colloidal synthesis allowing for a systematic, in-
stead of trial-and-error, fabrication of optimal structures based
on self-organization from properly selected building blocks
[8–13].

The phase behavior of macromolecular systems is equally
important [14] and more complex compared to the one of
monomeric analogs due to the wide spectrum of characteristic
length and time scales involved. Designing crystals made of
soft or hard colloidal polymers and molecules [15,16] remains
a formidable challenge in spite of the important experimental
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[17–23] and modeling [24–28] advances in synthesis, charac-
terization, and property prediction.

In the present contribution we demonstrate a hierarchical
modeling approach for the design and morphological fine
tuning of crystals of colloidal polymers with short-range at-
tractive interactions. First, we describe the macromolecular
system at hand, then we introduce a geometric neighbor
model to predict the thermodynamically stable crystal, and
finally we resort to simulations to verify and extend analytical
predictions.

II. MODEL, SYSTEMS, AND METHODOLOGY

A. Molecular model

The colloidal polymer model we have chosen (in two and
three dimensions) is a bulk assembly of linear, freely jointed
chains of tangent, nonoverlapping spheres of uniform diam-
eter σ1, which is further the characteristic unit length of the
system, taken here as unity. Bonded monomers along the
chain backbone are tangent within a numerical tolerance of
dl = 6.5 × 10−4. Practically, this means that no gaps exist
between bonded sites. Such gaps are known to profoundly
affect the phase behavior of chains and the ensuing crystal
morphologies [29,30]. Short-range, pairwise attraction is re-
alized through the square well (SW) potential, described by

uSW (ri j ) =
⎧⎨
⎩

0, ri j � σ2

−ε, σ1 � ri j < σ2

∞, ri j < σ1

, (1)

where the tunable parameters correspond to the intensity
(depth) ε and the range of interaction σ2, the latter being
expressed in units of σ1 (σ2 > σ1). In Eq. (1) uSW (ri j ) is the
energy that corresponds to the interaction of two monomers i
and j whose centers lie at a distance ri j .
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Since the early works of Young and Alder [31,32], the
SW model has been applied to study (free) energy-driven
processes in monomeric and more complex systems, and has
provided insights into the phase behavior, coalescence, and
percolation of monomers [33–41], and protein folding and
self-assembly of single chains [42–46].

B. Geometric neighbor model

The proposed geometric neighbor model is particularly
simple, and it follows a concept similar to the one proposed by
Serrano-Illán et al . as analyzed in [39]. Given the entirely at-
tractive nature of the interactions, thermodynamic stability of
the crystals is primarily dictated by the number of neighbors
as a function of distance. The more neighbors packed within a
radius equal to the attraction range σ2, the lower the potential
energy and (ignoring entropic differences among polymorphs,
which are known to be quite small [47–51]) the more stable
the corresponding crystal.

The tangency condition imposed by chain connectivity in
fact simplifies the analysis of polymeric analogs: first, because
only strictly tangent polymer crystals have to be considered
and, second, with respect to simulations, the bonds along
the chain backbone stabilize cluster formation compared to
monomeric analogs for the same attraction intensity.

The following crystals have been considered for the ge-
ometric neighbor model: honeycomb (HON), square (SQU),
and triangular (TRI) 2D crystals, and the face-centered cubic
(FCC), hexagonal close packed (HCP), holoedric 6/mmm
(simple hexagonal or HEX), and body-centered cubic (BCC)
3D crystals, whose structures and properties can be found
in [52].

Figure 1 shows the number of neighbors as a function of
distance for the above crystal types in two dimensions (top
panel) and three dimensions (bottom panel). Starting with two
dimensions, the geometric model predicts that the TRI crystal
is the prevailing one from the point of view of energy in all
ranges except the intervals 1.41 � r � 1.73 (Region B) and
2.24 � r � 2.65 (Region E) where a site in the SQU crystal
has more neighbors within a circle of diameter σ2. The HON
is systematically more dilute and thus the least stable crystal
in the whole attraction range.

In the 3D case, six distinct regions can be identified. The
initial dominance of HCP/FCC (Region I) is succeeded by
BCC (Region II), HEX (Region III), again BCC (Region IV),
FCC (Region V), and HCP/BCC (Region VI). At first glance
it is unexpected that for distances in the range of 1.15 � r �
1.73 the noncompact HEX and BCC crystals prevail. Still, the
dominance of noncompact crystals, as calculated here, is in
agreement with the density-based calculations in Ref. [39].

The phase diagram of Fig. 1, as predicted by the geomet-
ric neighbor model, raises a number of intriguing questions,
especially whether the expected ordered morphologies can
appear “in reality.” We remind readers here that any entropic
contributions, both translational and conformational, are ig-
nored. Information in the geometric neighbor model about
chain connectivity is solely incorporated through the tangency
condition, effectively enforcing the absence of gaps between
the interlattice sites. Thus, this straightforward geometric

FIG. 1. Number of neighbors, m, as a function of distance from
a reference site, σ2, for (bottom panel) the HCP, FCC, BCC, and
HEX crystals in three dimensions and (top panel) the TRI, SQU, and
HON crystals in two dimensions. Dashed vertical lines identify the
values at which the steps take place. Each region is identified by a
roman number (3D) or letter (2D). Arabic numbers in parentheses
correspond to the cumulative number of neighbors for the most stable
crystal in the given region.

argument can be considered as only a first-order approxima-
tion (but a successful one, as will be shown below).

C. Monte Carlo simulations

To validate the predictive capacity of the proposed model,
we carry out extensive simulations for the generation and
equilibration of the systems composed of 100 attractive
chains of average chain length Nav = 12 for a total of N =
1200 interacting sites. Regarding the simulations and the
successive structural identification of the generated system
configurations, we employ Simu-D, a home-made simulator-
descriptor software suite [53]. The simulator component
is a Monte Carlo (MC) protocol based on local, cluster
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and chain-connectivity-altering moves (CCAMs) [54–56] as
in all our recent works on (free) energy-driven [57] and
athermal [58–60] polymer-based systems. The MC mix is
composed of (1) rotation (10%), (2) reptation (10%), (3) flip
(34.7%), (4) intermolecular reptation (25%), (5) configura-
tional bias (20%), (6) simplified end bridging (0.1%), and
(7) simplified intermolecular end-bridging (0.1%) and clus-
ter moves (0.1%) where numbers in parentheses correspond
to attempt percentages. Furthermore, a cluster analysis is
attempted at regular intervals (107 steps) to disable cluster
moves when there is just one cluster or (re)activate them in
the opposite case. Clusters are detected using an approach
similar to the DBSCAN algorithm [61,62], where the distance
criterion is set to 1.2 (in units of σ1). As explained in detail
in [53,55,56] every local MC move is executed in a configu-
rational bias pattern. To increase computational performance
the number of attempts depends on cluster population, being
ndis = 5 when there is just one cluster and ndis = 20 when
several exist.

Simulations are carried out in the NVT ensemble for three
dimensions and in the NPT ensemble for two dimensions.
In both cases, temperature is set equal to T = 1/k, where k
is the Boltzmann constant. Pressure is fixed at 1 bar (NPT
simulations) and packing density at ϕ = 0.05 (or equivalently
number density ρn = 0.0262; NVT simulations). Due to the
application of chain-connectivity-altering moves, dispersity in
chain lengths is introduced. These vary uniformly with the
minimum and maximum allowed lengths being set at six and
18 monomers, respectively. Selected simulations on polymers
with longer lengths (Nav = 24), under the same conditions,
revealed no appreciable difference in the phase behavior.

We start from a fully equilibrated athermal system of
freely jointed chains of tangent hard spheres at low packing
density [63] and activate the SW potential. As explained in
detail in [57], this corresponds practically to instantaneous
quenching with the attraction intensity adopting the role of an
effective quench rate: the higher the value of ε, the higher the
temperature difference. 2D polymer configurations are created
by shrinking the original 3D systems until a film thickness
of unit length is reached through a process that is described
in [64]. By fixing all other parameters (Nav , N , T , P or V
and dl) and the interaction intensity at ε = 1.2, we system-
atically explore the effect of interaction range in the interval
σ2 ∈ [1.10, . . . , 2.00] in steps of 0.01 for 3D systems and in
increments of 0.02 for 2D systems. As a first design step,
a representative value of the well depth ε = 1.2 is selected
because it is (1) large enough to prevent entropy from over-
whelming the internal energy advantage of specific crystals
and (2) not so high that the simulations would become trapped
in local energy minima, leading to glass formation instead of
crystallization (see, for example, Fig. 5 in [57] on the phase
behavior as a function of attraction intensity).

Equilibration of the systems is traced through a hierar-
chical, two-step evolution: (1) A single cluster is formed
including all chains and their monomers. Quantification of
this step is trivial by tracking the evolution of the number
of formed clusters as the simulation evolves. Activation of
cluster-based MC moves is a necessity especially for low val-
ues of σ2 and/or high values of ε [57]. (2) The state or degree
of order in the formed cluster becomes stable. This final step is

quantified through the evolution of the degree of crystallinity,
practically being equal to the sum of all order parameters
for all reference crystals (see next section). To check repro-
ducibility we have conducted additional simulations starting
from different initial athermal configurations (but still under
very dilute conditions) and with different seeds for the random
number generators. For the whole range of σ2 values studied,
no appreciable difference is detected in the established mor-
phologies between independent MC simulations.

D. Structural analysis of computer-generated
system configurations

We employ the characteristic crystallographic element
(CCE) norm [52,65] for the structural analysis of the
computer-generated system configurations. In three dimen-
sions we use the CCE norm to detect hexagonal close packed
(HCP), face-centered cubic (FCC), simple hexagonal (HEX),
and body-centered cubic (BCC) crystals as well as noncrys-
tallographic fivefold (FIV) local symmetry. Regarding the 2D
analysis, we compare against the triangular (TRI), square
(SQU), and honeycomb (HON) crystals, as well as pentag-
onal (PEN) local symmetry. Every monomer in the system,
in either two or three dimensions, is tested against all corre-
sponding reference crystals as described above. Accordingly,
a norm value μX

j is obtained for site j with respect to a
reference crystal X . Here a threshold value of μc = 0.245
is adopted, below which a site is considered as of X type.
Furthermore, we can measure the order parameter, SX , of a
given X crystal as

SX =
∫ μc

0
P(μX ) dμX , (2)

where P(μX ) is the probability distribution function over all
monomers for a given configuration. In order to avoid con-
sidering the monomers that lie on the surface of the formed
cluster the value of SX is multiplied by N

N−Nsurf
, where N is the

number of sites in the simulation (N = 1200 in all simulations
reported here) and Nsurf is the number of monomers on the
outer surface of the formed cluster. This is because in three
dimensions under dilute conditions surface monomers lack a
complete Voronoi environment and are thus characterized by
high disorder (see also Fig. 9 and related discussion).

III. RESULTS

The activation of attractive potential dictating all intra- and
interchain interactions leads to aggregation of the polymer
chains and to the eventual formation of a single cluster, which
may further crystallize depending on the values of interaction
range and intensity. As stated earlier the selected value of
ε = 1.2 under the specific simulation conditions guarantees
crystallization over glass formation as demonstrated in [57].
Once the single cluster containing all chains and monomers
is formed, the CCE descriptor is employed to quantify the
structural characteristics and the possible similarity to one of
the reference crystals in two or three dimensions. Throughout
the paper the following color convention is used: Blue, red,
green, pink, and cyan correspond to HCP, FCC, FIV, HEX,
and BCC similarity, respectively, for 3D systems; blue, red,
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FIG. 2. Final stable polymer cluster as obtained from NVT sim-
ulations in three dimensions with interaction range set at σ2 = 1.51.
Left panel: Spheres are color coded according to their structural simi-
larity: Blue, red, green, pink, and cyan correspond to HCP, FCC, FIV,
HEX, and BCC similarity, respectively. Amorphous (AMO) sites are
in yellow with reduced dimensions for clarity. Right panel: Spheres
are colored according to their parent chain. Snapshots created with
the VMD software [66].

green, and cyan correspond to TRI, SQU, PEN, and HON
similarity, respectively, for 2D systems. Amorphous (or, more
precisely, unidentified or “none of the above”) sites (AMO)
are shown in yellow (and with reduced dimensions in three
dimensions for clarity).

An example of the formed single cluster of polymers at the
end of the simulation and its structural identification through
the CCE norm descriptor can be seen in Figs. 2 and 3, for
3D and 2D systems, respectively. On the left panel sites are
colored according to their structural type, as quantified by the
crystallographic analysis, and on the right panel monomers
are colored according to the parent chain.

In the literature, simulation results are typically reported
in reduced units of temperature (T ∗ = (kT )/ε) and pressure
(P∗ = (Pσ 3

1 )/ε), where T and P are the applied temperature
and pressure and k is Boltzmann’s constant. Here we deviate
from the traditional approach and examine the important de-
pendence on the attraction intensity, which, unlike T or P, is a
material dependent, adjustable parameter, in accordance with

FIG. 3. Final stable polymer cluster as obtained from NPT simu-
lations in two dimensions (polymer films of thickness equal to σ1 = 1
with interaction range set at σ2 = 1.58). Left panel: Spheres are color
coded according to their structural similarity: Blue, red, green, and
cyan correspond to TRI, SQU, PEN, and HON similarity, respec-
tively. Amorphous (AMO) sites are in yellow. Right panel: Spheres
are colored according to their parent chain. Snapshots created with
the VMD software [66].

FIG. 4. Fraction of sites with a similarity to a given reference
crystal or local symmetry X , SX , as a function of the interaction
range, σ2, as obtained from MC simulations of attractive polymer
chains in two dimensions (films of thickness equal to σ1). Distinct
regions, the thresholds, and the corresponding prevailing crystals,
as predicted by the simple geometric neighbor model, are identified
by the roman letters, the dashed vertical lines, and the color labels,
respectively. Also shown are system configurations at the end of the
simulation for selected values of the interaction range. Spheres are
color coded according to their structural similarity: Blue, red, cyan,
and green correspond to TRI, SQU, HON, and PEN similarity, re-
spectively, as quantified by the CCE norm analysis [52]. Amorphous
(AMO) sites colored in yellow. Snapshots created with the VMD
software [66].

our goal to finely tune specific morphologies of hard colloidal
polymers.

Figure 4 illustrates the strong effect, and hence the great
tunability potential, of the interaction range σ2: the order pa-
rameter for each reference crystal, SX , is shown as a function
of σ2 for the 2D systems, together with the regions predicted
by the simple geometric neighbor model and the expected
prevailing crystals, based on energetic considerations only.
Model predictions and simulation results are in excellent
agreement, especially if we consider the simplicity of the
model reported above. Furthermore, the proposed model pre-
dicts very accurately the values of the interaction range σ2

at which polymorph transitions take place over the whole
interaction range.

The immediate conclusion that can be drawn is that, for the
reasonable well depth ε = 1.2, entropy differences between
polymorphs play a very subordinate role in the selection of a
particular crystal type. This is in agreement with the known
small differences in entropy among crystals of monomeric
spheres [47–51], and also with recent quantitative estimates of
differences in chain conformational entropy among crystals of
polymers of hard spheres [59,67].
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FIG. 5. Fraction of sites with a similarity to a given reference
crystal as a function of the interaction range, as obtained from MC
simulations on attractive polymer chains in bulk three dimensions.
Outer surface monomers are excluded from the calculation of SX .
Distinct regions, the thresholds, and the corresponding prevailing
crystals, as predicted by the geometric neighbor model, are identified
by the roman numbers, the dashed vertical lines, and the color labels,
respectively. Also shown are system configurations at the end of
the simulation for selected values of the interaction range. Spheres
are color coded according to their structural similarity: Blue, red,
green, pink, and cyan correspond to HCP, FCC, FIV, HEX, and
BCC similarity, respectively. Amorphous (AMO) sites are in yellow
with reduced dimensions for clarity. The regime of the Frank-Kasper
(F-K) phase, as established in simulations, is indicated by the vertical
green dashed lines. Snapshots are created with VMD software [66]
and are also available in Fig. 6, and for better visual inspection as
3D, interactive images in the Supplemental Material [68].

Figure 5 presents a similar phase diagram for the 3D
systems, along with the predictions of the neighbor model,
while Fig. 6 hosts representative snapshots at the end of the
MC simulations. At short interaction range (Region I) a ran-
dom hexagonal close packed (rHCP) crystal is observed. The
rHCP morphology can have a unique stacking direction of
fivefold-free HCP and FCC layers, or multiple stacking di-
rections where the meeting (composition) planes at the crystal
boundaries are fivefold-ridden. As the number of neighbors
is the same between HCP and FCC no pure crystal prevails
and, thus, the rHCP polymorph remains the final ordered
morphology in Region I. The rHCP dominance, as gauged by
simulations, extends into higher values of σ2 than predicted
by the neighbor model.

Interestingly, in the region between 1.21 � σ2 � 1.30 none
of the crystals expected by the geometric model appear. The
resulting structure is characterized by an abundance of five-
fold sites and the absence of any appreciable population of
sites with crystal similarity as captured by the CCE-norm
descriptor. Close inspection of the established morphology, as
hosted in Fig. 7, reveals that it corresponds to the σ variant of
the Frank-Kasper (F-K) phase [69,70]. In the past, F-K phases
have been reported in studies of self-organizing soft matter

systems, including macromolecules, colloids, surfactants, and
liquid crystals [71–81]. Red lines in Fig. 7 connect triangles
“3” and squares “4” in the tiling of the sparsely populated
layer of the F-K phase. The resulting tiling of 32.4.3.4 is
characteristic of the σ F-K phase.

The expected dominance of the imperfect BCC crystal sets
in at higher values of σ2, compared to the threshold predicted
by the neighbor model. The transitions BCC (Region II) ⇔
HEX (Region III) and HEX (Region III) ⇔ BCC (Region IV)
exist, as clearly captured by the data in Fig. 5. However, they
are both accompanied by the presence of regions (called here
“amorphous zones,” denoted in the phase diagram as “AMO”)
of glassy, disordered behavior where no crystal traces are
detected. The nature and origin of the two AMO zones, along
the phase diagram, which is otherwise rich in distinct crystal
morphologies, are open topics under study.

The FCC and HCP prevalence and the value of σ2 ≈ 1.91
at the transition agree very well with those expected from
the number of neighbors in Regions V and VI. In fact, in
Regions V and VI, we can observe the formation of perfect
FCC and HCP crystals, in contrast to the behavior in Region
I where the rHCP polymorph dominates. This trend can be
explained rather trivially by the neighbor model: in Region I
there is a tie in the number of neighbors (m = 12) for the HCP
and FCC crystals, and hence in internal energy. The tiny en-
tropic difference between FCC and HCP [67] is not sufficient
to make FCC dominant in the MC simulation. However, in
Regions V and VI the FCC and HCP crystals dominate by a
difference of 2 and 10 neighbors, respectively, and are thus the
energetically favored states. The high number of neighbors in
these two regions (m = 38 and 50, respectively) also implies
that monomers reside in a much deeper potential energy well,
so that entropy plays a very minor role in selecting the stable
polymorph, and in blurring the boundaries between phases.

In the present study we let the crystal be self-assembled
in almost vacuum conditions, so it can spontaneously adjust
its density and structure by obeying the tangency condition
and the orientational and radial symmetry and by minimizing
its free energy, chiefly by maximizing the number of neigh-
bors within a shell of size σ2. The complex phase diagram
is primarily a consequence of this maximization. In order to
interpret these observations, we plot in Fig. 8 the local number
density, 〈ρn〉, the number of neighbors, 〈m〉, and the ratio
of the accessible volume by the volume of the Voronoi cell,
〈Vac/VVC〉, as a function of interaction range. The brackets
〈 〉 denote here averaging over all monomers which have a
fully developed Voronoi environment, i.e., that do not lie on
the surface of the cluster, and over all system configurations
in the final, stable part of the simulation trajectory. Local
number density is calculated as the inverse of the Voronoi
cell volume. The Voronoi tessellation, also a requirement for
the crystallographic analysis, is done through the Voro++
software [82]. The regions observed in the MC simulations are
identified in Fig. 8 by the different background colors and the
corresponding labels. Well-defined crystals are characterized
by a constant number of neighbors in particular ranges of σ2,
in agreement with the model predictions in Fig. 5, and by
negative slope in the density curve: within the domain of a
given polymorph, the crystal expands as σ2 increases, while
keeping the number of neighbors constant.
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FIG. 6. Representative system configurations (bulk 3D) at the end of the Monte Carlo simulations with varied attraction range, σ2. All
chains have formed a single cluster of varied order and morphology. Top: σ2 = 1.12 (random hexagonal close packed, rHCP), 1.14 (rHCP),
1.17 (rHCP), 1.24 (Frank-Kasper, F-K), and 1.32 (BCC); bottom: σ2 = 1.45 (amorphous, AMO), 1.51 (HEX), 1.79 (FCC), and 1.94 (HCP).
Labels in parentheses correspond to the established structures or morphologies. Spheres are color coded according to their structural similarity:
Blue, red, green, pink, and cyan correspond to HCP, FCC, FIV, HEX, and BCC similarity, respectively. Amorphous (AMO) sites are colored
in yellow with reduced dimensions for clarity. All clusters have the same number of monomers (N = 1200); their size may appear different
because of the zoom level and the different viewing angle. Snapshots are created with the VMD software [66] and are also available for visual
inspection as 3D, interactive images in the Supplemental Material [68].

In the crystalline regions where the number of neighbors
remains constant, the energy is also strictly constant due
to the flatness of the square well potential. Therefore, in

FIG. 7. System snapshot at the end of the MC simulation at σ2 =
1.23 corresponding to the formation of the σ variant of the Frank-
Kasper phase. Red lines are indicative of the tiling pattern of squares
(“4”) and triangles (“3”) applied on the sparsely populated layer of
spheres corresponding to the 32.4.3.4 format. The lime color used
here is not to be confused with the green to indicate FIV similarity
through the CCE-norm description.

FIG. 8. Local number density 〈ρn〉 (left y axis, white circles),
number of neighbors 〈m〉 (right y axis, red line), and ratio of ac-
cessible volume divided by the total volume of the Voronoi cell
〈Vac/VVC〉 (right y axis, blue squares) inside a shell of radius σ2 as
a function of σ2. 〈 〉 corresponds to average over all sites with
a fully developed Voronoi environment (i.e., surface monomers of
the cluster are excluded from the analysis) and all snapshots that
belong to the equilibrated part of the trajectory. Background colors
correspond to the dominant (crystal, F-K, or amorphous) phase as
observed in the MC simulations.
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these regions minimization of free energy is tantamount to
maximization of entropy, most of which is of translational
origin [47–51] and, ignoring for simplicity the shape of the
local environment, is proportional to the volume accessible
to the monomers. In parallel, an expansion of the Voronoi
cell is also taking place, driven by entropy. This expansion
is reflected in a higher accessible volume (Vac), which eventu-
ally increases the translational entropy of the monomers. The
accessible volume can be estimated through MC integration,
considering that Vac is effectively the fraction of the Voronoi
cell volume (VVC) where a spherical monomer can be placed
without overlapping with the walls of the enclosing polyhe-
dron. So long as the number of neighbors remains constant,
the crystal expands with increasing σ2 primarily because of
the increase in translational entropy of the chain monomers.
Chain conformational entropy changes only very weakly with
σ2 and is thus not the driving force for crystal expansion
with σ2. Figure 8 shows clearly that the accessible volume
increases in the crystal regions, while in the AMO zones,
where amorphous behavior is observed, it tends to shrink.

Transitions between well-defined crystals, for example, the
FCC ⇔ HCP transition, are marked by a jump in the number
of neighbors and a moderate change in the (still negative)
density slope. The behavior changes drastically in the transi-
tion between well-defined crystals and the AMO zones where
disorder prevails. There, the amorphous cluster contracts and
the number of neighbors increases in a smooth, rather than
stepwise, pattern. This behavior is identical for both AMO
zones, which surround the domain of HEX-ordered mor-
phologies. Negative density slopes are a rather straightforward
consequence of entropic pressure: as long as the sites remain
within the interaction range, increasing the cell volume leads
to larger translational entropy. The expansion is then energet-
ically neutral and entropically favorable, so that the crystal
expands. As σ2 grows beyond specific limits, the number of
neighbors and thus its stability increases through a transition
to another polymorph, mostly driven by internal energy.

The left panel of Fig. 9 (scattered white circles) shows the
percentage of the monomers lying on the external surface of
the formed cluster as a function of interaction range, σ2. Quite
small deviations occur within the whole range, with around
two-thirds of the sites having a fully developed Voronoi cell.
Between the formed crystals the HEX one shows the highest
surface to volume ratio. In general, the more compact and the
more spherical the cluster the fewer the sites on the surface.
Two distinct trends can be further observed: the number of
surface atoms increases as a function of σ2 for the Frank-
Kasper phase but decreases monotonically in the amorphous
zones. The right panel of Fig. 9 (red solid line) shows the
dependence of the percentage difference of the number of
neighbors, 100�m/m, on σ2. �m is defined here as a the
number of neighbors, as predicted by the proposed geomet-
ric model, minus the number of neighbors as calculated in
the computer-generated system configurations including all
snapshots in the equilibrated part of the MC trajectory. Very
good to excellent agreement is observed in all regions where
the crystal formed in the MC simulations coincides with the
dominant one as predicted by the geometric model. Large de-
viations correspond to the two amorphous zones, an expected
trend as these regions are bare of any crystal order. These are

FIG. 9. Percentage of monomers lying on the external surface
of the formed cluster, 100Nsurf/N (left y axis, scattered points) and
percentage difference in the number of neighbors 100�m/m (right
y axis, red line) as a function of σ2. �m is defined as the number of
neighbors as predicted by the geometric model, m, minus the number
of neighbors as calculated in the computer-generated system configu-
rations. Background colors correspond to the dominant (crystal, F-K,
or amorphous) phase as observed in the MC simulations.

further accompanied by abrupt changes marking the AMO ⇔
HEX and HEX ⇔ AMO transitions. In the early regime a
sharp discrepancy is observed as the expected BCC crystal,
according to the model, is not encountered in the computer
simulations and instead rHCP morphologies of mixed FCC
and HCP character are formed. In parallel, the difference in
the number of neighbors adopts the lowest values in the HEX-
and FCC-dominated regions. It should be further noted that
for the whole interaction range studied here no negative values
in �m are observed. If such values existed it would mean that
the MC simulations generate a stable crystal which is denser
and thus different from the reference ones incorporated in the
geometric neighbor model.

IV. CONCLUSIONS

The Digital Alchemy proposed by Anders et al. [1] and
recent important advances in synthesis and characterization
show how the use of building blocks of low dimensionality
can lead to the design of tailored colloidal polymers and
molecules by controlling chain stiffness and molecular ar-
chitecture [15,17,19,20]. The present work demonstrates, at
a fundamental level and utilizing a highly idealized model,
how fine tuning a single interaction parameter can be used
to obtain a rich assortment of target crystal structures in
bulk 3D and ultrathin 2D films of hard colloidal chains of
attractive monomers. Towards this, first, we propose a sim-
ple geometric model, based on the cumulative number of
neighbors, to predict the dominant crystal as a function of
attraction range. Then, we embark on Monte Carlo simu-
lations, using the square well potential to equilibrate and
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successively identify the computer-generated polymer clus-
ters. The flatness of the square well potential makes it ideal to
compare the computer-generated structures against the refer-
ence crystals predicted by the geometric model. By tuning the
attraction range a wealth of well-defined ordered structures
is observed including hexagonal closed packed, face-centered
cubic, simple hexagonal, and body-centered cubic crystals in
three dimensions and triangular and cubic crystals in two.
The 3D ordered morphologies are further accompanied by
Frank-Kasper phases of the σ variant. Interestingly, the ex-
pected transitions between the HEX and BCC crystals are
suppressed by the presence of amorphous zones where no
traces of crystallization can be detected. In spite of its sim-
plicity the proposed geometrical model, as demonstrated by
the Monte Carlo simulations, is able to predict the dominant
phases and the corresponding transitions with high accuracy,
especially in two dimensions.

Current efforts focus on gauging the corresponding phase
behavior of semiflexible polymer chains under the same

simulation conditions in the bulk (3D) and in extremely con-
fined thin films (2D).

The data corresponding to the crystallographic analysis
applied on the final configurations at the end of the MC
simulations are openly available [83].
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