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Statistics of carrier-cargo complexes

René Wittmann ,* Paul A. Monderkamp , and Hartmut Löwen
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

(Received 23 November 2022; accepted 17 May 2023; published 8 June 2023)

We explore the statistics of assembling soft-matter building blocks to investigate the uptake and encapsulation
of cargo particles by carriers engulfing their load. While the such carrier-cargo complexes are important for
many applications out of equilibrium, such as drug delivery and synthetic cell encapsulation, we uncover
here the basic statistical physics in minimal hard-core-like models for particle uptake. Introducing an exactly
solvable equilibrium model in one dimension, we demonstrate that the formation of carrier-cargo complexes
can be largely tuned by both the cargo concentration and the carriers’ interior size. These findings are intuitively
explained by interpreting the internal free space (partition function) of the cargo inside a carrier as its engulfment
strength, which can be mapped to an external control parameter (chemical potential) of an additional effective
particle species. Assuming a hard carrier membrane, such a mapping can be exactly applied to account for
multiple cargo uptake involving various carrier or cargo species and even attractive uptake mechanisms, while
soft interactions require certain approximations. We further argue that the Boltzmann occupation law identified
within our approach is broken when particle uptake is governed by nonequilibrium forces. Speculating on
alternative occupation laws using effective parameters, we put forward a Bose-Einstein-like phase transition
associated with polydisperse carrier properties.
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I. INTRODUCTION

When two or more soft-matter building blocks are com-
bined, self-organization can lead to novel hierarchical struc-
tures with unusual material properties [1–10]. One archetypal
problem is a mesoscopic carrier particle that swallows or up-
takes smaller cargo particles to build a carrier-cargo complex.
These superstructures can occur in quite diverse situations
ranging from greenhouse gases stored in porous liquids
[11,12] over adsorbed or encapsulated drugs which need to be
delivered to a target [13–18] to molecules or nanoparticles that
penetrate through the membrane of synthetic and living cells
[19–25] or bacteria engulfed by phagocytes [26,27]. Complex
assemblies on a larger scale involve colloidal particles that are
embedded within, e.g., droplets [28–31] or vesicles [32–35],
or dock at surfaces [36–39].

Despite this plethora of realizations of particle uptake or
encapsulation, the collective properties of larger assemblies
of such interacting particle mixtures have not yet been sys-
tematically explored. Even with simple pair interactions, the
formation of carrier-cargo complexes has barely been consid-
ered from the angle of classical statistical mechanics. This is
most likely due to the intrinsic complexity of internal degrees
of freedom, needed for a basic description of particles which
are swallowed (or ejected again) and thus continuously change
their role from freely floating to loaded cargo. Therefore there
is a principal need for minimal models which provide insight
into the composition and structure of such carrier-cargo mix-
tures.

Here, we develop a controlled setting, which allows us
to classify the occupation statistics of different carrier-cargo
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mixtures and predict their structural properties within a first-
principles framework of statistical mechanics. First, we devise
a basic model involving hollow carriers with excluded-volume
interactions to exemplify that the emerging complexes of
carriers occupied by cargo can be efficiently considered as
individual species. This equilibrium picture allows us to relate
the occupation probability (or engulfment strength) directly
to the partition functions of confined cargo particles and we
therefore speak of a Boltzmann occupation law. Second, in
view of the variety of the soft matter zoo or applications in
biology, we interpret the individual engulfment strength as
an effective quantity that should take into account processes
at the carrier membrane. Third, we argue that nonequilib-
rium uptake of multiple cargo would typically not follow a
Boltzmann law. This could lead to intriguing collective ef-
fects, as exemplified by postulating an occupation law which
enables a Bose-Einstein condensation outside the quantum
world [40–42].

The paper is arranged as follows. We first outline in Sec. II
a general rigorous mapping to an effective system. This map-
ping is then applied to hard particles in Sec. III, where we
determine exact properties of one-dimensional carrier-cargo
mixtures and show that our theoretical treatment leads to
highly accurate predictions in higher dimensions. Moreover,
we elaborate in Sec. IV on the role of attractive or soft inter-
actions and propose empirical applications to nonequilibrium
particle uptake. We then conclude in Sec. V.

II. THEORETICAL TREATMENT

We consider two fundamental types of particles: carriers,
which offer internal storage space, and cargo, which can oc-
cupy this space. A carrier whose internal degrees of freedom
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FIG. 1. Hard-body model for complex-forming carrier-cargo
mixtures. (a) A hollow carrier (blue) and a smaller cargo (red)
with annotated size parameters as basic building blocks. The d-
dimensional free volume �d (black circle) available to the center
of the loaded cargo drives the formation of a carrier-cargo complex
(CCC). For λ© − σ• < σ• there exists only one possible CCC. (b) A
carrier with larger interior (λ© − σ• > σ•) can hold more than one
cargo and thus different CCCs can form, illustrated here for occupa-
tion numbers ν = 1, . . . , 5.

are explored by cargo, represents a carrier-cargo complex
(CCC). For now, all particles are radially symmetric and
interact solely via their excluded volume, as described in
Sec. II A. After discussing in Sec. II B, the exact solution
for a one-dimensional excluded-volume model as a special
case, we motivate in Sec. II C a general recipe for treating
particle complexes irrespective of their interactions, which we
then apply in Sec. II D to general carrier-cargo mixtures. The
notion of a CCC for more general interactions is discussed
later in Sec. IV.

A. Excluded-volume model

The ingredients of our minimal excluded-volume model in
d spatial dimensions are illustrated in Fig. 1. We consider
carriers with diameter σ©, which possess a void space of
diameter λ© in their interior, and cargo with diameter σ•.
While particles of the same species i ∈ {©, •} interact with
each other as d-dimensional hard spheres with the potential

Uii(r) =
{

0 for r � σi,

∞ else, (1)

the interaction between a cargo and a carrier is given by

U•©(r) = U©•(r) =

⎧⎪⎨
⎪⎩

0 for r < (λ© − σ•)/2,

0 for r � (σ© + σ•)/2,

∞ else,

(2)

where r is the center-to-center distance between a pair of
particles.

As illustrated in Fig. 1(a), there exists a single possible
CCC, representing a carrier holding exactly one cargo, if
σ• < λ© < 2σ•. For carriers with larger interiors, multiple
CCCs can form; see Fig. 1(b). We will outline below, that

FIG. 2. Effective description of the carrier-cargo mixtures de-
picted in Fig. 1 as d-dimensional hard spheres. Each CCC consisting
of one carrier and exactly ν cargo particles is associated with an
effective species (different colors). All CCCs have the same phys-
ical properties, i.e., the same diameter σ�• ≡ σ©, as the carriers
(indicated by the shaded interior). The internal degrees of freedom
due to carrier occupation are mapped onto the effective chemical
potential(s) (a) μ�• , defined in Eq. (10), or (b) μν , defined in Eq. (25),
of the CCCs. The empty carriers and free cargo have the chemical
potentials μ© and μ•, respectively.

the driving force of CCC formation is generally related to the
standard Boltzmann statistics for a system of cargo particles in
a cavity with the shape of the interior of the carrier. Hence, the
carrier occupation in our hard-body model is limited by close
packing. Our model is evaluated via Monte Carlo simulation
in the canonical ensemble with M carriers and N cargo par-
ticles, as described in Appendix A, and, in the following, by
statistical calculations in the grand canonical ensemble, where
μ© and μ• denote the chemical potentials of the two particle
species.

B. Exact solution in one dimension

To demonstrate step by step how to treat the general prob-
lem of CCC formation in an elegant way through effective
chemical potentials, we first consider the most intuitive model
for a carrier-cargo mixture in which the carriers can hold at
most one cargo. We further focus for the moment on one
spatial dimension where it is exactly solvable. For this setup,
we define the free length

� := λ© − σ• (3)

of one loaded cargo within a carrier, such that � < σ•. Note
that also the case with λ© > 2σ•, allowing for multiple carrier
occupation, is exactly solvable in one dimension, but for clar-
ity of the following presentation, we will discuss this scenario
later in Sec. II C.

1. Canonical partition function

As a first step we provide the exact canonical parti-
tion function ZM,N of the mixture consisting of M carriers
and N cargo particles. The standard partition function
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Z (L)
N1,N2,...,NK

(σ1, σ2, . . . , σK ) of a K-component hard rod mix-
ture in a system of length L, consisting of Ni particles of
length σi for species i = 1, . . . , K , is stated in Appendix B as a
reference. Denoting by C � min(M, N ) the number of CCCs
(the carrier particles which are occupied by a cargo particle),
we find

ZM,N =
min(M,N )∑

C=0

Z (L)
M,N−C (σ©, σ•)

�C

�CC!

M!

(M − C)!
, (4)

where � is the thermal wave length. Each term in this sum
corresponds to a number N − C of free cargo particles inter-
acting with the M carriers as hard rods, while a multiplicative
factor accounts for the occupation statistics of the C bounded
cargo particles within the CCCs.

Substituting Z (L)
M,N into Eq. (4) we get

ZM,N =
min(M,N )∑

C=0

(L − Mσ© − (N − C)σ•)(M+N−C)�C

�M+N (M − C)!(N − C)!C!
. (5)

Although the sum over C cannot be explicitly calculated,
this result suggests an alternative interpretation of the bi-
nary carrier-cargo mixture as an effective three-component
mixture, illustrated in Fig. 2. As shown in Appendix C,
this effective mixture consists of A := M − C empty carriers,
B := N − C free cargo particles and C occupied carriers, i.e.,
CCCs. This becomes intuitive when expressing Eq. (5) solely
in terms of the partition functions Z (L)

A,B,C (σ©, σ•, σ©) and

Z (λ© )
1 (σ•) = �/�.

2. Grand canonical partition function

The interpretation of the CCCs as members of a third
particle species with � being an intrinsic control param-
eter, becomes more transparent when switching to the
grand-canonical picture. The exact grand canonical partition
function

� =
∞∑

M=0

∞∑
N=0

min(M,N )∑
C=0

zM
©zN

• �C

(M − C)!(N − C)!C!

× (L − Mσ© − (N − C)σ•)(M+N−C) (6)

of the carrier-cargo mixture can be determined from weighting
Eq. (5) with the fugacities zi := eβμi/� of species i ∈ {©, •},
where μi are the respective chemical potentials and β =
(kBT )−1 is the inverse of the temperature T with Boltzmann’s
constant kB. Recognizing the identity

∞∑
M=0

∞∑
N=0

min(M,N )∑
C=0

=
∞∑

C=0

∞∑
M=C

∞∑
N=C

(7)

for the infinite series and shifting the indices through the
substitutions M → A + C and N → B + C, Eq. (6) can be
further evaluated as

� =
∞∑

A=0

∞∑
B=0

∞∑
C=0

zA
©zB

• (z©z•�)C

A!B!C!

× (L − Aσ© − Bσ• − Cσ�• )(A+B+C), (8)

where we have introduced the diameter σ�• ≡ σ© of the CCCs
for later convenience. As in Sec. II B 1, the values of A, B, and
C can be interpreted as the particle numbers associated with
the different species.

3. Exact mapping onto an effective ternary mixture

Defining the effective fugacity

z�• := �z©z• (9)

associated with the third species of CCCs, we have established
a proper mapping of the two-component carrier-cargo mixture
onto a three-component mixture, illustrated in Fig. 2, of three
(reacting) species: empty carriers, controlled by the chemical
potential μ©, free cargo, controlled by the chemical potential
μ•, and CCCs composed of one carrier and one cargo, with
the effective chemical potential

μ�• := kBT ln(�/�) + μ© + μ•. (10)

The interpretation of this mapping is, that the average number
of CCCs is determined by both the two external particle reser-
voirs, represented by μ© and μ• of the carrier-cargo mixture,
and the internal degrees of freedom, represented by the free
length � explored by the cargo upon occupying a carrier.

While the sums in Eq. (8) can be explicitly carried out,
we refrain here from doing so. Instead, we emphasize that, as
soon as an effective fugacity (9) or chemical potential (10)
is specified, the properties of the mixture can be explicitly
evaluated using the vast toolbox from liquid-state theory [43].
This fundamental mapping holds even if the grand-canonical
partition function cannot be exactly determined and will be
generalized later to multiple cargo loading. In fact, to (approx-
imately) describe a general interacting system, it is sufficient
to know the combinatorics of the CCC formation to specify
z�• and thus μ�• , as explored in more detail in Appendix D.

In this paper, we make use of the framework of clas-
sical density functional theory (DFT) [44] introduced in
Appendix E. In the special case of one-dimensional hard
rods, considered so far, we can thus obtain the exact statistics
by evaluating the Percus functional [45,46] for a mixture of
empty carriers of length σ©, free cargo of length σ• and CCCs
of the same length σ�• ≡ σ© as the carriers.

4. Number densities

Focusing on a spatially homogeneous system, we can gain
general insight into the carrier-cargo mixture from Eq. (8). In-
troducing the homogeneous density operators ρ̂X = X

L , where
X ∈ {M, N, A, B,C} represents the number of particles in the
different (effective) species, the probabilities of aggregation
of the carrier and cargo into a CCC can be determined from
the ensemble average (grand-canonical trace) 〈ρ̂X 〉 of ρ̂X .
Specifically, the total densities ρ t

© := 〈ρ̂M〉 of all carriers and
ρ t

• := 〈ρ̂N 〉 of all cargo particles in the carrier-cargo mixture
can be calculated from Eq. (6) and the densities ρ© := 〈ρ̂A〉
of empty carriers, ρ• := 〈ρ̂B〉 of free cargo and ρ�• := 〈ρ̂C〉 of
CCCs follow from Eq. (8).

Performing the same manipulations which were used to
derive Eq. (8) from Eq. (6), it is easy to show that

ρ t
© = ρ© + ρ�• and ρ t

• = ρ• + ρ�• . (11)
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These relations hold for any kind of interactions between
the particles and also for a spatially inhomogeneous system.
It is thus generally possible to recover information on the
physical system from an effective DFT calculation based on
the mapping in Eq. (10).

Moreover, if one is only interested in ratios of the (homoge-
neous) densities, it suffices to know the respective fugacities.
For example, the fraction ρ�• /ρ t

© of CCCs, indicating the
percentage of occupied carriers, follows as ρ�• /ρ t

© = z�• /zt
©.

A concise discussion can be found in Appendix D.

5. Pair distributions

To extract structural information on the carrier-cargo mix-
ture from a standard calculation in the effective system, the
relation, Eq. (11), between the number densities can also be
generalized to pair distribution functions, which indicate the
probability to find two particles of a certain species at distance
x = |x1 − x2|. This can be achieved by use of the additivity of
the two-body densities while taking into account that a CCC
represents both a carrier and a cargo with blurred position.

As further explained in Appendix F, it is possible to express
the pair distributions gt

i j (x) with i, j ∈ {©, •} of the physical
carrier-cargo mixture in terms of the (exactly known [47])
effective pair distributions gi j (x) with i, j ∈ {©, •,�• } of a
three-component hard-rod mixture as

gt
©© = g©©, (12)

gt
•• = ρ2

•g•• + ρ•ρ�• (g(b)
•�• + g(b)

�• •) + ρ2
�• g(bb)

�•�•
(ρ t•)2

, (13)

gt
©• =

ρ©ρ•g©• + ρ©ρ�• g(b)
©�• + ρ•ρ�• g�• • + G(b)

�•�•
ρ t

©ρ t•
,

(14)

gt
•© = gt

©•. (15)

Here, the functions

g(b)
�• l

:= 1

�

∫
dx′
(�/2 − |x1 − x′|)g�• l (|x′ − x2|) = g(b)

l�• ,

(16)

g(bb)
�•�• := 1

�2

∫
dx′

∫
dx′′
(�/2 − |x2 − x′′|)

× g�•�• (|x′ − x′′|)
(�/2 − |x1 − x′|) (17)

with l ∈ {©, •,�• } denote the blurred effective distributions
and

G(b)
�•�• := ρ�•

�

(�/2 − |x2 − x1|) + ρ2

�• g(b)
�•�• (|x1 − x2|)

(18)

denotes the blurred effective two-body density of two CCCs
extended by a blurred self contribution.

C. Combinatorics of general particle complexes

As a next step, we extend our treatment (10) to general
d-dimensional mixtures of κ different particle species, rep-
resenting different types of both carriers and cargo. To this
end, let us recall from Sec. II B 3 that it is sufficient to con-
sider ideal pointlike particles which only interact by forming

complexes and establish the mapping for such a system. The
notion of carrier and cargo particles then follows by assigning
appropriate interactions in the effective system. In a more
abstract manner, we can in general simply speak of free par-
ticles which can join to form a complex particle with internal
degrees of freedom. This allows for further applications, for
example, in the context of aggregation or clustering. In what
follows, we continue using the term CCC when referring to
any kind of effective complex particle.

1. General properties of a CCC

In a general mixture of κ components, the total number
k of possible CCCs depends on both κ and the particular
occupation statistics of the carriers determined by the phys-
ical interactions in the system. To establish the underlying
combinatorics, let us denote the particle number, chemical
potential, and fugacity of species i = 1, . . . , κ as Ni, μi, and
zi = eβμi/�d , respectively. Now suppose a generic CCC of
effective species ν = 1, . . . , k is made up from joining in
total Xν = ∑

i x(i)
ν building blocks, where the x(i)

ν denote the
numbers of particles of species i contributing to that particular
type of CCC.

Such a CCC has d external configurational degrees of free-
dom, associated with its spatial coordinates. The remaining
(Xν − 1)d internal configurational degrees of freedom act as
a statistical weight for the aggregation and are specified by
the underlying model. For example, in our hard-body model
for carrier-cargo mixtures, we discuss in Sec. II D 3 that these
correspond to the free volume available for the loaded cargo
particles (or their canonical partition function for more gen-
eral interactions). Therefore, we choose for each ν an effective
length scale �ν counting the number of states associated with
one internal degree of freedom. In other words, the occupation
parameters �ν follow from an occupation law of the carriers,
which for equilibrium carrier-cargo mixtures always obeys
standard Boltzmann statistics. More general occupation laws
are suggested and discussed in Sec. IV A 5.

2. Exact mapping onto a general effective mixture

In generalization of Eq. (9), the occurrence of general
CCCs of species ν can be understood in terms of the effective
fugacity

z(ν)
�• := �(Xν−1)d

ν

κ∏
i

zx(i)
ν

i , (19)

as we show below in Sec. II C 3. Upon expressing zi and z(ν)
�• in

terms of μi and μ
(ν)
�• = kBT ln (z(ν)

�• �d ), respectively, we find
the effective chemical potentials

μ
(ν)
�• := kBT (Xν − 1) d ln(�ν/�) +

κ∑
i=1

x(i)
ν μi. (20)

This comprehensive combination law (20) can be utilized to
describe any conceivable soft-matter system involving particle
uptake or other types of bonding mechanisms in terms of
κ + k effective components.
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3. General ideal partition functions

To derive Eq. (19), we consider point particles in a d-
dimensional box of side length L. For ν = 1, . . . , k let us
denote by Cν the number of CCCs of species ν that are present
in a specific (allowed) configuration. Then there are in total
C(i) = ∑k

ν=1 Cνx(i)
ν particles of species i which contribute to

any CCC, such that Ni − C(i) particles of that species remain
free (or empty). The condition that Ni − C(i) � 0 for all i
sets an upper bound to the numbers Cν of CCCs in a given
composition.

Now, taking the analogy to the considerations outlined
in Sec. II B 1 and Appendix C, we can write the canonical
partition function as

Z (id)
N1,N2,...,Nκ

=
{Ni−C(i)�0}∑

{Cν }
Z (L)

N1−C(1),...,Nκ−C(κ ),C1,...,Ck

k∏
ν=1

(
�(Xν−1)

ν

�

)dCν

,

(21)

where the sum counts all sets of admissible numbers {Cν} of
CCCs such that the numbers {Ni − C(i)} of free particles are
non-negative for all species.

Again, switching to the grand-canonical picture allows us
to remove the interdependence of the sums. Subsequently
introducing Ai := Ni − C(i), we find the ideal grand-canonical
partition function

�(id) =
∑

AC

κ∏
i=1

(Ld zi)Ai

Ai!

k∏
ν=1

(Ld z(ν)
�• )Cν

Cν!

= exp

(
κ∑

i=1

Ld zi +
k∑

ν=1

Ld z(ν)
�•

)
. (22)

with
∑

AC ≡ ∑∞
A1=0 . . .

∑∞
Aκ=0

∑∞
C1=0 . . .

∑∞
Ck=0 and the ef-

fective fugacities z(ν)
�• from Eq. (19). Such an effective κ +

k-component mixture can then be equipped with physical
interactions and evaluated accordingly.

4. Number densities for general complexes

As discussed in Sec. II B 4, the composition of the effective
mixture can be studied by calculating the ensemble average of
the density operators {ρ̂X }, where X now represents {Ni}, {Ai}
and {Cν}. It follows that the respective total number densities
{ρ t

i} of particles of species i, the number densities {ρi} of free
particles of species i (which are not bound in a CCC) and the
number densities {ρ (ν)

�• } of CCCs of species ν are related by

ρ t
i = ρi +

k∑
ν=1

x(i)
ν ρ

(ν)
�• , i ∈ {1, . . . , κ}. (23)

In generalization of Eq. (11), the contribution of the CCCs to
the total densities is weighted by the number x(i)

ν of a single
CCC’s ingredients of species i.

D. Combinatorics of carrier-cargo mixtures

As a special case of our general combinatorics established
in Sec. II C, we consider below a carrier-cargo mixture with
κ = 2 components, such that i ∈ {1, 2}, which is equivalent
to i ∈ {©, •} in our pictorial notation introduced in Sec. II A.

Specifically, a CCC of index ν = 1, . . . , k consists of x(1)
ν = 1

carrier and x(2)
ν = ν cargo particles, which makes in total Xν =

1 + ν building blocks. Below, we elaborate how our general
results can be applied to this case. Moreover, we discuss in
Appendix G a more general mixture involving κ − 1 carrier
species.

1. Fugacities and number densities

Upon inserting κ = 2, x(1)
ν = 1 and x(2)

ν = ν into Eq. (19)
we get the effective fugacities

z(ν)
�• = z©

(
�d

ν z•
)ν

, (24)

such that we further recover z(1)
�• 
 z�• from Eq. (9) in the spe-

cial case k = 1 with �1 
 � for d = 1. Similarly, the effective
chemical potentials from Eq. (20) become

μ
(ν)
�• = kBT ν d ln(�ν/�) + μ© + ν μ• (25)

in accordance with Eq. (10).
Accordingly, the relations in Eq. (23) for the number den-

sities become

ρ t
© = ρ© +

k∑
ν=1

ρ
(ν)
�• , ρ t

• = ρ• +
k∑

ν=1

νρ
(ν)
�• , (26)

where we again recover Eq. (11) for k = 1 with ρ
(1)
�• 
 ρ�• .

Depending on the system of interest, it may be quite cumber-
some to determine all ρ

(ν)
�• in Eq. (26). It may further prove

insightful to explicitly evaluate the sums, and we discuss
below a convenient way to do so.

2. Total number densities of CCCs and loaded cargo

To keep the following discussion general, we formally take
the limit k → ∞, noting that ρ

(ν)
�• = 0 if there exists no CCC

that contains ν cargo particles, i.e., if there is no free space,
�ν = 0, to place ν cargo particles inside a carrier. We can thus
define the total number density

ρ�• :=
∞∑

ν=1

ρ
(ν)
�• (27)

of all CCCs (irrespective of their species) in a way that is
consistent with the definition of ρ�• in Sec. II B 4 for k = 1.
Moreover, we define

ρ� :=
∞∑

ν=1

νρ
(ν)
�• (28)

as the total number density of loaded cargo, which scales
with the average occupation number of a single CCC and is,
in general, different from the total number density of CCCs,
specifically ρ� � ρ�• . To further evaluate these total number
densities, we make use of their relations to the fugacities, as
exemplified in Appendix D.

First, we define the appropriate effective fugacity

z�• :=
∞∑

ν=1

z(ν)
�• = z©

∞∑
ν=1

(
�d

ν z•
)ν

(29)

of a generalized CCC by adding up the individual contribu-
tions from Eq. (24). Hence, all CCCs with the same physical
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length σ© can be treated as a single species with number
density ρ�• , i.e., we may merely distinguish between an empty
and a nonempty carrier.

Second, we define zt
© = z© + z�• and use the scaling rela-

tions

ρ t
©

zt
©

= ρ©
z©

= ρ
(ν)
�•

z(ν)
�•

= ρ�•
z�•

(30)

to determine the generalized CCC fraction ρ�• /ρ t
©, as

ρ�•
ρ t

©
= z�•

zt
©

= −1 + ∑∞
ν=0

(
�d

ν z•
)ν∑∞

ν=0

(
�d

ν z•
)ν . (31)

and the loaded-cargo fraction ρ�/ρ t
©, i.e., the number of

loaded cargo per carrier, as

ρ�
ρ t

©
=

∑∞
ν=1 ν z(ν)

�•
zt
©

=
∑∞

ν=0 ν
(
�d

ν z•
)ν∑∞

ν=0

(
�d

ν z•
)ν . (32)

We stress that these ratios are independent of the specific
interparticle interactions. What is left to be done is to specify
all �ν for ν = 1, . . . , k and then evaluate Eqs. (31) and (32) as
the fundamental characteristics of the carrier-cargo mixture.

3. Boltzmann occupation law in equilibrium

As exemplified in Sec. II B 1 and Appendix C for one-
dimensional excluded volume interactions allowing only for
a single type of CCC, the canonical partition function ZM,N

of a general carrier-cargo mixture can be expressed as an
appropriate combination of auxiliary partition functions. In
particular, upon properly deriving Eq. (21) with κ = 2 and
Xν − 1 = ν, the terms(

�ν

�

)νd

= Z (I© )
ν (B•), ν = 1, 2, . . . (33)

emerge when accounting for a configuration in which ν cargo
particles with a certain shape (denoted by B•) are confined to
a carrier with a certain interior shape (denoted by I©). The
weight of all possible configurations is given by the canon-
ical partition function Z (I© )

ν (B•). Hence, through Eq. (33),
all occupation parameters �ν characterizing the formation of
CCCs in our equilibrium model have an explicit interpretation
in terms of Boltzmann statistics, and we say that the carrier
occupation follows a Boltzmann law. We substantiate this
general result by providing three relevant examples.

For spherically symmetric hard bodies in d dimensions
with σ• < λ© < 2σ•, as illustrated in Fig. 1(a), �d

1 represents
the spherical free volume with the diameter � = λ© − σ•
given in Eq. (3), while all other occupation parameters are
zero. Hence we have

�1 = �
√

π

2

[



(
d

2
+ 1

)]− 1
d

, �ν = 0, ν > 1 (34)

with the gamma function 
. Together with Eq. (24), we have
fully recovered the result of Sec. II B in the special case d = 1,
where we have �1 = �.

Next we consider in our excluded-volume model the case
of carriers which can hold at most k cargo particles, as illus-
trated in Fig. 1(b). Specifically for d = 1 this corresponds to

particles with kσ• < λ© < (k + 1)σ•, such that

�ν
ν = (λ© − νσ•)ν

ν!
= (� − (ν − 1)σ•)ν

ν!
, ν � k,

�ν
ν = 0, ν > k. (35)

Together with Eq. (24) and an appropriate treatment of in-
teractions, these occupation parameters allow for an exact
description of this one-dimensional carrier-cargo mixture,
where Eq. (34) is recovered for k = 1.

We conclude by discussing the particularly simple case
of noninteracting cargo with σ• = 0, sticking to d = 1 for
simplicity. Due to the absence of interactions in the occupied
carrier, we formally have k → ∞ with all occupation param-
eters

�ν = �

(ν!)
1
ν

(36)

depending on a single length scale � = �1 = λ©. In this case,
the expressions from Eqs. (29), (31), and (32) can be consid-
erably simplified to

z�• = z©(e�z• − 1),
ρ�•
ρ t

©
= 1 − e−�z• ,

ρ�
ρ t

©
= �z•, (37)

where we have used
∑∞

ν=0(�z•)ν/ν! = e�z• and∑∞
ν=1(�z•)ν/(ν − 1)! = �z•e�z• . We notice that the CCC

fraction exponentially approaches the limiting value
ρ�• /ρ t

© → 1, i.e., a system in which all carriers are occupied,
when taking the limit z• → ∞.

III. RESULTS FOR HARD BODIES

To illustrate the results of our theoretical treatment from
Sec. II, we study the effective hard-body mixture within
classical density functional theory (DFT), as described in Ap-
pendix E. This amounts to solving a system of κ + k coupled
algebraic equations (one for each component of the effective
system). While our treatment based on fundamental mea-
sure theory (FMT) [48–50] is exact in one spatial dimension
[45,46], there exists no exact theory for interacting systems in
higher spatial dimensions. Hence, we also compare our results
to Monte Carlo simulations as described in Appendix A.

Specifically, we study the composition, given by the frac-
tion ρ�• /ρ t

© or ρ
(ν)
�• /ρ t

© of all CCCs or CCCs of species ν,
respectively, among the carriers, as introduced in Secs. II B 4
and II D 2, and the structure, characterized by the pair distri-
bution gt

i j in the physical carrier-cargo mixture, as discussed
in Sec. II B 5.

A. Single-cargo uptake without interactions

For a mixture of interacting particles, it is not possible to
determine an explicit solution for the CCC fraction ρ�• /ρ t

©
as a function of the total number densities ρ t

© of the carriers
and ρ t

• of the cargo, even if a carrier can hold no more than
a single cargo. Thus, before discussing these results, we con-
sider a simplified model of a pointlike carrier-cargo mixture
with σ© = σ• = σ�• = 0. However, we still assume a positive
interior length scale �1 > 0 of the carrier, such that the only
interaction is by cargo uptake; see Sec. IV A 2 or IV A 5 for
possible interpretations of such a scenario.
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In this particular case, the CCC fraction follows in the
desired closed form

ρ�•
ρ t

©
= 1 + L(1 + R) −

√
1 + 2L(1 + R) + L2(1 − R)2

2L
(38)

as the explicit solution of the three equations given by the two
relations in Eq. (11) and ρ�• := �d

1ρ©ρ•, which follows from
Eq. (24) with ν = 1 upon identifying the fugacities as number
densities in the absence of effective interactions. Here, the
dimensionless parameters are the weighted interior volume
L := �d

1ρ
t
©, where �1 is specified in d spatial dimensions by

Eq. (34), and the cargo-to-carrier ratio R := ρ t
•/ρ

t
©.

From Eq. (38) we can directly infer the basic behavior
and qualitatively understand the composition of carrier-cargo
mixtures. Specifically, the CCC fraction is a positive and
monotone increasing function of both parameters L and R,
which vanishes for either L = 0 or R = 0. In the limit L →
∞ of an infinitely large available space inside the carrier,
we obtain ρ�• /ρ t

© → min(R, 1), i.e., all cargo particles are
engulfed by a carrier, while not all carriers are occupied for
small cargo-to-carrier ratio R < 1. In turn, for an infinite
number of available cargo particles, R → ∞, all carriers
are occupied, ρ�• /ρ t

© → 1. This nicely confirms the intu-
ition that the number of CCCs in the system increases upon
increasing either the free space in the interior of the carri-
ers or the total number of cargo in the system. However,
the approximation in terms of noninteracting particles does
not provide any insight into the structure of carrier-cargo
mixtures.

B. Single-cargo uptake in d dimensions

In our excluded-volume model, the behavior of a carrier-
cargo mixture is governed by the competition between the
overall gain of external free volume and the individual build-
ing blocks’ sacrifice of entropy upon forming a CCC. To
gain further insight, we first discuss the statistical properties
associated with carriers that can hold no more that a single
cargo particle. The CCC fraction ρ�• /ρ t

© is shown in Fig. 3
as a function of the cargo-to-carrier ratio ρ t

•/ρ
t
©. Also, in

spatial dimensions d > 1, the results from our approximate
DFT treatment relying on state-of-the art fundamental mea-
sure theory are in excellent agreement with the Monte Carlo
data.

Specifically, we predict in Fig. 3 that the fraction ρ�• /ρ t
©

of CCCs gradually increases with increasing cargo-to-carrier
ratio ρ t

•/ρ
t
© in any of the three considered spatial dimensions.

The same holds true when increasing the absolute number
density ρ t

© of all carriers while keeping ρ t
•/ρ

t
© fixed, since

an enhanced CCC formation balances the increase of global
packing. These results are qualitatively consistent with the
analytical prediction in Eq. (38) for increasing R at constant
L or vice versa. Likewise, an increasing CCC fraction is
observed for an increasing internal size � = λ© − σ• < of
the carrier (not shown), until multiple cargo uptake occurs for
� > σ• (see Sec. III C).

Increasing the dimensionality of the system at fixed num-
ber densities, the onset of the CCC formation in Fig. 3 shifts

FIG. 3. Composition of a carrier-cargo mixture, cf. Fig. 1(a),
with σ• = 0.4σ© and λ© = 0.6σ© determined from DFT (lines)
and Monte Carlo simulation (symbols). We show the CCC fraction
ρ�• /ρ t

©, indicating the percentage of occupied carriers, as a function
of the total cargo density ρ t

• for different total carrier densities ρ t
© (as

labeled). Our theory describes an effective system with the CCCs as
a third species; compare Eq. (10). Below we show excerpts of typical
simulation snapshots in which the CCCs are detected and colored in
green, according to the scheme in Fig. 2(a). The one-dimensional
system is illustrated as two-dimensional particles whose centers are
confined to a line and the frames provide the color code for our
results shown in d = 1, 2, 3 dimensions.

to higher cargo-to-carrier ratios. This can be attributed on
the one hand to the decreased packing efficiency of hard-
sphere systems for larger d , such that cargo can also occupy
the voids between the carriers, thereby lowering the external
drive towards CCC formation. On the other hand, also the
internal drive towards CCC formation is lowered for larger
d , as the free volume �d

1 of the carrier decreases relative to
σ d

©; compare Eq. (34). Hence, also this dimensional aspect is
qualitatively captured by Eq. (38).

C. Multiple-cargo uptake in one dimension

Turning to systems with carriers that offer more space to
their cargo, we predict specifically for d = 1 the exact density
ρ

(ν)
�• of each CCC representing ν = 1, . . . , k loaded cargo

particles and the exact density ρ�• of all CCCs according
to Eq. (27). The corresponding CCC fractions are shown in
Fig. 4 for a maximal carrier load k = 5. In this case, we
see that the balance between internal and external entropi-
cal forces results in subsequent peaks of the different CCC
fractions located at a higher total cargo density for larger ν.
The simulation snapshots in Fig. 4 illustrate these percent-
ages at the selected cargo-to-carrier ratios. Due to the larger
interior size of the carriers, compared to those in Sec. III B
with k = 1, the total CCC fraction ρ�• /ρ t

© of nonempty car-
riers increases more rapidly than in Fig. 3 for a comparable
density.
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FIG. 4. Composition of a carrier-cargo mixture (κ = 2) with
multiple carrier occupation (k = 5), cf. Fig. 1(b), for d = 1. Different
from Fig. 3, we consider here ρ t

©σ© = 0.25 and the size param-
eters σ• = σ©/6 and λ© = 11σ©/12, such that up to k = 5 cargo
particles fit into one carrier. The exact theoretical fraction of empty
carriers, ρ©, CCCs with 1 � ν � 5 cargo, ρ

(ν )
�• , and total CCCs,

ρ�• = ∑5
ν=1 ρ

(ν )
�• , are shown as labeled, using the same coloring as

in Fig. 2(b). The two boxes at the sides display typical excerpts from
simulation snapshots, illustrated as in Fig. 3, which reflect the plotted
CCC fractions at the densities indicated by the teal arrows and dotted
vertical lines.

D. Exact structure for one-dimensional single-cargo uptake

The possibility of spherical cargo to occupy the interior of
hollow carriers is accompanied by structural changes of the
carrier-cargo mixture compared to an ordinary hard-sphere
mixture described by the effective system. We illustrate the
deeper connection between these two systems by discussing
the exact pair distributions for the one-dimensional particles
considered in Sec. III B. This can be conveniently achieved
by reconstructing the distributions gt

i j (x) with i, j ∈ {©, •}
of the physical carrier-cargo mixture from the effective DFT
results gi j (x) with i, j ∈ {©, •,�• } according to Eqs. (12) to
(15).

While Fig. 5 illustrates the basic relation gt
©© = g©©, it

also shows that gt
©• possesses, as a remarkable signature of

CCC formation, a strong signal for short distances. More-
over, gt

©• exhibits two (additional) and gt
•• even three main

peaks, associated with those of a binary hard-sphere mixture.
The broadening of the peaks related to cargo within CCCs
is apparent, as most clearly visible for gt

•• at the distance
corresponding to two CCCs at contact.

IV. APPLICATIONS BEYOND HARD BODIES

In Sec. III we presented the main observations, derived in
Sec. II, for our binary carrier-cargo mixture with excluded
volume interactions in equilibrium. Our central theoretical
result, the combination law in Eq. (19) or (20), is, however,
more versatile as it offers the flexibility for investigating
more complex interactions between the occurring (effective)
species. Moreover, we can formally assign an individual in-
teraction to each CCC species which may be distinct from
that of the carrier species, and interpret the �ν as generalized
heuristic parameters for controlling the formation of particle
complexes. In Sec. IV A, we discuss more general carrier-
cargo mixtures in the light of these points and identify in

FIG. 5. Structure of the carrier-cargo mixture from Fig. 3 with
σ• = 0.4σ© and λ© = 0.6σ© for d = 1. We show exact results ob-
tained using DFT for the pair distribution functions at the densities
ρ t

•σ© = 0.625 and ρ t
©σ© = 0.72. The distributions for an effective

hard-rod mixture (top) can be recombined to obtain the structure of
the physical carrier-cargo mixture (bottom) according to Eqs. (12) to
(15). By providing a direct measurement via Monte Carlo simulation
in Appendix A, this result is exactly confirmed. The lengths asso-
ciated with the drawn characteristic two-particle configurations are
highlighted by vertical lines.

Sec. IV B a Bose-Einstein condensation from a speculative
treatment of nonequilibrium particle uptake. Applications be-
yond carrier-cargo mixtures are mentioned in our conclusions,
Sec. V.

A. Combinatorics of CCC formation

The combination law in Eq. (24) or (25) provides a general
relation between the internal degrees of freedom of carrier-
cargo mixtures and an effective external particle reservoir. It
is exact for all equilibrium systems with interactions which
clearly distinguish between the interior and the exterior of the
carrier and thus allow for an unambiguous definition of CCCs.
Then, all �ν carry all microscopic information on the physical
driving forces behind particle uptake.

More generally, the driving force of a carrier to engulf
its cargo may have different physical, chemical, or biological
origins, e.g., resulting from entropic, energetic, active or even
intelligent uptake mechanisms. Following heuristic intuition,
a basic model for CCC formation should account for two in-
ternal properties: (i) an engulfment strength, which quantifies
the individual uptake probability, and (ii) a corresponding oc-
cupation law governing multiple cargo uptake. In our model,
both properties can be accounted for by the parameters �ν ,
either rigorously, empirically, or heuristically, as we discuss
below for different physical scenarios.

1. Interpretation of the excluded-volume model

For completeness, we briefly recapitulate the situation for
pure excluded-volume interactions. In this case, the engulf-
ment strength �1, associated with the first cargo loaded, is
given explicitly by its available d-dimensional free volume,
compare Eq. (34). The engulfment strength �ν , associated
with the νth cargo loaded, is generally reduced (or even zero),
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since the occupation law is based on Boltzmann statistics;
compare Eq. (35). Even for noninteracting particles, there
is still an effective repulsion of the cargo within the carrier
upon multiple uptake due to the factor 1/(ν!) in Eq. (36).
As a consequence of this indistinguishability, the tendency
towards cargo uptake depends on the number of cargo already
engulfed, which is a signature of the equilibrium nature of our
model.

2. Attraction-enhanced engulfment strength

While hitherto we have exclusively used typical lengths
�ν to quantify cargo uptake, we stress that our model is not
limited to excluded-volume interactions. As demonstrated by
Eq. (33), the engulfment strength is rather associated with di-
mensionless partition functions of the confined cargo. Thus an
equally valid interpretation of engulfment strength is possible
in terms of the binding energies

Eν := −kBT d ln(�ν/�). (39)

In general, we can describe cargo uptake, that is governed by
a combination of soft interactions and available space inside
vesicles, while both driving forces can then be commonly
quantified by either �ν or Eν .

Since attraction mechanisms are expected to play an im-
portant role in the process of cargo uptake, we propose the
modified carrier-cargo interaction potential

U•©(r) = U©•(r) =

⎧⎪⎨
⎪⎩

−a for r < (λ© − σ•)/2,

0 for r � (σ© + σ•)/2,

∞ else

(40)

as a basic example, which extends Eq. (2) by introducing
the attraction parameter a � 0. Apparently, upon evaluating
Eq. (33), there is an additional Boltzmann factor exp(βa/d ),
which enhances the engulfment strengths �ν according to set-
ting �ν → �ν exp(βa/d ). Therefore, a carrier-cargo mixture
interacting according to Eq. (40) remains exactly solvable in
one spatial dimension. Strictly speaking, the idealized uptake
scenario without interactions, discussed in Sec. III A, should
be interpreted as a special limit of the situation described here.

This generalized consideration shows that the use of the
parameters �ν (which have the dimensions of length) is not
limited to describe excluded-volume interactions, but allows
for a quite general description of engulfment strength. In
particular, the value of �ν can exceed the dimensions of the
carrier. Also with this interpretation, the parameters �ν rig-
orously derive from a microscopic model, as specified here
through Eq. (40), which imposes a Boltzmann occupation law.

3. Soft interactions and membranes

In many practical applications, cargo uptake is governed by
soft interactions with a carrier membrane, which controls the
encapsulation (and release) of particles. Such a scenario with-
out hard particle boundaries can still be described within our
approach, albeit only in an approximate way. To this end, let
us denote by σ©/2 the radius of the carrier membrane, which
should be chosen to represent a (sufficiently high) potential
maximum. Extremely soft potentials which allow for a strong
overlap of the carriers would be inappropriate for the purpose

of identifying CCCs in the first place. It is now convenient to
split the pair interaction

U•©(r) = U©•(r) =
{

Uin(r) for r < σ©/2,

Uout(r) else
(41)

between a carrier and a cargo into the contributions Uin(r) and
Uout(r) acting inside and outside the membrane, respectively.

Following Eq. (33), the engulfment strengths �ν can be
determined from the partition functions of the interacting
cargo, with Uin(r) acting as an external potential for r <

σ©/2. The remaining task is to specify the interactions in the
effective system. To prevent the formal uptake of additional
cargo (which is inconsistent with our effective picture of free
cargo and empty carriers), we must assume a hard core for
r < σ©/2 of both the empty carriers and the CCCs. A first
possibility to choose the interactions in the outside region
is to simply take those with a carrier. By doing so, we ne-
glect direct interactions through the carrier membrane, which
might be justified if all potentials are sufficiently short ranged.
Improved effective long-ranged interactions with a CCC can
be specified by adding blurred versions of the interaction
potentials with the engulfed cargo, similar to what is done for
the pair distributions in Eqs. (16) to (18). Despite such ap-
proximations, the resulting effective treatment is still related
to a microscopic model, as specified here through Eq. (41),
and, in particular, the parameters �ν still obey a Boltzmann
occupation law.

4. Heuristic engulfment strength

In biological carrier-cargo systems, the complexity of
physical processes that happen at the carrier membrane goes
beyond refined equilibrium models based on soft potentials.
For example, a proper description should take into account
adhesive forces, bending rigidity, surface tension, or signal-
ing. Moreover, there exist mechanisms, such as the digestion
of encapsulated cargo, which prevent its release. This can
apparently break detailed balance, an important underlying
principle of equilibrium physics and Boltzmann statistics.

Microscopic models, which accurately reflect all (non-
equilibrium) driving forces for cargo uptake in such processes
are presumably difficult to handle. To this end, we suggest
using our combinatorics as part of an effective treatment, in
which the engulfment strengths �ν represent free parameters.
While this strategy is apparently detached from the full micro-
scopic information, the freedom of choosing the �ν underlines
that the fundamental Boltzmann law of particle uptake may
be broken for general carrier-cargo mixtures. In other words,
systems in nature suggest occupation laws that are not of the
Boltzmann type.

5. Alternative occupation laws from quantum statistics

While it is challenging to systematically apply our methods
to nonequilibrium particle uptake, we now aim to understand
the basic implications of effective non-Boltzmann occupa-
tion laws (arising from heuristically choosing the engulfment
strengths) on multiple cargo uptake. To this end, we assume
that typical cargo can be much smaller than the carriers
and consider again an idealized system with noninteracting
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FIG. 6. Heuristic occupation laws, suggesting the application of
our methods for nonequilibrium particle uptake. (a) The Boltzmann
occupation law (top), a fundamental principle for equilibrium mod-
els, may be effectively broken in nonequilibrium systems. Taking
cues from quantum statistics, we postulate two alternatives. Fermi-
Dirac occupation (left) occurs if a carrier is designed to engulf
no more than a single cargo. Bose-Einstein occupation (right) for-
mally corresponds to distinguishable cargo storage, illustrated here
by drawing multiple compartments, each characterized by the same
engulfment strength �. (b) Polydispersity of the engulfment strength
� (indicated by the particle colors) can result in a Bose-Einstein
condensation of cargo on the carriers with the maximal value � = �∗

(blue) if Bose-Einstein occupation is assumed.

cargo in d = 1 dimensions. Recalling the results in Eq. (37)
obtained with the ideal Boltzmann occupation law from
Eq. (36), we consider two academic examples of alternative
occupation laws inspired by quantum statistics, as illustrated
in Fig. 6(a).

A carrier that closes down after taking up a single cargo
particle constitutes the soft-matter analogy to Pauli exclusion.
This Fermi-Dirac occupation law is defined by �1 = � and
�ν = 0 for ν > 1, as in Eq. (34) but with � being completely
unrelated to any particle dimension or other interactions. In
this case, the expressions from Eqs. (29), (31), and (32) can
simply be calculated by truncating all sums after ν = 1, which
yields

z�• = z©�z•,
ρ�•
ρ t

©
= �z•

1 + �z•
,

ρ�
ρ t

©
= �z•

1 + �z•
. (42)

In contrast to Boltzmann occupation, the limit ρ�• /ρ t
© → 1

for z• → ∞ is approached algebraically as a function of z•.
If a carrier can store all cargo particles independently, or,

more generally, if the engulfment strength does not depend
on the number of cargo already engulfed by the carrier, there
is effectively no repulsion at all between the engulfed non-
interacting cargo particles, as if each of them is stored in
an individual compartment of size �. Formally, this reflects
the behavior of distinguishable particles (for example due to
instant digestion), governed by a Bose-Einstein occupation
law which is defined as

�ν = �, ν = 1, 2, . . . (43)

and which yields

z�• = z©
�z•

1 − �z•
,

ρ�•
ρ t

©
= �z•,

ρ�
ρ t

©
= �z•

1 − �z•
(44)

with the restriction to �z• < 1. Here we have used the identi-
ties

∑∞
ν=0(�z•)ν = 1

1−�z•
and

∑∞
ν=1 ν(�z•)ν = �z•

(1−�z• )2 for the
case �z• < 1 and silently omitted including the step function

(1 − �z•) in these formulas. For larger �z• > 1 the above
quantities are ill defined, as both the effective fugacity and the
loaded-cargo fraction diverge for �z• → 1. The CCC fraction
approaches the limiting value ρ�• /ρ t

© → 1 already at the
finite value z• → �−1 of the fugacity of the cargo particles.

Comparing the different scenarios (37), (42), and (44), it
can be shown that Fermi-Dirac (Bose-Einstein) occupation
yields the smallest (largest) values of both ρ�• and ρ� and
the weakest (strongest) increase of the CCC fraction, ρ�• /ρ t

©
as a function of ρ t

•. One intriguing result is that, in each case,
the number of loaded cargo per carrier, ρ�/ρ t

©, takes the same
functional form as the average occupation number of a certain
energy level in quantum statistics.

B. Bose-Einstein condensation with polydispersity

To demonstrate the collective effects that can, in principle,
arise from an effective treatment of nonequilibrium cargo
uptake, let us elaborate on a particular example. Suppose
that a Bose-Einstein occupation law according to Eq. (43)
does apply, we additionally consider a polydisperse mixture
of carriers, each with a characteristic engulfment strength
0 � � � �∗. Then, as illustrated in Fig. 6(b), a Bose-Einstein
condensation of the cargo can occur on the carriers with the
strongest drive to engulf their cargo, represented by � = �∗.
The conditions for this phase transition are elaborated below
and exemplified in Fig. 7.

The following considerations are independent of the
interactions between the particles. However, our working hy-
pothesis assumes that cargo particles become distinguishable
and noninteracting upon being engulfed, e.g., as an effective
picture for being gradually digested.

1. Polydisperse carriers

To consider a mixture of different carrier species i, the def-
initions in Sec. II D 2 can be easily generalized, as performed
in Appendix G. In particular, the engulfment strengths �[i] and
thus the resulting densities of (empty) carriers, CCCs, and
loaded cargo now additionally depend on the carrier species
i. Here, we are specifically interested in the total number
densities ρ

[i]
� of cargo loaded on carriers of species i under

Bose-Einstein occupation, which we can express from the
result in Eq. (44) as

ρ
[i]
� = �[i]z•

1 − �[i]z•
ρ

([i],t)
© (45)

with the restriction to �[i]z• < 1.
For a mixture of carriers with polydisperse engulfment

strengths � the quantities of interest become continuous func-
tions of �. As input, we suppose that the total number density
ρ t

©(�) = ρ̄ t
© p(�) of carriers is distributed according to a

known normalized function p(�), which vanishes beyond a
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FIG. 7. Bose-Einstein condensation for carriers with a supposed
Bose-Einstein occupation law and polydisperse engulfment strength
� with 0 � � � �∗ := �. We assume a polydispersity given by
the function p(�) ∝ �α (�∗ − �)α with representative exponents α =
0, 1, 2 (colors as labeled) and the total carrier density is ρ̄ t

©� = 1.
(a) Normalized distributions p(�) and illustrations of two empty
carriers with different engulfment strengths according to the color
scheme in Fig. 6(b). (b) The total cargo density ρ t

• increases with
the chemical potential μ•. At μ• = μcr (vertical line) ρ t

• diverges
if α � 1 and reaches the finite critical value ρcr (bullets) otherwise.
(c) Order parameter B [Eq. (51)] of the Bose-Einstein condensation,
i.e., fraction of cargo on carriers with largest engulfment strength �∗,
as a function of ρ t

•.

maximal size �∗; see Fig. 7(a) for three examples considered
here. The total number density ρ̄ t

© = ∫ �∗

0 d� ρ t
©(�)/�∗ of all

carriers follows by integration (and we write here ρ̄ t
© instead

of ρ t
© to indicate the averaging involved). With the knowledge

of p(�), we can take the continuum limit of Eq. (45) to express
the total number density ρ�(�) of cargo loaded on carriers of
engulfment strength � under Bose-Einstein occupation as

ρ�(�) = ρ̄ t
© p(�)

�z•
1 − �z•

(46)

with the restriction �z• < 1.
Then, the total number of carriers is given by

ρ t
• = ρ• + ρ̄ t

©
�∗

∫ �∗

0
d� p(�)

�z•
1 − �z•


(1 − �z•), (47)

where 
(1 − �z•) denotes the Heaviside step function. Note
that, since the particular expression for ρ�(�) in Eq. (46)
diverges for �z• → 1 and p(�) is chosen such that � � �∗, the
expression in Eq. (47) is only valid for �z• < 1. Exploiting
the mathematical analogy to quantum statistics [51], we show
next how to identify a Bose-Einstein condensation in our
model, where p(�) takes the role of the density of states.

2. Bose-Einstein order parameter

Regarding the denominator in Eq. (46), we recognize that
the fugacity z• has an upper bound given by the condition

�∗z• < 1, which defines the critical fugacity zcr := 1/�∗ [or
the critical chemical potential μcr := −kBT ln(�∗/�)]. De-
spite this divergence, setting �∗z• = 1 is allowed if the limit
z• → zcr of Eq. (47) exists, i.e., if the critical density

ρcr := lim
z•→zcr

ρ t
• (48)

has a finite value. In this case, a further increase of the total
number density ρ t

• of loaded cargo is possible by loading the
largest carrier, i.e., by increasing the number density ρ�(�∗)
at constant z• = zcr. While, for z• < zcr, the expression

ρ�(�∗) = ρ̄ t
© p(�∗)

�∗z•
1 − �∗z•

(49)

holds, such that the contribution to ρcr is infinitesimal, the
value of ρ�(�∗) may become finite as the denominator ap-
proaches zero for z• → zcr.

In a system with a finite ρcr, defined in Eq. (48), the total
number density ρ t

• must account for the explicit contribution
of ρ�(�∗). The resulting generalization of Eq. (47) yields

ρ t
• = ρ• + ρ�(�∗) + ρ̄ t

©
�∗

∫ �∗

0
d�

�z•
1 − �z•

p(�) 
(1 − �z•).

(50)

Then, we find that the fraction of cargo particles occupying
the largest carrier is given by

B := ρ�(�∗)

ρ t•
=

{
0

1 − ρcr

ρt•

if z• < zcr,

if z• = zcr.
(51)

This ratio constitutes the order parameter of a density-driven
Bose-Einstein condensation [51] into a state with a macro-
scopic occupation of a single carrier species with engulfment
strength �∗ for ρ t

• > ρcr.

3. Illustration and discussion

To illustrate the conditions for a Bose-Einstein condensa-
tion in a polydisperse carrier-cargo mixture, we discuss, as
a particular example, a system in which all cargo particles
(not only those engulfed by a carrier) are noninteracting. This
allows us to express the critical density from Eq. (48) in the
closed form

ρcr = 1

�∗ + lim
z•→zcr

ρ̄ t
©

�∗

∫ �∗

0
d�

�z•
1 − �z•

p(�) 
(1 − �z•),

(52)

where we have replaced the number density ρ• → z• by the
corresponding fugacity, which equals 1/�∗ in the limit taken.

To evaluate the integral in the second term of Eq. (52) we
consider a family of normalized distribution functions

p(�) ∝
(

−
(

� − �∗

2

)2

+ �∗ 2

4

)α

= �α (�∗ − �)α, (53)

given by an inverse parabola exponentiated by α. The form of
p(�) is shown in Fig. 7(a) for α = 0, 1, 2. For α > 0, we have
p(�∗) = 0 and the scaling for � → �∗ is given by

p(�) ∝ (�∗ − �)α + O((�∗ − �)α+1). (54)
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Then ρcr can be explicitly calculated as a function of α and we
find that it takes a finite value [blue and green dots in Figs. 7(b)
and 7(c)] if α > 0, while it diverges logarithmically for α = 0.

As shown in Fig. 7(b), there are two possibilities for the
behavior of the total number density ρ t

• of cargo particles,
depending on the exponent α of p(�) as � → �∗ and thus on
the critical density ρcr. First, if ρcr diverges, all carriers take
up an infinitesimal fraction of cargo particles for z• < zcr and
no phase transition occurs. Second, if ρcr remains finite, then
ρ t

• can be increased indefinitely at constant critical fugacity
z• = zcr by loading further cargo particles on the carriers with
largest engulfment strength �∗. As a consequence, a Bose-
Einstein condensation occurs at ρ t

• = ρcr towards a state with
a macroscopic number of cargo occupying the carriers with
� = �∗.

For z• < zcr, the behavior of ρ t
• as a function of z• is

given by either Eq. (47) or (50), since ρ�(�∗) = 0. Therefore,
the order parameter B in Eq. (51) remains zero. However,
when ρ t

• = ρcr is exceeded for z• = zcr, we have ρ�(�∗) >

0, Hence, the value of B increases continuously as a func-
tion of ρ t

• in the new phase. This behavior is illustrated in
Fig. 7(c).

We conclude that there is no Bose-Einstein condensation
for a constant distribution of engulfment strengths in a certain
interval, while the formation of a Bose-Einstein condensate
is facilitated for mixtures of carriers with an increasingly
weaker polydispersity [such that p(�) has a smaller variance].
This observation is analogous to Bose-Einstein condensation
in quantum statistics, where the density of states of a three-
dimensional ideal Bose gas has the exponent 1/2 and gives
rise to a phase transition, in contrast to the exponents 0 and
−1/2 in two and one dimensions, respectively. Finally, we
stress that the crucial technical difference between a classical
system and quantum statistics is that, in the present case, the
momenta of the particles are thermalized and represented by
the thermal wave length �. Thus, following the discussion in
Sec. IV A 2, the respective energy levels E := −kBT ln(�/�)
are provided by a configurational quantity modeling the
nonequilibrium drive of the carriers to engulf their cargo.
Moreover, the spatial dimension (taken here as d = 1) would
only enter here as a trivial factor.

V. CONCLUSIONS

In this work, we have introduced a combination law (20)
that illustrates that the internal degrees of freedom associated
with the formation of soft-matter complexes can be exactly
mapped onto effective chemical potentials, which allow one to
describe such complexes as an independent particle species.
We demonstrated the validity of our approach for carrier-
cargo mixtures through exactly matching simulation results
for a one-dimensional hard-rod model, where the formation of
CCCs is purely driven by entropic free-volume effects. Then
we argued that non-Boltzmann occupation laws could provide
a heuristic description of nonequilibrium particle uptake, as
exemplified by recognizing a Bose-Einstein condensation for
a polydisperse carrier model.

The versatility of our approach can be exploited when
accounting for emergent properties of the assembled com-
plexes that are distinct from their building blocks. While the

present application to carrier-cargo mixtures involves CCCs
whose external length is strictly set by the carrier, we can also
account for a shape change upon cargo uptake. Likewise, by
appropriately adapting the interactions, it is possible to de-
scribe various types of aggregates [52] such as dimers formed
by lock and key colloids [53–56], colloidal molecules [7,57–
61], or entropic bonds [62,63] with possible applications for
characterizing orientational order in DFT [64,65]. Exploit-
ing the full potential of modern fundamental-measure DFT
[48–50,66,67], the statistical treatment of such anisotropic
interactions or inhomogeneities induced by external stimuli
is within reach.

Another important application of our model would be a
dynamical description of cargo uptake, which can be achieved
in two ways. The first possibility is via direct computer sim-
ulation of the dynamics. This requires, however, soft models
for the carrier membrane, as discussed in Sec. IV A 3. The
second possibility amounts to a direct application of our ef-
fective picture through an extension [68,69] of dynamical
DFT [70–72] in which appropriate reaction rates should be
determined from the equilibrium statistics. Such dynamical
approaches could also be used to explicitly study more com-
plex carrier-cargo mixtures involving self-propelled building
blocks [33–36,61,73–76] or emerging active motion of the
assembled complex [31,37,39,77–79]. Moreover, it would be
interesting to simulate an explicit microscopic model with
nonequilibrium particle uptake for testing the heuristic idea
of non-Boltzmann occupation laws and for exploring the pos-
sibility of finding an appropriate coarse-graining scheme.

A critical open question which could stimulate future ef-
forts concerns the experimental realization of cargo uptake
and release in equilibrium soft-matter systems, e.g., involv-
ing colloidal carriers or lipid vesicles. Further experimental
challenges will be to discover or train functional carriers
[80] whose nonequilibrium driving force for cargo uptake is
not limited to Boltzmann occupation or develop intelligent
micromachines [81] which learn to collect their cargo as pro-
gramed. In regard of this perspective, it would be interesting
to test these ideas with an explicit microscopic model and also
explore the possibility to find an appropriate coarse-graining
scheme.
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APPENDIX A: MONTE CARLO SIMULATION

To corroborate our analytic treatment, we perform canon-
ical Monte Carlo simulation of bulk systems of M carriers
and N cargo particles, realized via periodic boundary con-
ditions, in d = 1, 2, 3 dimensions. The total particle number
M + N = 2000 is always fixed, while we vary the ratio
N/M = ρ t

•/ρ
t
© of cargo to carrier particles between inde-

pendent simulation runs. The input densities ρ t
• and ρ t

© are
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determined by the final size of the simulation box. The overlap
criterion between a pair of particles is given by Eqs. (1)
and (2). We perform 106 Monte Carlo cycles, each con-
sisting of M + N trial moves. In each trial move, one of
the particles is displaced by a distance vector �r, whose
components �ri with i = 1, . . . , d are independent random
numbers drawn from a uniform distribution in the interval
[−�max,�max]. Any trial move is accepted with probabil-
ity P = min[1, exp(−�U/kBT )] [82], i.e., overlap free trial
moves are accepted, while overlapping trial moves are re-
jected. Over the course of the simulation, the value of �max

is adjusted such that acceptance ratio remains close to 0.3.
We obtain the particle configurations at high densities by

following a compression protocol. We randomly initialize
the system at low number densities ρ t

• + ρ t
© = 5 × 10−3/σ©.

Over the course of the simulation, we gradually rescale all co-
ordinate axes xi, i ∈ {1, 2, 3}, such that xi ∝ τ−1/(3d ), where
d is the number of spatial dimensions, effectively increasing
all total densities within the system as ρ t

• ∝ ρ t
© ∝ τ 1/3. Here,

τ ∈ [0, 1] denotes the simulation progress, i.e., the number
of completed Monte Carlo cycles. This type of decelerating
compression aids the equilibration speed, since the system is
quickly compressed in the density regime where the particles
are expected to rarely come in contact, while being allowed
to undergo a larger fraction of Monte Carlo cycles at higher
densities.

Exemplary simulation data are shown as dots in Fig. 3. In
addition, Fig. 8 shows the pair distribution functions in one di-
mension for ρ t

•σ© = 0.625 and ρ t
©σ© = 0.72. Additionally,

corresponding results are shown, obtained from the average
over 200 simulation runs (dashed red). As can be seen, the
theoretical graphs [blue, cf. Fig. 5], calculated as described in
Sec. II B 5, agree with the simulation results to an excellent
degree.

APPENDIX B: CANONICAL PARTITION FUNCTION
OF A HARD-ROD MIXTURE IN ONE DIMENSION

To aid the discussion in Sec. II B 1, we state here the exact
canonical partition function,

Z (L)
N1,N2,...,NK

(σ1, σ2, . . . , σK )

=
K∏

i=1

1

Ni!�Ni

⎛
⎝L −

K∑
j=1

Njσ j

⎞
⎠

Ni




⎛
⎝L −

K∑
j=1

Njσ j

⎞
⎠, (B1)

a K-component mixture of hard rods (one-dimensional hard
spheres or Tonks gas). Specifically, Ni denote the particle
numbers of each species i ∈ {1, 2, . . . , K} confined in a one-
dimensional interval of length L, while we ignore the trivial
dependence on the temperature T through the thermal wave-
length �. For later convenience, we further write Z (L)

N1,N2,...,NK

as a function of the particle lengths σi of each species, while
the explicit dependences on the particle numbers and the
system length are written as a subscript and a superscript,
respectively. The Heaviside function 
(x) merely ensures
that the system is below close packing for the given par-
ticle numbers and is silently omitted elsewhere to ease the
notation.

FIG. 8. Excellent agreement of simulation (dashed red) and
theory (solid blue) for the physical pair distributions gt

i j (x) of a
hard-body carrier-cargo mixture with one possible CCC in d = 1
dimension, as discussed in Sec. III D. The parameters σ• = 0.4σ©
and λ© = 0.6σ© and ρ t

•σ© = 0.625 and ρ t
©σ© = 0.72 are the same

as in Fig. 5, such that the theory results correspond to the bottom
panel.

APPENDIX C: CANONICAL PARTITION FUNCTION
OF THE CARRIER-CARGO MIXTURE

To better understand the notion of our system consisting
of M carriers and N cargo as an effective three-component
mixture, we rewrite Eq. (5) in the less intuitive but more
instructive form

ZM,N =
min(M,N )∑

C=0

Z (L)
M−C,N−C,C (σ©, σ•, σ©)(Z (λ© )

1 (σ•))C,

(C1)

which contains no factorial expressions. In the second equal-
ity, we made use of the fact that the free length

� ≡ �Z (λ© )
1 (σ•) (C2)

accessible to a cargo particle within a CCC, as defined in
Eq. (3), can be explicitly interpreted as the canonical partition
function of single particle, i.e., Eq. (B1) with K = 1 and
N1 = 1. Therefore, we see that the total partition function
ZM,N of our carrier-cargo mixture can be perceived as sum
over products of different partition functions: Z (L)

M−C,N−C,C

represents the external interactions and Z (λ© )
1 denotes the

internal occupation statistics of a single CCC. By external
interaction we generally mean the physical interactions be-
tween the particles excluding the possibility to engulf one
another, which here is the hard-core repulsion of diameters
σ© and σ•. In other words, we have demonstrated that an
occupied carrier represents a third species of size σ�• := σ©
which additionally possesses internal degrees of freedom. We
can therefore speak of an effective mixture of A := M − C
empty carriers, B := N − C free cargo particles, and C CCCs
(occupied carriers).
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APPENDIX D: RELATION BETWEEN FUGACITIES AND
HOMOGENEOUS NUMBER DENSITIES

In Eq. (8) we have derived the grand partition function
for an effective ternary system representing the carrier-cargo
mixture. To prepare for the effective treatment of more general
mixtures, it is instructive to discuss an even simpler mapping.
In fact, since empty carriers have the same length σ© ≡ σ�•
as the corresponding CCCs, a two-species picture is sufficient
if one is only interested in information contained in ρ t

©. To
see this, we recast Eq. (8) as

� =
∞∑

M=0

∞∑
B=0

(z© + z�• )MzB
•

M!B!
(L − Mσ© − Bσ•)(M+B) (D1)

by undoing the substitution M → A + C and rearranging the
sums to obtain a binomial series. In such a two-species mix-
ture, the carrier species (with no distinction of empty or
occupied) can be interpreted to be coupled to a single effective
particle reservoir with an enhanced fugacity zt

© := z© + z�•
also accounting for the internal degrees of freedom. Thus,
Eq. (D1) illustrates the additivity ρ t

© = ρ© + ρ�• of the ef-
fective densities in Eq. (11) directly by the additivity of the
corresponding fugacities.

More generally, as long as the interactions σ© = σ�• be-
tween two (or more) species are the same, one finds the
following scaling relation between densities and fugacities:

ρ t
©

zt
©

= ρ©
z©

= ρ�•
z�•

. (D2)

We thus see that the fraction ρ�• /ρ t
© of CCCs (the number of

carriers occupied by a cargo divided by the total number of
carriers) can be determined solely from the corresponding fu-
gacities for any interaction between the particles as ρ�• /ρ t

© =
z�• /zt

©. To determine the CCC fraction as an explicit function
of total carrier and cargo density, as, e.g., in Fig. 3, further
calculations are necessary.

The above relations between (effective) fugacities and
number densities become most apparent in an effective system
without interactions, i.e., when setting σ© = σ• = σ�• = 0.
In this ideal case, indicated by the superscript (id), the ho-
mogeneous number densities ρ

(id)
© = z© and ρ

(id)
�• = z�• are

explicitly given by the corresponding fugacities. Moreover,
without (external) interactions, it is easy to see from either
Eq. (8) or (D1) that the grand partition function can be explic-
itly written in the closed form

�(id) = exp[L(z© + z• + z�• )]. (D3)

This result underlines that the combinatorics underlying the
generic definition, Eq. (10), of the effective fugacity z�• , is
independent of the explicit interactions.

For practical reasons, considering two species with fu-
gacities zt

© and z• in Eq. (D1) is not very helpful, since
the information on the distribution ρ�• of CCCs and thus
also the total density ρ t

• of cargo particles is not available,
as it requires knowing both ρ© and ρ t

©. As such, it is in
general more appropriate to work with Eq. (8) and to distin-
guish between physically indistinguishable particles (empty
carriers and CCCs) in our effective system. Then, ρ t

• can
be determined from the auxiliary relation ρ t

• = ρ• + ρ�• in

Eq. (11). However, it is not possible to derive ρ t
• in the spirit

of Eq. (D1), i.e., directly from the statistics underlying �.
This is because loaded cargo does not contribute to exter-
nal interactions. In other words, the total packing fraction
ηt

© := ρ t
©σ© = ρ©σ© + ρ�• σ© of carriers is not affected by

the number of CCCs and follows the addition law, Eq. (11),
of number densities, while only the free cargo particles con-
tribute to the total packing fraction ηt

• := ρ•σ• �= ρ t
•σ•.

APPENDIX E: CLASSICAL DENSITY FUNCTIONAL
THEORY (DFT)

Here we provide a compact introduction to classical DFT
[43,44], a powerful toolbox to determine the configuration
and structure of interacting fluid mixtures. First, in Sec. E 1,
we introduce the DFT framework for general inhomogeneous
fluid mixtures and explain how to determine the homogeneous
number densities in our effective description of carrier-cargo
mixtures. Second, in Sec. E 2, we explain how to determine
the effective pair distribution functions, from which we later
recover in Appendix F the exact expressions for the physical
carrier-cargo mixture in one spatial dimension.

1. Composition of a mixture from DFT

Consider in general a fluid mixture of K different compo-
nents in the external one-body potentials V (i)

ext (r) acting on the
particles of species i ∈ {1, 2, . . . , K}. Then, the corresponding
(inhomogeneous) number densities ρi(r) in equilibrium can
be obtained from solving the Euler-Lagrange equations

δ�[{ρi}]
δρi(r)

= 0, (E1)

where �[{ρi}] is a density functional which becomes minimal
when the equilibrium solutions are inserted. This minimal
value of the functional corresponds to the grand potential
β� = − ln � of the system. Hence, we can recover the grand-
canonical partition functions � calculated in the main text (or
appropriate generalizations to arbitrary external fields). As a
prerequisite, we need to know the proper functional.

The general form of the density functional reads

�[{ρi}] = �(id)[{ρi}] + Fex[{ρi}], (E2)

where the excess (over ideal gas) free energy Fex describes
the interactions between the particles, and the exactly known
functional �(id) for an ideal gas of pointlike particles in an
externally applied potential V (i)

ext (r) reads

β�(id) =
K∑

i=1

∫
dr ρi(r)

[
ln

(
ρi(r)

zi

)
− 1 + βV (i)

ext (r)

]
(E3)

in d spatial dimensions, recalling the definitions β = (kBT )−1

of the inverse temperature and zi := exp(βμi )/�d of the fu-
gacities.

For the hard-body interactions considered in this work,
we employ fundamental measure theory (FMT) [48–50] for
the excess free energy Fex which follows the same recipe
in all spatial dimensions. Specifically, the FMT in one spa-
tial dimension [45,46], most commonly known as the Percus
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functional, is exact. Here,

βFex = −
∫

dx n0(x) ln[1 − n1(x)] (E4)

follows as a function of the weighted densities

n0/1(x) =
K∑

i=1

∫
dx1 ρi(x1) ω

(0/1)
i (x − x1), (E5)

which consist of convolution integrals of the densities and the
weight functions

ω
(1)
i (x) = 
(σi/2 − |x|),

ω
(0)
i (x) = 1

2 [δ(σi/2 − x) + δ(σi/2 + x)], (E6)

where σi is the length of a hard rod of species i. These weight
functions represent the geometry of particle i being local
measures of the one-dimensional volume (rod length) and the
surface area (characteristic function), respectively. In higher
spatial dimensions, there exists a larger set of required weight
functions.

For our calculations we consider homogeneous bulk sys-
tems with V (i)

ext (r) = 0, such that the number densities ρi do not
depend on the position r. Then, the one-dimensional weighted
densities simply read

n0 =
K∑

i=1

ρi, n1 =
K∑

i=1

ρiσi, (E7)

such that the functional �[{ρi}] turns into an explicit func-
tion of the number densities and the functional derivative in
Eq. (E1) turns into a partial derivative. Thus, we only need to
solve a set of algebraic equations to find the desired relation
between the fugacities and densities. In one spatial dimension
these are

ln(ρi/zi ) = −
2∑

ν=1

∂Fex

∂nν

∂nν

∂ρi
= ln(1 − n1) − n0

1 − n1
σi (E8)

for i = 1, . . . , K . In higher spatial dimensions, the structure
is exactly the same but then the sum over ν must include the
additional weighted densities.

To briefly connect to our previous statistical results, let us
note that upon applying the variational scheme from Eq. (E1)
to an ideal gas in an external field, with the functional from
Eq. (E3), it is easy to show that the partition function reads

�(id) = exp

(
K∑

i=1

(∫
dr e−βV (i)

ext (r)

)
zi

)
. (E9)

In the absence of an external potential the integral must be
replaced by the system volume Ld = ∫

dr. We have thus
recovered Eq. (22) from our DFT formalism upon setting
K = k + κ and using the corresponding (effective) fugacities.
Likewise, with interactions, we can also recover the exact
result of Eq. (8) for the particular one-dimensional case, while
the DFT calculation directly extends (in a good approxima-
tion) to higher spatial dimensions.

2. Structure of a mixture from DFT

Structural information on the system can be extracted from
DFT by calculating functional derivatives of the excess free
energy. In particular, the direct correlation functions ci j (r) of
a fluid mixture with i, j ∈ {1, 2, . . . , K} are defined as

ci j (r = |r1 − r2|) = − δ2βFex

δρi(r1)δρ j (r2)
. (E10)

For a homogeneous system of hard rods, we find the exact
direct correlation functions

ci j (x) = − n0

(1 − n1)2
W (11)

i j (x) − 1

1 − n1
W (10)

i j (x) (E11)

from the Percus functional with the weighted densities given
by Eq. (E7) and the functions

W (11)
i j (x) = min(σi, σ j ) 
(�a − |x|)

+ (ai j − |x|) 
(ai j − |x|) 
(|x| − �a),

W (10)
i j (x) = 
(ai j − |x|), (E12)

where ai j := (σi + σ j )/2, �a := |σi − σ j |/2, and min(σi, σ j )
returns the smaller of the two lengths. In general, W (νμ)

i j can

be calculated through convolution products of ω
(ν)
i and ω

(μ)
j .

Note that, if i = j, we have �a = 0 and only the second term
in W (11)

ii (x) is relevant.
Next, the pair distributions gi j (x) = hi j (x) + 1 can be cal-

culated from the total correlation functions hi j (x), which are
related to the direct correlation functions ci j (x) via the multi-
component Ornstein-Zernike equation

hi j (x1 − x2) = ci j (x1 − x2)

+
K∑

l=1

ρl

∫
dx3 cil (x1 − x3)hl j (x3 − x2).

(E13)

The matrix solutions in Fourier space read

Ĥ (q) = [1 − Ĉ(q)]−1 − 1, (E14)

where the components of the auxiliary matrices Ĥi j (q) =√
ρiρ j ĥi j (q) and Ĉi j (q) = √

ρiρ j ĉi j (q) can be obtained by
weighting the Fourier transforms ĥi j (q) and ĉi j (q) of hi j (x)
and ci j (x), respectively, with the corresponding homogeneous
densities. For hard rods in one dimension it is possible to
determine an exact analytical solution of Eq. (E14) [47].
However, for simplicity, we perform the final inverse Fourier
transform of ĥi j (q) numerically.

APPENDIX F: PAIR DISTRIBUTIONS FOR A
ONE-DIMENSIONAL CARRIER-CARGO MIXTURE

In this Appendix, we provide further background on the
relations, stated in Sec. II B 5, between the effective and phys-
ical pair distributions of the carrier-cargo mixture. For our
minimal model of a carrier holding at most one cargo, the
basic relation between the effective number densities, ρ©, ρ•,
and ρ�• , and the total densities, ρ t

© and ρ t
•, of the physical

system is given by Eq. (11). For the pair distributions these
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relations are generally more involved since a CCC represents
both carrier and cargo.

To determine the effective pair distributions gi j (x) with
i, j ∈ {©, •,�• } for the mapped hard-rod system in one di-
mension and the pair distributions gt

i j (x) with i, j ∈ {©, •}
for our physical carrier-cargo mixture, let us first recall from
Appendix E that the former follow directly from the exact
direct correlation function, Eq. (E11), in the effective system.
Moreover, following the structural equivalence of empty carri-
ers and CCCs (both species have the same hard-core diameter
σ©), we have

g©© ≡ g©�• ≡ g�•�• . (F1)

As a result, it is sufficient to determine the pair distribution
for an effective binary mixture of hard rods with ρ t

© = ρ© +
ρ�• and ρ•, as discussed in Appendix D. For this reason, we
apparently have gt

©© = g©© in Eq. (12). The remaining pair
distributions of the physical system require additional care.

To understand the formulas in Sec. II B 5, we first point
out that the relation, Eq. (11), between the one-body densities
analogously applies to the two-body densities ρiρ jgi j and
ρ t

iρ
t
jg

t
i j . Solving for gt

i j yields the basic structure of Eqs. (12)
to (15) Specifically, gt

©© = g©©, directly follows as

gt
©© = ρ2

©g©© + ρ©ρ�• (g©�• + g�•©) + ρ2
�• g�•�•

(ρ t
©)2

. (F2)

Second, for the remaining pair distributions, we need to take
into account the fact that the center of a cargo particle, which
is contained in a CCC does not necessarily coincide with the
center of the carrier but is uniformly distributed within the
accessible space of length �. Therefore, the effective distribu-
tions need to be blurred by calculating a convolution with the
indicator function 
(�/2 − |x|) in the corresponding coordi-
nate(s). This is indicated by the superscript (b) in Eqs. (16) and
(17). Third, specifically for the correlations between carrier
and cargo particles in Eqs. (14) and (15), we need to manually
account for the presence of a cargo particle within a carrier.
This is achieved by redefining the effective two-body density
ρ

(2)
�•�• upon adding this self-contribution (which for an ordi-

nary fluid must be subtracted from the two-point correlation
function to recover the two-body density). In practice, this
amounts to setting ρ

(2)
�•�• (x) → ρ

(2)
�•�• (x) + ρ�• δ(x), and then

blurring the whole expression as described above. This yields
the generalized contribution

G(b)
�•�• (x1 − x2) := 1

�

∫
dx′
(�/2 − |x2 − x′|)

× (ρ2
�• g�•�• (|x1 − x′|) + ρ�• δ(x1 − x′)),

(F3)

which can be simplified to yield Eq. (18).

APPENDIX G: MIXTURES WITH MULTIPLE CARRIERS

The relations from Sec. II D can be easily generalized
to describe mixtures involving cargo with fugacity z• and
now κ − 1 different carrier species with fugacities z[i]

© for i ∈

{1, . . . , κ − 1}. In particular, introducing for each carrier the
typical lengths �[i] entering in the �[i]

ν [compare, e.g., Eq. (35)],
we can define as in Eq. (24) the effective fugacities z[i,ν]

�• of a
CCC composed of one carrier of species i and exactly ν cargo.
Thus, Eq. (29) generalizes to

z[i]
�• :=

∞∑
ν=1

z[i,ν]
�• = z[i]

©

∞∑
ν=1

((
�[i]

ν

)d
z•

)ν
. (G1)

By accordingly rewriting Eqs. (27) and (28) as

ρ
[i]
�• :=

∞∑
ν=1

ρ
[i,ν]
�• , ρ

[i]
� :=

∞∑
ν=1

νρ
[i,ν]
�• (G2)

for each carrier, we obtain from Eq. (23) the total number
densities

ρ t
© =

κ−1∑
i=1

ρ
([i],t)
© , (G3)

ρ
([i],t)
© = ρ

[i]
© + ρ

[i]
�• , (G4)

ρ t
• = ρ• +

κ−1∑
i=1

ρ
[i]
� . (G5)

As an application, the results for the CCC fraction and loaded-
carrier fraction of species i can be directly obtained for the
respective occupation laws from Eqs. (37), (42), or (44) by
simply introducing the superscript [i] to � → �[i] as a species
label.

As a next step, let us consider the case κ → ∞ of a
polydisperse mixture of carriers, whose engulfment strengths
�[i] → � are continuously distributed according to a normal-
ized distribution p(�), such that all sums

κ−1∑
i=1

f [i] → 1

�∗

∫ �∗

0
d� f (�) (G6)

turn into integrals and the superscript [i] of a quantity f [i]

turns into the argument � of a function f (�). By introducing
the upper bound �∗ in Eq. (G6) we imply that the distribution
p(� > �∗) = 0 vanishes beyond a maximal size �∗ to prevent
a collapse towards (uncontrolled) infinite occupation for � →
∞. Specifically, let us prescribe the function p(�) such that
the total number density ρ t

©(�) = ρ̄ t
© p(�) of each carrier with

engulfment strengths � is a specified input quantity. Then we
can recast Eq. (G3) in the continuous form

ρ̄ t
© = 1

�∗

∫ �∗

0
d� ρ t

©(�) = ρ̄ t
©

�∗

∫ �∗

0
d� p(�), (G7)

where we chose the notation ρ̄ t
© for the total number density

of all carriers to indicate that it is an average of ρ t
©(�). More-

over, Eq. (G5) becomes

ρ t
• = ρ• + 1

�∗

∫ �∗

0
d� ρ�(�) (G8)

in the polydisperse continuum.
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