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Dynamics of a colloidal particle driven by continuous time-delayed feedback
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We perform feedback experiments and simulations in which a colloidal dumbbell particle, acting as a particle
on a ring, is followed by a repulsive optical trap controlled by a continuous-time-delayed feedback protocol.
The dynamics are described by a persistent random walk similarly to that of an active Brownian particle, with
a transition from predominantly diffusive to driven behavior at a critical delay time. We model the dynamics in
the short and long delay regimes using stochastic delay differential equations and derive a condition for stable
driven motion. We study the stochastic thermodynamic properties of the system, finding that the maximum work
done by the trap coincides with a local minimum in the mutual information between the trap and the particle
position at the onset of stable driven dynamics.

DOI: 10.1103/PhysRevE.107.064601

I. INTRODUCTION

Maxwell’s demon uses information to create a tem-
perature gradient in a heat bath without performing any
work, seemingly violating the second law of thermodynam-
ics [1]. This paradox was resolved by the realization that
there is an entropy change associated with the processes of
acquiring information [2], leading to the birth of informa-
tion thermodynamics [3]. In any experimental realization of
Maxwell’s demon, there is always a time delay among taking
a measurement, performing information processing, and then
implementing the feedback, often to the detriment of the feed-
back engine’s efficiency [4]. However, time delays can also
be beneficial, for example in the use of delayed feedback to
stabilize chaotic motion in engineering applications [5].

When delayed feedback is applied continuously, the
system is described by a stochastic delay differential equa-
tion (SDDE); a general class of equations which describe any
system whose evolution depends on its state some delay time
in the past. There are many examples of time-delayed systems
across the scientific disciplines [6], including biological mo-
tors [7–9], communication and neurological networks [10,11],
and even financial markets [12]. Depending on the method
by which the delayed feedback is implemented, time delays
can either stabilize [13,14] or amplify chaotic motion [15],
produce stochastic resonances [16], or display other types of
complex dynamics [17,18].

Colloidal particles are often seen as the paradigmatic
feedback engine due to the ease of obtaining single-particle
information and applying feedback via optical traps after
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a short-time delay relative to the particle’s motion. Col-
loidal feedback experiments have successfully demonstrated
the possibility of information to work conversion with very
high efficiency [19–21] or power [22–24], investigated the
effect of delay time [4] and measurement error [25], and
provided experimental confirmation of several important theo-
retical findings in information thermodynamics [26,27]. These
experiments all apply feedback in discrete steps. Continuous-
time-delayed feedback experiments are less common [23],
despite simulations predicting many interesting uses. These
include enhancing or reversing transport in washboard poten-
tials [28,29], suppressing diffusion using attractive harmonic
traps [30], and forming traveling bands of driven colloids
using repulsive Gaussian traps [31]. Recently, Kopp et al. [32]
showed in simulations that a single-particle interacting with
a repulsive Gaussian trap controlled via the same feedback
protocol as Ref. [31] also displays driven motion similar to
the persistent random walk of an active Brownian particle.

Here we create an experimental realization of a single
particle on a ring interacting with a repulsive optical trap. We
observe a transition from diffusive to driven dynamics with
increasing time delay similar to the results of Refs. [31,32].
We characterize the dynamics across this transition and de-
scribe the diffusive and driven regimes using the framework
of stochastic delay differential equations. We then analyze
the work done on the particle and the mutual information
between the particle’s position at time t and t − τ in light of
the diffusive to driven transition.

II. EXPERIMENTAL METHODS AND
THEORETICAL BACKGROUND

A. Experimental setup

The experiments were performed using the optical trapping
and microscopy setup described in Ref. [33]. The sample is
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FIG. 1. (a) SEM image of two dumbbell particles. (b) Example
image from the experiments. (c) Diagram of the experiment, showing
the MF and TPM lobes (blue and white, respectively) and the two
optical traps (red). Arrows show the coordinates of the feedback
trap and TPM lobe relative to the central trap. (d) Example 2-s
trajectory of the TPM lobe (blue) and feedback trap (red). (e) Angular
components of the same trajectory.

illuminated from above and a bright-field image is recorded
with a CMOS camera. The infrared laser is controlled using
a spatial light modulator, which we use to create two op-
tical traps which trap the particle from below. The particle
is an optically anisotropic dumbbell-shaped particle which
acts as a particle on a ring when placed in an optical trap.
Figure 1(a) shows a scanning electron microscopy (SEM)
image of the dumbbell particles. The smaller lobe is made
of melamine formaldehyde (MF), while the larger lobe is
3-trimethoxysilyl-propylmethacrylate (TPM). They have re-
fractive indices of 1.68 and 1.51. respectively. When placed
in tetralin, which has a refractive index of 1.54, the MF lobe
has a positive refractive index mismatch so experiences an
attractive potential from optical traps, while the TPM lobe
has a negative refractive index mismatch so feels a repulsive
potential. Placing the particle in a single, stationary optical
trap causes the MF lobe to be trapped while the TPM lobe
rotates around it at a radius of rP = 1.23 μm. Figure 1(b)
shows an example image from one of the experiments. The
dark spot surrounded by a light ring is the MF lobe and the
light spot with a dark ring is the TPM lobe. The TPM lobe is
tracked in real time at 1000 fps by thresholding the image and
calculating its center of mass. After tracking the TPM lobe
for a delay time τ , an additional feedback-controlled trap is
switched on and moved to the particle’s position one delay
time ago, following the feedback protocol

rT (t ) = 1.3rP(t − τ ), θT (t ) = θP(t − τ ). (1)

The feedback trap’s position is then updated at a rate of
156 Hz. Figure 1(c) shows a diagram of the experimental
setup. The MF lobe is far away enough from the feedback
trap that they do not interact, but the TPM lobe is repelled
and attempts to move away from the trap around the ring.
Figures 1(d) and 1(e) illustrate the feedback protocol with an
example trajectory, showing the feedback trap moving around

a larger radius than the particle and following its position in θ

after a delay time τ .

B. Equation of motion

From this point onwards we ignore the central trap and MF
lobe and treat the TPM lobe as a particle confined to a ring of
fixed radius rP. The particle’s angular position, θP, evolves
according to the following one-dimensional (1D) Langevin
equation:

rP
dθP

dt
= 1

ζ
F (θP, θT ) + ξ (t ), (2)

where ζ is the drag constant of the particle, F is the force
from the trap, and ξ (t ) is Gaussian white noise with 〈ξ (t )〉 =
0, 〈ξ (t )ξ (t ′)〉 = 2(kBT/ζ )δ(t − t ′). The optical trap exerts a
repulsive Gaussian potential on the particle with a stiffness
k and depth V0. It is convenient to define the following con-
stants:

ζrad = r2
Pζ , (3)

K = k

ζrad
rT rP exp

[
−k(rP − rT )2

2V0

]
, (4)

φ =
√

V0

krPrT
. (5)

Here ζrad is the angular drag constant, φ is the trap width in
radians, and K is a frequency proportional to the trap stiffness.
K is a repulsive, angular equivalent of the corner frequency
of a trap, which defines the frequency at which the particle
explores the trap width [34]. These constants allow the trap
force to be written as:

F (ϑ ) = ζradK sin ϑ exp

(
1 − cos ϑ

φ2

)
. (6)

where ϑ (t ) = θP(t ) − θP(t − τ ) is the angular distance be-
tween the particle and the trap [shown in Fig. 1(b)] and the
force has units of kg rad s−2. When the trap width is small
compared to the radius around which the particle moves (φ �
rP), applying the small-angle approximation reduces Eq. (6) to
the following Gaussian force:

F (ϑ ) ≈ ζradKϑ exp

(
− ϑ2

2φ2

)
. (7)

Note that ϑ must always be within [−π, π ] as this expression
is not periodic. The trap force is maximized when ϑ = φ.
At this angle, the trap pushes the particle at a velocity of
vm = e−1/2Kφ. Another important constant is τm = φ/vm =
e1/2K−1, the time taken for the particle to move a distance
equal to the trap width at the maximum velocity.

Finally, rewriting Eq. (2) with the angular drag constant,
ζrad, gives the following equation of motion:

dθP

dt
= ζ−1

rad F (ϑ ) + ξrad(t ). (8)

Each term in this expression has units of rad s−1. The
angular noise term, ξrad, has a correlation function of
〈ξrad(t )ξrad(t ′)〉 = (2kBT/ζrad )δ(t − t ′). From now on, we
only use terms in units of radians unless stated otherwise and
drop the rad subscript on ξrad and ζrad.
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FIG. 2. (a) Angular MSD with linear fit. (b) Background po-
tential around the ring. (c) Trap force measured from the feedback
experiments with τ = 0.15 s (yellow) to 1 s (blue), with fits to
Eqs. (6) and (7). (d) Exact trap force used in the simulations [Equa-
tion (6), solid lines] and the corresponding Gaussian approximations
[Equation (7), dashed lines]. The trap depth, V0, is fixed at the
experimentally measured value and the corner frequency is Kexp ×
21, 0, −1, −2 & −3 (blue to yellow). Consequently, the trap width is
φexp × 2−1/2, 0, 1/2, −1 & −3/2. The purple line with K = 23 is the same
as the experimentally measured trap force in (d). (e) Corresponding
trap potential.

C. Calibration experiments

The experimental trap force, drag constant, and back-
ground potential are calibrated using two different experi-
ments. We measure the particle’s angular drag constant of ζ =
6.64 × 10−8 kg μ m2 s−1 from its mean-squared displacement
(MSD) in the absence of the feedback trap, shown in Fig. 2(a).
From this experiment, we also measure a small background
potential around the ring, shown in Fig. 2(b), which biases
the particle towards angles of θP ≈ (3/2)π . This background
potential has a depth of 3.5kBT , an order of magnitude smaller
than the potential of the feedback trap.

The force acting on the particle from the feedback trap,
which is the same in all experiments, was calibrated in situ
from the feedback experiments with large delay times using
the method of Juniper et al. [35]. The measured force, shown
in Fig. 2(c), agrees well with the Gaussian form of Eqs. (6)
and (7).

D. Simulations

To complement the experiments and further explore the
parameter space, we also carry out one-dimensional Brow-
nian dynamics simulations based on the angular Langevin
equation [Eq. (8)]. The simulations use the experimentally
determined values for the drag constant and trap depth and
several different corner frequencies (proportional to the trap

stiffness). The trap forces and corresponding potentials used
in the simulations are shown in Figs. 2(d) and 2(e).

III. RESULTS AND DISCUSSION

In this section, we characterize the dynamics of the feed-
back experiments and simulations at different delay times and
use SDDEs to describe the system’s behavior in the short- and
long-delay-time regimes. We then characterize the stochastic
thermodynamic properties of the system.

A. Dynamics

First, we characterize the dynamics of the particle at dif-
ferent delay times. Figure 3(a) shows typical trajectories from
four representative experiments with delay times of τ =0.01,
0.05, 0.1, and 0.5 s. Note that the effect of the periodic bound-
ary conditions has been removed by constraining the change
in angle from one frame to the next to |
θ | < π and there-
fore allowing θ to have any value. The corresponding MSDs
are shown in Fig. 3(b), while Fig. 3(c) shows histograms
of the angle between the particle and the trap, ϑ = θP(t ) −
θT (t ) = θP(t ) − θP(t − τ ). As the lag time increases, the tra-
jectories, MSDs, and ϑ distributions all show a dramatic
change in behavior. We will now describe each lag time
separately.

When τ = 0.01 s, the trajectory appears to be trapped at
around 1.5π due to the background potential. The MSD is
diffusive (∝ t1) at short times but subdiffusive at long times as
a result of the background potential. The short-time diffusion
coefficient is slightly larger than the free-diffusion measure-
ment because the trap pushes the particle upwards away from
the bottom of the sample cell, decreasing its drag constant.
The histogram of the angle between the particle and the trap,
P(ϑ ), shown in Fig. 3(c), is a narrow Gaussian centered
around 0, consistent with diffusive short-time behavior. The
dotted line at the top of Fig. 3(c) shows the trap force profile,
showing that the particle spends most of the time near the
trap center, where the force is small. This explains why the
trajectory is diffusive—the feedback trap always applies a
small force to the particle, so has a minimal effect on its
diffusive trajectory.

When τ = 0.05 s, the particle’s trajectory appears more
diffusive, albeit with a slight preference for values of (1.5 +
2n)π as a result of the background potential. The mean
squared displacement is diffusive at short and long times with
a transient superdiffusive (∝ t2) section in between. This t2

scaling implies driven motion. The histogram of the angle
between the particle and the trap, P(ϑ ), is broader and has
less Gaussian character. As the particle diffuses further from
the trap center, it is then pushed even further by the repulsive
trap force, which causes both the non-Gaussian P(ϑ ) and the
transient driven behavior in the MSD. This force is sufficient
to overcome the background potential, resulting in long-time
diffusive motion.

When τ = 0.1 s, the particle moves at a constant velocity
over a sustained period before randomly switching direction,
resulting in a persistent random walk. This manifests as an
MSD which is diffusive at short times, superdiffusive over a
large intermediate time range, and diffusive at long times. The
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FIG. 3. (a) Particle positions, θP, from the first 300 s of exper-
iments with τ = 0.01 s (purple), 0.05 s (blue), 0.1 s (green), and
0.5 s (yellow). (b) MSDs (symbols) with fits to Eq. (9) (lines).
The dashed line shows 〈δθ2〉 = 2DSδt and the dotted line shows
〈δθ2〉 ∝ δt2. (c) Histogram of the angle between the particle and
the trap, ϑ = θP − θT . The dashed line shows F (ϑ ) on an arbitrary
vertical axis.

long-time diffusive section is a result of the random direction
changes and has a significantly larger diffusion coefficient
than at short times. P(ϑ ) has two sharp peaks near the position
of maximum force. The sharpness of the peaks is consistent
with the uniformity of the velocity in the driven segments of
the trajectory.

At the largest delay time of 0.5 s, the particle moves at a
constant velocity without switching direction over the whole
experiment. The MSD switches from diffusive at short times
to driven at long times. The P(ϑ ) distribution shows that this is
because the particle is always far from the trap center, so there
is a large energy barrier to switching direction. The driven
section has a lower velocity than at τ = 0.1 s, reflecting the
large average |ϑ |.

The same trends can be seen more clearly in the
simulations in Fig. 4, where there are no effects from the back-
ground potential, out-of-plane motion, or tracking errors. This
confirms our interpretation of the experimental results. The
MSDs in Fig. 4(b) show that the simulations all have the same
diffusion coefficient at short times. At intermediate times, the
trajectories all have a transient driven, superdiffusive section.
For long delay times, this corresponds to motion at a constant
speed, as shown in Fig. 4(a). As the delay time increases, the
driven section last for longer as the particle hops from one
side of the trap to the other less frequently. This is a result of
its larger distance from the trap center, as shown in Fig. 4(c).
Diffusive motion is recovered at long times for all but the
largest delay time.

Overall, except for the subdiffusive long-time behavior of
the experiment with τ = 0.01 s due to the background po-
tential, the experiments and simulations can all be described
by short-time diffusive motion characterized by the short-time
diffusion coefficient, DS , combined with driven motion at a
constant speed, v, and random changes of direction at an
average rate of λ. This is exactly the type of motion displayed
by a model 1D active Brownian particle, which has an MSD

FIG. 4. (a) Particle positions, (b) MSDs with fits to Eq. (9), and
(c) histogram of the angle between the particle and the trap for
simulations equivalent to the experiments in Fig. 3. All lines and
symbols have the same meaning as in Fig. 3.

of [36,37]

〈δθ2〉 =
(

2DS + v2

λ

)
t + v2

2λ2
(e−2λt − 1). (9)

The limiting values at short and long times are

〈δθ2〉(t � λ−1) = 2DSt + v2t2, (10)

〈δθ2〉(t � λ−1) =
(

2DS + v2

λ

)
t = 2DLt, (11)

where DL = DS + v2/2λ is the long-time diffusion coeffi-
cient. Each MSD is fitted with Eq. (9) to obtain the driving
speed, v, and reorientation rate, λ. The experiments and sim-
ulations show good agreement with the fits, which are plotted
in Figs. 3(b) and 4(b).

The values of DL − DS , v, and λ from each fit are shown
in Fig. 5. There is good agreement between the experi-
ments and simulations. The long-time diffusion coefficient,
DL [Fig. 5(a)], increases dramatically with increasing delay
time until is becomes too large to measure. The speed, v

[Fig. 5(b)], initially increases with increasing τ , reaches a
maximum value close to vm when Kτ ≈ 1.5 and then de-
creases with increasing τ . The reorientation rate, λ [Fig. 5(c)],
decreases rapidly with increasing τ .

B. Stochastic delay differential equations

We now explain the measured trends in v, λ, and DL using
the framework of stochastic delay differential equations. At
short delay times, we use two different approaches to predict-
ing the long-time diffusion coefficient. The first approach is
based on Guillouzic et al. [38], who showed that any delay
differential equation can be approximated by a delay-free
Langevin equation in the limit of small delay times (τ → 0).
Their method gives the following approximate equation of
motion:

dθP

dt
≈ (1 + Kτ )ξ (t ). (12)
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FIG. 5. (a) Long-time diffusion coefficient, DL , as a function of
the delay time, τ , in all experiments (purple filled squares) and sim-
ulations (blue to yellow empty symbols). Delay times are scaled by
the corner frequency, K . Dashed and solid black lines show Eqs. (13)
and (14), respectively, while the blue line shows DL − DS = v2

ss/2λKr

from Eqs. (16) and (19). (b) Driving speed, v, in all experiments
and simulations [same symbols as (a)], with the steady-state velocity
from Eq. (16) (blue line). (c) Reorientation rate, λ [same symbols as
(a)], and theoretical rate from Eq. (19) (blue line). (d) Most probable
angular distance, |ϑ | [same symbols as (a)], and the steady-state
position, ϑss = vssτ , from Eq. (16) (blue line).

This predicts purely diffusive motion in the limit of small
delay times, with an enhanced diffusion coefficient of

DL = DS (1 + Kτ )2, (13)

where DS = kBT/ζ is the short-time diffusion coefficient.
Figure 5(a) shows that this expression correctly predicts DL

at short delay times but significantly underestimates it at long
delay times because it does not include a driven component to
the particle’s motion.

The second approach is based on Kuchler and Mench’s
analysis of linear SDDEs [39]. Equation (8) reduces to a linear
SDDE in the limit of small ϑ , where the trap is approximately
harmonic. Using the results of Ref. [39], Ando et al. [30]
showed that the long-time diffusion coefficient of a particle
in an attractive harmonic trap controlled by our feedback
protocol [θT (t ) = θP(t − τ )] is given by

DL = DS

(1 − Kτ )2
. (14)

Note that Eqs. (14) and (13) are related via a Taylor expansion.
This expression is also valid for a repulsive harmonic trap
(with positive rather than negative K) when τ < K−1, where
K is the corner frequency of the trap. This timescale defines
the transition between diffusive and driven dynamics. In the
short delay time limit defined by τ < K−1, Eq. (14) describes
the measured increase in DL with increasing τ slightly better
than Eq. 13. Above this point, DL instead diverges exponen-
tially, with the implication that a diffusive state is not stable.
Equation (14) does not predict DL at long delay times because
it does not account for the random reorientations in the driving
direction, without which DL would tend to infinity.

In order to describe the diffusion coefficient in the large
τ regime, we start by deriving an expression for the driving
speed, v, which we then use to calculate the reorientation
rate, λ, and finally combine these two quantities to obtain DL.
We assume that the system settles into a driven nonequilib-
rium steady state, and consider a deterministic version of the
Langevin equation of motion (Eq. 8) with the approximate
Gaussian force [Eq. (7)]. If the particle moves at a constant
velocity of dx/dt = vss, then the angle between the particle
and the trap is fixed at ϑ = vssτ . Substituting these into the
Langevin equation gives

vss = Kvssτ exp

(
−v2

ssτ
2

2φ2

)
, (15)

and solving for vss yields the steady-state velocity,

vss =
{±φ

τ

√
2 ln (Kτ ) τ � K−1

0 ∀τ
. (16)

The diffusive state with vss = 0 exists at all delay times, but
the two (positive and negative) driven steady states are only
possible at long delay times of τ > K−1. This agrees with the
short delay time theory in Eq. (14) [30], which also predicts a
transition from diffusive to driven motion at τ = K−1.

Figure 5(b) compares the steady-state velocity, vss, to the
measured speed, v, from all experiments and simulations.
Scaling the delay time by K−1 and the velocities by vm col-
lapses all experiments and simulations onto the same curve,
which reaches the maximum possible value of vm when τ =
τm = e1/2K−1. The measured velocities show good agreement
with vss at long delay times of Kτ > 1, confirming that these
experiments and simulations are in the driven steady state.
Equation (16) also predicts a steady-state angle between the
particle and the trap of ϑss = vssτ . Figure 5(d) shows that this
steady-state angle agrees very well with the most probable |ϑ |
taken from the maximum point of a histogram of |ϑ |, once
again confirming the validity of Eq. (16).

We will now use the steady-state velocity in Eq. (16) to
find an expression for the switching rate, λ. Because the
trap moves at a constant angular velocity vss, the potential
energy acting on the particle in the rotating frame of reference,
moving with the trap at vss, is tilted. The effective potential
acting on the particle combines the Gaussian trap potential,
UT (ϑ ), with a linear term, −ζvssϑ , arising from the motion at
a constant angular velocity:

Ueff (ϑ ) = UT (ϑ ) − ζvssϑ. (17)

This potential has a minimum and maximum at

ϑmin = ± φ
√

2 ln(Kτ ),

ϑmax = ± φ

√
−W0

[−2 ln(Kτ )

(Kτ )2

]
,

(18)

where W0(x) is the 0th branch of the Lambert function. Fig-
ures 6(a)–6(c) shows the effective potential, Ueff (ϑ ), arising
from the three possible steady states (positive, negative, and
zero vss) at different delay times. When 1 < τ < e1/2, the
steady-state angle between the particle and the trap, θss = vssτ

[shown with crosses in Fig. 6(a)], corresponds to the local
maximum in the tilted potential. Consequently, there is no
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energy barrier to the particle moving to the other side of the
trap, making the driven state as unstable as the diffusive state
with vss = 0. When Kτ = e1/2 [Fig. 6(b)], the steady-state
position is a saddle point, and when Kτ > e1/2 [Fig. 6(c)], θss

corresponds to a local minimum in the tilted potential. In this
case, the trajectory switches direction when the particle hops
from one potential minimum to the other over the potential
barrier, which happens at a rate λ given by Kramer’s escape
problem:

λ−1
Kr = 2πζ√∣∣U ′′

maxU ′′
min

∣∣ exp

(
Umax − Umin

kBT

)
. (19)

This expression assumes that escape is a Poisson process,
which is valid in the limit of τ � τm, when the energy barrier
is large and the local maximum and minimum are far apart.
Equation (19) can therefore be used to calculate the reori-
entation rate, λ, in the long-delay-time regime. Figure 5(c)
compares this theoretical reorientation rate to the measured
values from the experiments and simulations. The few mea-
surements of λ in the region in which λKr can be calculated
agree well with λKr.

The steady-state velocity, vss [Eq. (16)], and the escape
rate, λKr [Eq. (19)], can now be combined to calculate an ex-
pression for the long-time diffusion coefficient of the system,
DL = DS + v2

ss/2λKr, in the driven regime where τ � τm.
Figure 5(a) compares this theory to the measured DL from
all experiments and simulations. There is reasonably good
agreement, although Kramer’s escape equation is only valid
for a few data points where DL can only be measured. This
confirms that the dynamics in the long-delay-time regime are
well described by a driven steady state with a tilted effective
potential.

C. Stochastic thermodynamics

In this section we discuss the stochastic thermodynam-
ics of the feedback process. First, we consider the average
rate of work done on the particle by the feedback trap, 〈ẇ〉,
shown in Fig. 6(d). This is calculated using Eq. (6) of the
supplementary material. At low τ , the simulations have a low
〈ẇ〉 which slowly increases to a maximum at τm = e1/2/K .
This is because as P(ϑ ) broadens with increasing τ (shown
in Figs. 3 and 4), the average Fẋ ∝ ζF 2 also increases. The
work done by the trap at low τ is significantly larger in the
experiments than in the simulations, probably because track-
ing errors broaden P(ϑ ). When τ > K−1, so the system is in
the driven steady state, the rate of work done follows the same
shape as the speed, v, peaking at τ = τm = e1/2K−1, where
the steady-state velocity is maximized. The inset shows 〈ẇ〉
for the simulations and experiments with τ > τm as a function
of the speed, v. The points all sit very close to the 〈ẇ〉 = ζv2

line, which is the minimum power required to drive a particle
at a constant speed [40]. This implies that almost all of the
work done on the particle is used to drive it at the average
speed, making the feedback driving almost as efficient as
driving the particle with a constant force.

Another important thermodynamic quantity in a feedback
experiment is the mutual information, I , between the particle

FIG. 6. [(a)–(c)] Effective potential when a particle is driven
at the positive (red), negative (blue), and zero (gray) steady-state
velocity [Eq. (16)]. Crosses mark the steady-state position and ar-
rows illustrate the region of the potential explored by the particle.
(d) Rate of work done relative to the maximum value, ẇ/(ζv2

m ),
against rescaled delay time, Kτ , for all experiments and simulations.
Inset: Rate of work done, ẇ/ζv2

m, against the steady-state velocity,
v2/v2

m. (e) Mutual information between the particle and trap position,
I , shifted by 1

2 ln(K ), against Kτ , for all experiments and simulations.
The black dashed and solid blue line shows the theoretical value
for a freely diffusing particle [see Eq. (15) of the supplementary
material] with diffusion coefficients of DS and DL = DS (1 − Kτ )−2,
respectively. Colors and symbols are the same as in Fig. 5.

position at time t (the system) and t − τ (the measurement):

I =
∫ π

−π

pm(ϑ ) ln pm(ϑ )dϑ + ln(2π ), (20)

derived in the supplementary material. We use a mirrored
probability distribution, pm(ϑ ) = [p(ϑ ) + p(−ϑ )]/2, to ac-
count for the fact that the measured p(ϑ ) from a single
finite experiment is not always symmetric, despite the equal
probability of the particle being driven to the left or the
right. The result is shown in Fig. 6(e) for all experiments
and simulations. The mutual information shows interesting
nonmonotonic behavior with a local minimum at τm, the delay
time where the power was maximized.

The inverse relationship between the work and the mutual
information can be rationalized by considering the effective
potential experienced by the particle, which combines the
repulsive trap potential with the tilted effective potential from
the steady-state driving velocity. At short delay times of τ <

τm, the particle sits on a local maximum of this effective
potential, as shown in Fig. 6(a), so the particle diffuses freely.
The angle distribution, p(ϑ ), therefore becomes broader with
increasing τ , causing the work done on the particle to in-
creases and the mutual information to decrease in line with
the theoretical value for free diffusion in Eq. (15) of the
supplementary material. When τ > τm, the particle instead
sits in a local minimum in the effective potential, as illustrated
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in Fig. 6(c). The particle is confined by this effective poten-
tial, causing the p(ϑ ) distribution to become more sharply
peaked, and so increasing the mutual information. At τ = τm,
shown in Fig. 6(b), the particle is driven at the maximum
velocity while existing in an unstable state, resulting in a
broad p(ϑ ) and hence the local minimum in I . The local
minimum in the mutual information between the particle and
the trap and the local maximum in the work done on the
particle therefore both occur as a result of the system switch-
ing from a diffusive steady state to a stable driven steady
state.

IV. CONCLUSIONS

We have characterized the dynamics of a particle on a
ring interacting with a feedback controlled repulsive optical
trap over several orders of magnitude of the delay time, τ .
We have shown that at short delay times, the system exists
in a diffusive state which is well described by the theory of
stochastic delay differential equations. At long delay times,
there is a transition to a driven steady state in which the
particle and trap move at a constant speed, but randomly
switch direction. Unlike in two dimensions, changes in di-
rection can only occur when the particle hops over the trap,
leading to a more stable direction of motion. We showed
that the driven state exists when there is a nonzero solution
to vss = F (vssτ ), and that it is stable when vssτ is at a lo-
cal minimum of the tilted effective potential UT (ϑ ) − vssϑ .
These results can be applied more generally to determine
whether any system described by a stochastic delay differ-
ential equation has a stable driven state. We also analyzed
the stochastic thermodynamics of the feedback driven system
and found that almost all of the work done on the particle is
converted into driving it at a constant speed. The maximum
power input coincided with the minimum mutual information.
We rationalize this relationship by considering the particle’s
diffusion in the tilted effective potential UT (ϑ ) − vssϑ , show-
ing that the minimum mutual information occurs when the
system switches from an unstable to a stable driven steady
state.
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APPENDIX

1. Work

The stochastic thermodynamic definition of the work done
on the particle subject to a force F (x, t ) = −(∂U/∂x)t is
[41,42]

dw = F (x, t )dx + dU . (A1)

In order to calculate the work done over a single stochastic
trajectory, w[x(t )], which is sampled at a discrete time interval
of 
t , we use the Stratanovich interpretation of dx (i.e. the
central difference) [3,43]. The rate of work done is therefore

calculated using:

ẇ = F (xn, tn)
xn+1 − xn−1

2
t

+ U

(
xn+1 + xn

2

)
− U

(
xn + xn−1

2

)
, (A2)

where n is the frame number. Note that when a particle is
driven at a constant average velocity v with a nonconserva-
tive force, such that dU = 0, the rate of work done is given
by [40]

〈ẇ〉 = ζv2. (A3)

Driving with a constant force is the most efficient way to move
a particle (in the absence of information) [40].

2. Information

During a feedback process, a measurement device gath-
ers information about the state of the system and uses that
information to apply feedback. As the device performs a
measurement, its state may change, leading to a change in
its entropy. The thermodynamics of the feedback process
therefore depends not just on the system and surrounding
solvent, but also the measurement device. This is quantified
by the mutual information between the state of the system, x,
and the state of the measurement device, y [3]. The mutual
information is defined as [44]

I =
∑
x,y

p(x, y) ln

[
p(x, y)

p(x)p(y)

]
, (A4)

where p(z) is the probability of state z. If x and y are contin-
uous, as in our experiments, then the sum is replaced by the
integral

I =
∫∫

dxdy p(x, y) ln

[
p(x, y)

p(x)p(y)

]
, (A5)

where p(z) now represents a probability density function. I is
a measure of how narrowly p(x, y) is distributed; it is largest
when p(x, y) has a single sharp peak, and smaller when p(x, y)
has several broad peaks.

In our feedback experiment, there is a delay time τ between
the start and end of the measurement. The state of the system
is therefore the particle position at time t , while the state
of the measurement device is the particle position at time
t − τ , which we set as the trap position at time t . The mutual
information is given by

I =
∫ π

−π

∫ π

−π

dθPdθT p(θP|θT )p(θT ) ln

[
p(θP|θT )

p(θP )

]
, (A6)

where we have replaced the joint probability of θP and θT

with the conditional probability of θP at a given θT using
p(θP, θT ) = p(θp|θT )p(θT ). If we assume that all positions
around the ring have the same energy, so are equally proba-
ble, then p(θP ) = p(θT ) = (2π )−1 for all θP/T . Furthermore,
p(θP|θT ) only depends on the angle between the particle
and the trap, ϑ = θP − θT , so we can replace p(θP|θT ) in
Eq. (A6) with p(ϑ ) by integrating over dθT . This reduces
Eq. (A6) to

I =
∫ π

−π

dϑ p(ϑ ) ln p(ϑ ) + ln(2π ). (A7)
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In order to illustrate how I depends on the delay time,
τ , it is useful to consider the case of free diffusion. In the
small τ limit when 4Dτ/π2 � 1, so that particle has not had
time to diffuse around the ring, ϑ has the following Gaussian
probability distribution:

p(ϑ ) = 1√
4πDτ

exp

(−ϑ2

4Dτ

)
, (A8)

which leads to a mutual information of

I ≈ 1

2

[
ln

(π

D

)
− 1 − ln(τ )

]
. (A9)

Conversely, in the long τ limit, all positions on the ring
become equally likely, so p(ϑ ) → (2π )−1 and I → 0 when
τ → ∞. The mutual information therefore decreases linearly
with ln τ until it reaches a plateau at I = 0.
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