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Polymer networks formed by cross linking flexible polymer chains are ubiquitous in many natural and
synthetic soft-matter systems. Current micromechanics models generally do not account for excluded volume
interactions except, for instance, through imposing a phenomenological incompressibility constraint at the
continuum scale. This work aims to examine the role of excluded volume interactions on the mechanical
response. The approach is based on the framework of the self-consistent statistical field theory of polymers,
which provides an efficient mesoscale approach that enables the accounting of excluded volume effects without
the expense of large-scale molecular modeling. A mesoscale representative volume element is populated with
multiple interacting chains, and the macroscale nonlinear elastic deformation is imposed by mapping the
end-to-end vectors of the chains by this deformation. In the absence of excluded volume interactions, it recovers
the closed-form results of the classical theory of rubber elasticity. With excluded volume interactions, the model
is solved numerically in three dimensions using a finite element method to obtain the energy, stresses, and
linearized moduli under imposed macroscale deformation. Highlights of the numerical study include: (i) the
linearized Poisson’s ratio is very close to the incompressible limit without a phenomenological imposition of
incompressibility; (ii) despite the harmonic Gaussian chain as a starting point, there is an emergent strain-
softening and strain-stiffening response that is characteristic of real polymer networks, driven by the interplay
between the entropy and the excluded volume interactions; and (iii) the emergence of a deformation-sensitive
localization instability at large excluded volumes.

DOI: 10.1103/PhysRevE.107.064501

I. INTRODUCTION

A wide variety of soft-matter-based systems are emerging
as important for engineering and scientific applications, and
have been the focus of research using both modeling and
experiments, e.g., Refs. [1–32]. Polymer-network-based ma-
terials such as elastomers and hydrogels are often at the heart
of these soft-matter systems.

An important question for both fundamental understand-
ing and application is how to predict the nonlinear elastic
properties of polymer networks starting from a microme-
chanical model of individual chains. The physics of polymer
network elasticity is governed by the conformational entropy
of polymer chains and the intersegment excluded volume in-
teractions. These contributions can be roughly thought of as
short-range and nonlocal interactions, respectively. The short-
range interactions are associated with Gaussian polymer chain
response and depend on the relative configurations of adjacent
segments in a chain. In contrast, the nonlocal interactions
are due to the interaction between polymer segments that are
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nearby in space but nonlocal topologically [i.e., in terms of
their position along the chain (Fig. 1)].

While there are several useful phenomenological nonlinear
elastic frame-indifferent models, e.g., Mooney-Rivlin [33],
Ogden [34], and Gent [35], they lack a clear connection to the
molecular structure of polymer network. An important class
of physics-based approaches to study the elasticity of polymer
networks are based on considering multiple Gaussian chains
and then averaging over the chains in different ways. These
include the three-chain model by James and Guth [36], the
four-chain model by Flory and Rehner [37] and Treloar [38],
the affine full-network model by Treloar [39], the eight-
chain model by Arruda and Boyce [40], the nonhomogeneous
deformation-based model by Wu and van Der Giessen [41],
and the nonaffine microsphere model by Miehe [42]; the
recent work by Grasinger [43] provides a new perspec-
tive in which these myriad models are shown to be special
cases of a general approach. While these models have pro-
vided important insights and prediction, they do not account
for the nonlocal excluded volume effects. Consequently, in-
compressibility of the polymer network must be added as
a phenomenological continuum-scale approximation of the
missing mesoscale physics. Another class of physics-based
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FIG. 1. Excluded volume interactions are nonlocal in terms of
the segment coordinates.

molecular-statistical approaches are the constrained junction
and constrained segment theories, that aim to account for
constraints arising due to chain entanglements. Constrained
junction theories, e.g., Refs. [44–48], apply topological con-
straints on the fluctuations of chain cross-link junctions.
Constrained segment theories, e.g., Refs. [49–53], which are
consistent with the tube model of rubber elasticity, incorporate
constraints on the polymer segments along the chain contour.
However, it is not easy to incorporate the nonlocal excluded
volume interactions in these approaches.

A. Proposed approach

Our approach is composed of two key elements: first, the
statistical field theory of polymers, which provides an es-
tablished and efficient approach to account for the physics
of polymer chain elasticity as well as excluded volume in-
teractions [54–70]; and, second, the use of the eight-chain
network averaging model that provides a nonlinearly elastic
frame-indifferent approach to coarse grain to the continuum
scale [40]. An important work in this direction is Ref. [71],
wherein a network with a simplified square lattice topology
was studied using the field theory approach to understand
copolymers.

We begin by considering a representative volume element
(RVE) of the polymer network. A typical mesoscale RVE
consists of several polymer chains that are all interacting with
configurations that are randomly distributed. While it is a sig-
nificant challenge to account for this randomness, we follow
the eight-chain RVE-averaging approach of Arruda and Boyce
(Fig. 2, [40]) in approximating the RVE in the undeformed
state as composed of eight polymer chains connecting the
center of a cube to each of the corners. The RVE then deforms
under the action of the macroscopic deformation tensor F,
i.e., the chain end-to-end vectors are mapped by F from the
undeformed to the deformed state (Fig. 3, [72]). An important
element of Ref. [40] is that the RVE is oriented such that the
cube is oriented along the principal directions of the stretch
tensor U , where U is the tensor square root of F, and can
be obtained through the polar decomposition F = RU where
R ∈ SO(3).

Given the mapping of the end-to-end vectors of the chains,
the polymer field theory is then used to compute the parti-
tion function of the deformed state, from which we can find
the free energy and stress. Following Ref. [59], we use the

FIG. 2. The eight-chain approximation is obtained by averaging
over a volume element that aligns the polymer chains along the
principal directions of the deformation.

continuous Gaussian chain model for a single polymer chain.
Next, we consider chain segments that interact pairwise in real
space, and nonlocally in terms of position along the chain
contour (Fig. 1), through a pairwise interaction potential of
mean force; these are given by Dirac potentials to model
excluded volume effects. Given the intersegment interaction
and end-to-end vectors, the framework of polymer field theory
enables us to compute, using the self-consistent scheme, the
partition function, and consequently the free energy of the
RVE. We notice that because the ends of the polymer chain
are constrained by the macroscale deformation F, this leads
to a restricted ensemble. Further, nonlinear elasticity provides
the Piola-Kirchoff stress tensor P as the energy-conjugate of
F, enabling us to compute the stress-deformation response of
the polymer network.

Key results from the model are as follows. In the ab-
sence of excluded volume interactions, we find that the
closed-form orientationally averaged elastic response matches
with classical rubber elasticity [72]. Considering excluded
volume interactions, closed-form solutions appear impossi-
ble, and we develop a three-dimensional (3D) finite element
method (FEM) implementation to self-consistently solve the
equations of the polymer field theory. We find that the lin-
earized Poisson’s ratio ν � 0.4943, which is very close to the
incompressible limit ν → 0.5, without a phenomenological
imposition of incompressibility, and that the elastic moduli
are in line with typical polymer network gels. Further, de-
spite the harmonic Gaussian chain as a starting point, there
is an emergent strain-softening and strain-stiffening response
that is characteristic of real polymer networks, driven by

FIG. 3. The end-to-end vector in the undeformed state,
(X 1

α − X 0
α ), is mapped by the deformation F to the end-to-end vector

in the deformed state, x1
α − x0

α , i.e., x1
α − x0

α = F(X 1
α − X 0

α ).
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FIG. 4. Single polymer chain fixed at both ends.

the interplay between the excluded volume interactions and
the entropy; it does not require chains with limiting extensibil-
ity, such as the inverse Langevin approximation, to model this
behavior. Finally, we find the emergence of a deformation-
sensitive localization instability at large values of the excluded
volume parameter.

The structure of the paper is as follows. Section II for-
mulates the model. Section III summarizes the finite element
approach for the self-consistent solution. Section IV presents
numerical results showing the predictions of the model.

II. MODEL FORMULATION

A. Deformation of a single polymer chain

We use the continuous Gaussian chain model for a single
polymer chain [58]. In the undeformed state, the coarse-
grained trajectory of the αth polymer chain is represented as a
continuous 3D space curve Rα (s), where s is the chain contour
coordinate and varies along the chain contour, and is scaled
such that 0 � s � 1. The position vectors of the beginning
and end points of the chain in the undeformed state are X 0

α

and X 1
α .

The chain is deformed under the deformation gradient F.
In the deformed state, rα (s) is a 3D curve that represents the
coarse-grained trajectory of the αth chain, as shown in Fig. 4.
The position vectors of the beginning and end of the chain in
the deformed state are x0

α and x1
α .

Following Ref. [72], we use that the chain end-to-end vec-
tor is mapped under the macroscale deformation F:

x1
α − x0

α = F
(
X 1

α − X 0
α

)
. (2.1)

We note that the affine deformation assumption depends
strongly on the assumption that there are no entangle-
ments [73–76].

1. Partition function and average segment density

Consider the αth chain that consists of N coarse-grained
polymer segments each of length a, and under the influence
of a field w(x) that will be used to account for the excluded
volume interactions [59]. From Ref. [58], the partition func-
tion, Qα[w; F], and the average segment density, 〈ρ̂α (x; F )〉,
are

Qα[w; F] = 1

V

∫
dx qα

(
x, x0

α, s
)

q∗
α

(
x, x1

α, 1 − s
)
, (2.2)

〈ρ̂α (x; F )〉 = 1

V Qα[w; F]

∫ 1

0
ds qα

(
x, x0

α, s
)

q∗
α

(
x, x1

α, 1−s
)
.

(2.3)

Here, qα (x, x0
α, s) and q∗

α (x, x1
α, 1 − s) are the partial partition

functions for the two chain fragments, one from 0 to s and the
other from 1 to s, respectively, as shown in Fig. 4.

qα (x, x0
α, s) is obtained by solving the following PDE with

the initial condition:

∂qα

(
x, x0

α, s
)

∂s
= a2N

6
∇2qα

(
x, x0

α, s
) − w(x)qα

(
x, x0

α, s
)
,

qα

(
x, x0

α, s
)∣∣

s=0 = (aN1/2)3 δ
(
x − x0

α

)
. (2.4)

Similarly, q∗
α (x, x1

α, s′) is obtained by solving the same
PDE as in (2.4), but with the initial condition corresponding
to keeping the other end fixed:

∂q∗
α

(
x, x1

α, s′)
∂s′ = a2N

6
∇2q∗

α

(
x, x1

α, s′) − w(x)q∗
α

(
x, x1

α, s′),
q∗

α

(
x, x1

α, s′)∣∣
s′=0 = (aN1/2)3 δ

(
x − x1

α

)
. (2.5)

The initial conditions above correspond to the physical con-
straint that the beginning and end points of the αth chain are
fixed at the given spatial positions x0

α and x1
α , respectively.

2. Reduction to classical rubber elasticity

In the absence of excluded volume interactions, obtained
by setting w(x) ≡ 0, we can find closed-form solutions for qα

and q∗
α:

qα

(
x, x0

α, s
) =

(
3

2πs

)3/2

exp

(
−3

∣∣x − x0
α

∣∣2

2a2Ns

)
, (2.6)

q∗
α

(
x, x1

α, 1 − s
) =

(
3

2π (1 − s)

)3/2

exp

(
− 3

∣∣x − x1
α

∣∣2

2a2N (1 − s)

)
.

(2.7)

The partition function Qα[w; F]
∣∣
w=0 in (2.2) evaluates to the

classical Gaussian distribution in three dimensions:

Qα[w; F]
∣∣
w=0 ∝

(
3√
π

)3(a2N

6

)3/2

× exp

(
− 3

2a2N

∣∣x1
α − x0

α

∣∣2
)

. (2.8)

Because the chains do not interact, the free energy of
the αth polymer chain, Hα , is obtained from Qα using
Hα = −kBT log Qα to be:

Hα[w; F]
∣∣
w=0 = 1

2

(
3kBT

a2N

)∣∣F(
X 1

α − X 0
α

)∣∣2 −
(

3kBT

2

)
.

(2.9)
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To account for the fact that chains are randomly oriented,
we next average Hα[w; F]

∣∣
w=0 over all possible orienta-

tions of the chain end-to-end vector by integrating (2.9)
over all orientations. That is, keeping F fixed, we integrate
(X 1

α − X 0
α ) over the sphere of appropriate radius. The result-

ing expression for the orientationally averaged free energy,
H avg

α [w; F]
∣∣
w=0, is

H avg
α [w; F]

∣∣
w=0 = kBT

2
(tr(FT F ) − 3). (2.10)

This result recovers the classical rubber elasticity result [72],
also known as the incompressible neo-Hookean elastic strain
energy.

B. Deformation of the polymer network

The pairwise excluded volume interactions are introduced
through the field w(x) following Ref. [59]. We introduce
ū(|x − x′|), which is the pairwise interaction potential of mean
force for two segments located at spatial coordinates x and x′.
The corresponding partition function for the polymer network
in the deformed state, Z (F ) in the field-theoretic setting is

Z (F ) ∝
∫

Dρ

∫
Dw exp

(
−H[w, ρ; F]

kBT

)
, (2.11)

where H[w, ρ; F] is the effective Hamiltonian of the polymer
network, and has the expression:

H[w, ρ; F]

kBT
= −

∫
dx w(x)ρ(x)

+ 1

2kBT

∫
dx

∫
dx′ ρ(x) ū(|x − x′|) ρ(x′)

− log (Q1[w; F] . . . Qn[w; F]). (2.12)

The auxiliary fields w(x) and ρ(x) are interpreted as the fluc-
tuating chemical potential field generated internally because
of the intersegment interactions and the fluctuating density
of the polymer network, respectively [59]. Qα[w; F] is the
partition function for the αth chain in the polymer network
under the influence of w(x), and is calculated using (2.2).

The first term in (2.12) is the energy of interaction between
the density and the chemical potential. The second term is the
intersegment interaction energy. The third term is the entropic
contribution due to chain stretching. The total Helmholtz free
energy of polymer network in the deformed state, H (F ), is
evaluated from the partition function Z (F ) in (2.11) using:

H (F ) = −kBT log Z (F ). (2.13)

In the deformed state, the average segment density of the
polymer network, 〈ρ̂(x; F )〉, is obtained as:

〈ρ̂(x; F )〉 ∝ 1

Z (F )

∫
Dρ

∫
Dw

⎡
⎢⎢⎣ exp

(∫
dx w(x)ρ(x) − 1

2kBT

∫
dx

∫
dx′ρ(x)ū(|x − x′|)ρ(x′)

)

×

⎛
⎜⎜⎝

n∑
i=1

⎛
⎜⎜⎝

(∫ 1

0
ds qi

(
x, x0

i , s
)

q∗
i

(
x, x1

i , 1 − s
)) n∏

k=1
k =i

Qk[w; F]

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎤
⎥⎥⎦. (2.14)

C. Strain energy density of the polymer network

To obtain the continuum elastic response using nonlinear elasticity, we introduce the elastic energy density (per undeformed
unit volume) W (F ) and treat the RVE as a continuum material point. This allows us to connect the total free energy H (F )
evaluated for the RVE to W (F ) at the corresponding spatial location:

W (F ) = H (F )

V
, (2.15)

where V is the volume of the RVE in the undeformed state.
We can then find the Piola-Kirchhoff stress tensor P and the fourth-order elasticity tensor C = [Ci jkl ] using:

P = ∂W

∂F
, (2.16)

Ci jkl = ∂2W

∂Fi j∂Fkl

∣∣∣∣
F=I

, (2.17)

where I is the second-order identity tensor.
Applying (2.16), and substituting from (2.11), (2.12), (2.13), (2.15), we have:

P = ∂W

∂F
= −kBT

V

1

Z (F )

∂Z (F )

∂F
= −kBT

V

1

Z (F )

∫
Dρ

∫
Dw exp

(
−H[w, ρ; F]

kBT

)
∂H[w, ρ; F]

∂F

(
− 1

kBT

)

= −kBT

V

1

Z (F )

∫
Dρ

∫
Dw exp

(
−H[w, ρ; F]

kBT

) n∑
α=1

∂

∂F
log Qα[w; F]. (2.18)
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Then, defining the stress operator for the αth chain, P̂α , as:

P̂α := − ∂

∂F
log Qα[w; F], (2.19)

we can write P as the statistical average ([58], Sec. 4.1.3]
of P̂α:

P = kBT

V

(
1

Z (F )

∫
Dρ

∫
Dw exp

(
−H[w, ρ; F]

kBT

) n∑
α=1

P̂α

)

= kBT

V

n∑
α=1

〈P̂α〉. (2.20)

D. Mean-field assumption

The functional integration over the fields w and ρ in (2.11)
and (2.14) makes it expensive to evaluate H (F ) and 〈ρ̂(x; F )〉.
Therefore, it is common to use a mean-field assumption to
simplify the functional integration in the expression for Z (F )
in (2.11) [58]. This assumption implies that functional integra-
tion over the fields w and ρ is dominated by the mean fields
w̄ and ρ̄, respectively. The mean fields w̄ and ρ̄ are obtained
by requiring the effective Hamiltonian H[w, ρ; F] in (2.12) to
be stationary with respect to variations in w(x) and ρ(x). This
gives the self-consistent mean-field conditions:

δH[w, ρ; F]

δw

∣∣∣∣
w=w̄

= 0, (2.21)

δH[w, ρ; F]

δρ

∣∣∣∣
ρ=ρ̄

= 0. (2.22)

Using the mean-field assumption, Z (F ) in (2.11) simplifies to:

Z (F ) ≈ exp

(
−H[w̄, ρ̄; F]

kBT

)
, (2.23)

where, H[w̄, ρ̄; F] is the effective Hamiltonian in (2.12) eval-
uated using the mean fields w̄ and ρ̄. Using (2.13) and (2.23),
the total free energy of polymer network, H (F ) under the
mean-field assumption is

H (F )

kBT
= −

∫
dx w̄(x)ρ̄(x)

+ 1

2kBT

∫
dx

∫
dx′ ρ̄(x) ū(|x − x′|) ρ̄(x′)

− log (Q1[w̄; F] · · · Qn[w̄; F]). (2.24)

Further, the average segment density, 〈ρ̂(x; F )〉, in (2.14) sim-
plifies to:

〈ρ̂(x; F )〉 ≈
n∑

α=1

〈ρ̂α (x; F )〉
∣∣∣∣∣
w=w̄

, (2.25)

where 〈ρ̂α (x; F )〉 is the average segment density of the αth
chain in the polymer network, obtained using (2.3).

E. Excluded volume interaction

Polymer segments in the network are considered to interact
with each other according to a pairwise interaction potential of
mean force ū whose physical origin is due to excluded volume

effects. We account for the excluded volume effects by mod-
eling a pairwise intersegment interaction using a simple Dirac
delta potential of mean force [57,77]:

ū(|x − x′|) = kBT u0 δ(|x − x′|), (2.26)

where u0 is the excluded volume parameter. This form of
intersegment interaction potential assumes the presence of
a solvent in the polymer network system with low den-
sity [49,57]. The solvent mediates the interactions among
polymer segments. For u0 > 0, implying repulsion between
the segments, the excluded volume potential ū in (2.26) is
positive-definite and has an inverse; following [58], this sim-
plifies the field theory equations in (2.11) to:

Z (F ) ∝
∫

Dw exp

(
−H[w; F]

kBT

)
, (2.27)

where H[w; F] is the effective Hamiltonian of polymer net-
work in the simplified field theory:

H[w; F]

kBT
= 1

2u0

∫
dx (w(x))2

− log(Q1[w; F] · · · Qn[w; F]). (2.28)

Equations (2.27) and (2.28) present the simplified field theory
for the deformation of polymer network that is used in this
work. The partition function in (2.27) is evaluated using the
mean-field assumption as:

Z (F ) ≈ exp

(
−H[w̄; F]

kBT

)
, (2.29)

where H[w̄; F] is the effective Hamiltonian in (2.28) evalu-
ated using the mean field w̄. The mean field w̄ is obtained by
solving the stationarity condition for the effective Hamiltonian
H[w; F]:

δH[w; F]

δw

∣∣∣∣
w=w̄

= 0. (2.30)

For the assumed form of the excluded volume interaction
potential as in (2.26), there is alternatively an expression for
the average segment density [58]:

〈ρ̂(x; F )〉 = 1

u0
〈w(x)〉 = w̄(x)

u0
, (2.31)

where 〈w(x)〉 is the statistical average of the fluctuating
field w(x), and we use that under the mean-field assumption
〈w(x)〉 = w̄(x). Finally, using (2.29) and (2.13), we obtain the
total free energy of polymer network, H (F ) for the simplified
field theory as:

H (F )

kBT
= 1

2u0

∫
dx(w̄(x))2 − log(Q1[w̄; F] · · · Qn[w̄; F]),

(2.32)

where w̄(x) is obtained by self-consistently solving (2.31) and
the mean-field condition in (2.30).

F. Representative volume element averaging: Eight-chain model

A typical polymer network consists of a large number of
cross-linked polymer chains (Fig. 2) with random orientations
at each continuum point, and is very challenging to directly
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FIG. 5. (a) Front view schematic of a bigger physical domain in three dimensions that consists of 27 RVEs, each with eight chains. The
central eight-chain RVE (highlighted) is used for the free-energy calculation. (b) The convergence of the energy as the mesh is refined, shown
by plotting the free energy of a single chain without external field as a function of mesh size. The converged mesh size of 353 elements is used
for the numerical computations. Note that the saddle point nature of the problem can lead to nonmonotonic convergence.

solve. To simplify this problem, we adopt the eight-chain
model for the RVE [40]. The 3D RVE is assumed to be
a cube in the undeformed configuration, with eight chains
running between the center and each of the corners. The cube
is assumed to be oriented along the principal directions of
the macroscale right stretch tensor U , where U is the ten-
sor square root of the deformation F or alternatively is the
positive-definite part of the right polar decomposition of F.

We assume that each chain begins (s = 0) at the center of
the cube, which is also taken to be the origin, and the chains
terminate (s = 1) at the corners. Denoting the terminating
point of the chains in the undeformed and deformed state,
respectively, by X 1

1, . . . X 1
8 and x1

1, . . . x1
8, the relation between

the end-to-end vectors in the undeformed and deformed con-
figurations from (2.1) is

x1
α = F X 1

α, α = 1, . . . 8. (2.33)

For a given value of F, the right stretch tensor U is used to
orient the cube, and the equation above provides the initial
conditions for the partial partition functions q and q∗ of each
chain in (2.4) and (2.5).

III. NUMERICAL METHOD

Since the model with excluded volume interactions is not
amenable to simple closed-form solutions, we turn to numer-
ical solutions. The goal is to evaluate the total free energy
H (F ) and average segment density 〈ρ̂(x; F )〉. Our numerical
method has the following steps:

(1) We first generate an initial field w(x) = w0(x). The
initial guess can be based on heuristics when possible.

(2) We next solve for the average segment density
〈ρ̂(x; F )〉, using q and q∗ obtained by solving (2.4) and (2.5)
with the given w(x), and the total free energy H (F ) us-
ing (2.30).

(3) The field w is updated using (2.31) as
w(x) = u0〈ρ̂(x; F )〉.

(4) In turn, we update 〈ρ̂(x; F )〉 and H (F ) as above.
This iteration continues until we reach convergence, which

we define as a relative change in the total free energy of less
than 0.1%.

For the solution of q and q∗ in (2.4) and (2.5), we use
the finite element method (FEM) in the open-source FEniCS
framework [78]. The spatial domain is discretized using first-
order Lagrange family finite elements. The integration along
the chain with respect to s in (2.4) and in (2.5) is performed
using the implicit Crank-Nicholson finite difference method
with 100 steps for s ∈ (0, 1). We test convergence of the FEM
discretization as in Fig. 5(b).

While the RVE averaging nominally requires only eight
chains, these chains interact not only with each other, but
also with other chains that are not contained in the RVE. To
account for this, we use periodic images of the RVE; we find
that one image on each face of the cubic RVE is sufficient,
giving us 27 cubes over which we must perform various in-
tegrations; Fig. 5(a) shows a schematic projection of this in
two dimensions, where the highlighted central RVE is used
for the energy calculations. When the deformation is applied,
the image RVEs are deformed following the central RVE.
Similarly, w(x) is defined over the larger cluster of RVEs for
performing, but need only be solved on the central RVE using
periodicity.

IV. ELASTIC RESPONSE WITH EXCLUDED
VOLUME INTERACTIONS

In the calculations reported here, we use the following
model parameters: total chain contour length L = 0.12 µm,
number of polymer segments in single chain N = 100, ex-
cluded volume parameter u0 = 0.005 vseg where vseg = a3

is the volume of an individual monomer segment, and tem-
perature T = 303 K. This choice of u0 gives an excluded
cube with side 0.17a, and corresponds to the Flory-Huggins
interaction parameter χ = 0.4975, using u0 = (1 − 2χ )vseg.
This characterizes a good solvent that is very close to the 	

point [54,58,79,80].
For the numerical calculations, larger values of u0 in three

dimensions require an excessively fine mesh to converge;
however, the calculations described below qualitatively agree
with 2D calculations, where much larger values of u0 can
be used, and with a few representative 3D calculations that
were conducted with a larger value of u0 and a very fine mesh.

064501-6



STATISTICAL FIELD THEORY FOR NONLINEAR … PHYSICAL REVIEW E 107, 064501 (2023)

FIG. 6. The total free energy as a function of the relative stretch
for u0 = 0.001 vseg and u0 = 0.005 vseg.

A. Identifying the stress-free free-energy minimizing state

We first note that without excluded volume effects,
all models based on the Gaussian chain approximation
would predict that the polymer network shrinks to a
point (F = 0) because that would maximize the config-
urational entropy of the chain. Therefore, as we add
excluded volume effects, we find that the equilibrium,
stress-free or minimum energy, volume of the polymer net-
work RVE increases. Specifically, the equilibrium state is
achieved as a balance between the competing effects of
entropic shrinkage and excluded volume repulsion between
monomers; Refs. [81,82] examine related issues in greater
depth.

We denote the initial side of the cubic RVE by L0
uc :=

2aN1/2/
√

3, where aN1/2 is the RMS average diameter of
an unconstrained chain, and the prefactor accounts for the
geometry of the chain aligned along the diagonal of the
RVE. However, we emphasize that this is not the free-energy
minimizing state, i.e., it is not stress free, in the presence
of excluded volume interactions. To this initial state, we
apply a deformation of the form F = λI, and compute the
free energy for various values of λ. Figure 6 shows the to-
tal free energy H as a function of λ = Luc/L0

uc for u0 =
0.001 vseg and u0 = 0.005 vseg. We find that the stress-
free stretches, i.e., the free-energy minimizing stretches, for
u0 = 0.001 vseg and u0 = 0.005 vseg are respectively at λ =
0.7 and λ = 1, respectively. The large increase in the equi-
librium volume of the polymer network system with an
increase in the excluded volume parameter u0 is consistent
with the phenomena of equilibrium swelling for polymeric
gels [83–86].

In all of the subsequent calculations discussed below, we
set the undeformed state to correspond to the free-energy
minimizing stress-free state.

B. Volumetric and shear response, and near incompressibility

We use the strain energy density W (F ) to obtain the
mesoscale elastic response using nonlinear elasticity; specif-
ically, (2.16) and (2.17) are used to obtain the stress-stretch
response and the elastic moduli, respectively. We assume be-
low that the network can be treated as approximately isotropic
despite the eight-chain model.

FIG. 7. Shear stress τ vs. shear strain κs in simple shear. The seg-
ment density for the RVE at various stretches are shown in the insets.
We notice that the chains have higher concentrations at the ends when
the deformation is small, but are more uniformly distributed as the
deformation increases. Note that the RVE itself does not appear to be
sheared because the chain-averaging approach aligns the averaging
RVE along the principal directions that correspond to the maximum
and minimum elongation directions (Fig. 2).

To obtain the bulk and shear moduli, we impose deforma-
tions of the form:

Fv =
⎡
⎣λ 0 0

0 λ 0
0 0 λ

⎤
⎦, Fs =

⎡
⎣1 κs 0

0 1 0
0 0 1

⎤
⎦. (4.1)

The bulk and shear moduli, K and G, respectively, can be
computed using:

K = 1

9

∂2W

∂λ2

∣∣∣∣
λ≈1

, G = ∂2W

∂κ2
s

∣∣∣∣
κs≈0

. (4.2)

We find K = 52.06 kPa and G = 0.60 kPa. Using isotropic
linearized elasticity, this gives the Poisson’s ratio ν =
3K−2G
6K+2G = 0.4943 and the elastic modulus E = 9KG

3K+G =
1.79 kPa. These elastic moduli are consistent with polymer
network gels [22,87–94]. We highlight that K is 2 orders of
magnitude larger than G, and ν is very close to the incom-
pressible limit of 0.5.

FIG. 8. The stress-strain curves for the constrained and volume-
preserving extensional loadings. We notice that the stresses and the
tangent moduli are both significantly larger when the system is con-
strained to undergo deformations that do not preserve the volume.
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FIG. 9. Extensional stress σ vs. extensional stretch λt for the
constrained case from Fig. 8. The segment density for the RVE
at various stretches are shown in the insets. As with shearing,
we notice that the chains have higher concentrations at the ends when
the deformation is small, but are more uniformly distributed as the
deformation increases.

We next examine the shear stress vs. shear strain curve. In
principle, the shear stress can be computed using τ = ∂W

∂κs
. To

avoid a lot of noise from numerical differentiation, we fit W by
a polynomial and then differentiate the polynomial to obtain
the curve shown in Fig. 7.

C. Extensional response: Emergent strain softening
and strain stiffening

We next examine extensional loading where the deforma-
tion has the form:

Fe =
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦. (4.3)

Here, we consider λ1 as the extensional stretch of interest. We
make two different choices for the transverse stretches λ2 and
λ3: the constrained case where they are constrained such that
λ2 = λ3 = 1; and the volume-preserving case where they are

set to be volume preserving such that λ2 = λ3 = λ
− 1

2
1 . Note

that the second case is approximately equivalent to having
no transverse stress. To obtain the extensional stress, we use

σ = ∂W
∂λ1

. Figure 8 compares the stress-strain response of these
cases. We notice that the constrained case has significantly
higher stresses and tangent moduli. Figure 9 shows the evolu-
tion of the chain density with stretch for the constrained case.

From Figs. 8 and 9, we notice that both cases show
a pronounced strain-softening and strain-stiffening behavior
that is characteristic of many real polymer networks such
as polymeric gels. However, Gaussian chains do not show
such behavior, and it is typical to use chains with limiting
extensibility, such as the inverse Langevin approximation, to
model this behavior. Here, we find that it is a consequence of
the competition between the excluded volume parameter and
the entropy. Figure 10 shows the decomposition of the free
energy W into entropic Wentropic and excluded volume inter-
action Winteraction contributions. We observe that the excluded
volume contribution is less than the entropic contribution in
both cases. Further, we notice that Wentropic monotonically
increases with λ1 > 1, and is consistent with the stretching
of the Gaussian polymer chains; however, Winteraction mono-
tonically decreases with λ1 > 1, and is consistent with the
chains being more oriented, and hence having fewer excluded
volume interactions. We notice that in the approximate range
1.5 < λ1 < 2.5 where we see strain softening, the decrease
in the excluded volume interaction is faster than the rise in
the entropic contribution, causing softening. For λ1 > 3, we
have the opposite trend in that the entropy increases faster
than the decrease in the excluded volume interaction, causing
stiffening. In summary, strain softening occurs because of the
initial decrease in excluded volume interactions, and subse-
quent strain stiffening occurs because of the later increase in
entropic effects.

D. Effect of chain length

Figure 11 shows the effect of chain contour length on
the elastic moduli of the polymer network. The chain con-
tour length L is varied from 0.01 µm–0.3 µm while keeping
N fixed. We observe that both the elastic modulus E and
the shear modulus G decrease with increased chain contour
length. An increase in chain contour length corresponds to an
increase in the average molecular weight (Mc) between the
cross links, and these results are consistent with experiments

FIG. 10. The free energy W is decomposed into entropic Wentropic and excluded volume interaction Winteraction contributions for the
constrained and volume-preserving cases. The symbols show the simulation results, and the lines show best fits that are differentiated to
obtain stress-strain curves.
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FIG. 11. Elastic and shear moduli as a function of chain con-
tour length; as expected from polymer theory, these scale as
a−3 [103].

that show that an increase in Mc corresponds to a decrease
in the elastic moduli [95,96]. The range of elastic and shear
moduli obtained using the model by varying chain contour
length is consistent with the experimental values for poly-
mer network soft matter such as elastomers and polymeric
gels [22,87–94,97–102].

E. Interactions between deformation
and an excluded volume instability

We next examine an instability driven by the increase in
the excluded volume parameter. For computational feasibility,
because we aim to numerically confirm that the instability is
sharp by a large number of calculations near the instability,
we focus on 2D systems; however, a few representative cal-
culations suggest that 3D is qualitatively similar. Because it is

in two dimensions, the undeformed RVE is a square with four
chains.

Figure 12 presents the average segment density field for
various equibiaxial stretches and various excluded volume
parameter values. For a fixed RVE stretch of Luc/L0

uc = 1,
where L0

uc = √
2 aN1/2 in two dimensions, we observe an

instability at u0 ≈ 0.7 vseg (vseg = a2 in two dimensions),
leading to the localization of chains. Physically, the chains
strongly repel each other and hence are highly restricted in
the volume available. The instability is symmetry breaking,
in that the originally square-symmetric chain configuration
transitions to localize either vertically or horizontally from the
original square symmetry; in our numerical simulations, we
find that these occur essentially randomly due to numerical
noise. As noted above, the instability is a sharp transition.

We examine the effect of an imposed equibiaxial stretch
by setting Luc/L0

uc to 1.5 and 2, respectively. We notice that
the critical values of u0 for the instability are, respectively,
u0 ≈ 0.8 vseg and u0 ≈ 1.2 vseg. This coupling between the
deformation and chain localization suggests new routes to
obtain patterning in polymer networks.

V. DISCUSSION

We have used the statistical field theory of polymers in
combination with the eight-chain network averaging approach
to study the mechanical response of polymer networks. The
framework of polymer field theory provides a physics-based
approach to accounting for excluded volume interactions,
which are imposed phenomenologically in micromechanical
models. In the absence of excluded volume interactions, we
find that that the closed-form orientationally averaged elastic
response matches with the classical rubber elasticity [72].

FIG. 12. Excluded volume-driven instability observed in two dimensions, and the effect of equi-biaxial deformation. Each subfigure shows
the average segment density plotted over 9 RVEs, with each subfigure corresponding to different values of biaxial stretch Luc/L0

uc and u0. The
instability corresponds to a sharp transition in the chain configuration: it goes from being fairly uniform away from the cross linking point to
being concentrated along the horizontal and vertical directions. As the stretch increases, the critical value of the excluded volume parameter at
which the instability occurs also increases.
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With excluded volume effects, self-consistent numerical so-
lutions using finite elements find that the predicted elastic
moduli are in line with typical polymer network gels; par-
ticularly, the linearized Poisson’s ratio ν � 0.4943, which is
very close to the incompressible limit ν → 0.5, without a
phenomenological imposition of incompressibility. Though
the equilibrium state depends on the value of u0, the incom-
pressible behavior is independent of the specific value of u0

for the values studied here. This can be physically understood
by considering that ν is computed around the equilibrium
stress-free state. Due to entropic effects, the chains tend to
reduce their end-to-end distance and would collapse to a
point, while the excluded volume effects prevent the chains
from collapsing completely. The equilibrium state is achieved
when these opposing effects balance out. Around this equi-
librium state, we find ν � 0.5, which reflects the role of the
solvent in preventing further reduction in volume. Despite
the seeming presence of voids or open space in the density
fields, the chains are constrained due to the excluded volume
interactions; the voids will be occupied by the solvent, which
makes the system close to incompressible since the solvent
cannot leave the polymer network upon deformation. This is
consistent with the results of Ref. [104], wherein it was found
that ν � 0.5 at short times when the solvent has not had time
to diffuse out of the polymer network; at longer times, the
solvent diffuses out and the long-time equilibrium value of
ν depends on the shear modulus. While we have not consid-
ered this time-dependent behavior here, it is related to similar
effects in poromechanics, namely the Terzaghi and Mandel
model problems, wherein the stress response is closely tied to
the drainage of the pore fluid [105–109].

Another interesting finding is that, despite the harmonic
Gaussian chain as a starting point, there is an emergent strain-
softening and strain-stiffening response that is characteristic
of real polymer network gels, driven by the interplay be-
tween the excluded volume interactions and the entropy; it
does not require chains with limiting extensibility, such as
the inverse Langevin approximation, to model this behavior.
We also we find the emergence of a deformation-sensitive
localization instability at large values of the excluded volume
parameter.

A natural question for the future is to examine the
interplay between chain-scale instabilities such as mi-
crobuckling [110–112] and the network-scale instabilities
observed here. We highlight, however, that these examples of

instabilities are in fibrous networks, and it is possible that
such instabilities occur here because of the regular network
structure that has been assumed and will not appear in ran-
dom networks. An important challenge, however, is that the
isolated harmonic Gaussian chain does not display buckling or
other instabilities; other nonlinear chain models are required
to capture this behavior. Further, as noted in Ref. [8], electrical
field interactions provide an effective compressive stiffness,
and can induce new types of instabilities [12]. Incorporating
chain models that go beyond the Gaussian approximation in
polymer field theory is an interesting theoretical question.
Along similar lines, while we capture strain stiffening and
strain softening without the use of a chain model with limiting
extensibility, such as the inverse Langevin model, it would be
interesting to incorporate such models in polymer field theory
to enable studying the interplay between entropic, excluded
volume, and limited extensibility effects.

The concept of chain topology or entanglement is an im-
portant aspect that is not taken into consideration in this
study. As highlighted in Refs. [73,74], these effects can play
a significant role in the response of polymer networks. The
mean-field framework employed in this study is unable to
account for such effects directly. However, our inclusion of
excluded volume effects provides some insight into the ef-
fects of entanglement. Additionally, we have observed that
even without accounting for entanglements, excluded volume
effects give rise to many interesting physical characteristics
that are relevant to the response of real polymer networks.
It should be noted that while entanglements are crucial for
large deformation response, the linearized properties such as
the Poisson’s ratio are expected to be relatively unaltered.

A version of the code developed for this work is available
online [113].
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