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Evidence for a short-lived resonance state in enzyme catalysis via rate-equation convolution
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At the cellular level, all biological function relies on enzymes to provide catalytic acceleration of essential
biochemical processes driving cellular metabolism. The enzyme is presumed to lower the activation energy
barrier separating reactants from products, but the precise mechanism remains unresolved. Here we examine the
temperature dependence of the enzyme-catalyzed dissociation of p-nitrophenyl-α-D-glucopyranoside (pNPG),
a chromogenic analog for maltose, isomaltose, and sucrose disaccharide sugars, into p-nitrophenol (pNP) and
glucose (monosaccharide). The enzymes of interest are the wild type and mutant forms of glucosidase MalL
produced by the probiotic bacterium Bacillus subtilis. The per-enzyme production rates k(T ) for the pNPG →
glucose reaction all show a characteristic temperature profile with an Arrhenius-like (approximately exponential)
slow acceleration at low temperatures, rising through a point of inflexion to reach a maximum, then turning over
to decline steeply towards zero production at high temperatures. This asymmetric profile is found to be well
fitted by convolving an exponential growth function f (T ) with a Gaussian temperature distribution g(T ) to
produce an exponentially modified Gaussian function h(T ). To give a physical interpretation of the convolution
components, we make the temperature mapping � ≡ Tref − T where Tref marks the temperature at which a given
mutant becomes fully denatured (unfolded) and therefore inactive, then convert the convolution components to
probability density functions which obey the convolution theorem of statistics. Working in � space, we identify
f (�) as the density function for an Arrhenius-like transition from ground-state A to metastable-state B, and
g(�) as the Gaussian distribution of offset-temperature fluctuations for the metastable state. By mapping the
standard thermodynamic relations for temperature and energy fluctuations to the enzyme frame of reference,
we are able to derive an expression for the lifetime for the metastable B state. For the 15 enzyme experiments,
we obtain a mean value 〈�t〉 � (29.0 ± 1.3) × 10−15 s, in remarkably good agreement with the ∼30-fs estimate
for the period of glycosidic bond oscillations extracted from published infrared spectroscopy. We suggest that
the metastable B state provides a low-energy target that has the effect of lowering the activation energy barrier
by presenting an alternative axis for the reaction coordinate.

DOI: 10.1103/PhysRevE.107.064407

I. INTRODUCTION

Proteins with enzymatic function provide an essential cat-
alytic pathway to accelerate chemical reactions inside cells.
All biological function is linked to catalytic activity [1].
Without enzyme assistance, reaction rates would run or-
ders of magnitude slower, causing fundamental biochemical
processes—such as metabolism—to become completely in-
feasible. This catalytic acceleration arises because of the
ability of the enzyme macromolecule to lower Ea, the activa-
tion energy barrier separating reactants and products. Based
on computational studies, the most common explanation for
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barrier reduction is a preorganization of the enzyme active
site as it binds to the substrate molecule [2,3], but this is
contentious. In fact, the multiple factors enabling high enzyme
catalytic efficiency remain poorly understood [4].

In this paper, we investigate the enzyme catalysis
of p-nitrophenyl-α-D-glucopyranoside (pNPG) into its p-
nitrophenol (pNP) and glucose (G) components:

pNPG
MalL−−→ pNP + G. (1)

The specific enzyme of interest is the α-glucosidase MalL
(EC 3.2.1.10)1, produced by the bacterium Bacillus subtilis.
MalL is a large protein consisting of 561 amino acids with
a molecular mass of 66 kDa. MalL is classified as oligo-1,4-
1,6-α-glucosidase (sucrase-maltase-isomaltase) [5], meaning
that it can cleave the 1-4 and 1-6 glycosidic bonds in the

1Enzyme Commission number: classifies the enzyme based on the
chemistry it catalyses.
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FIG. 1. Chemical structure diagram for reaction (1) showing the MalL-catalyzed decomposition of pNPG into its glucose and nitrophenol
components. The MalL enzyme acts to cleave the C–O glycosidic linkage (shown in bold).

disaccharide sugars sucrose, maltose, and isomaltose to re-
lease free glucose. To quantify enzyme activity, we need to
count the number of glucose molecules released per MalL
enzyme molecule per unit time. This is conveniently done by
replacing the natural disaccharide substrate with the artificial
substrate pNPG, which is colorless in solution but produces
a yellow product (pNP) when the pNPG glycosidic bond
(drawn in bold in Fig. 1) joining the D-glucose residue to the
p-nitrophenyl moiety is cleaved (hydrolyzed) [6]. This color
change enables real-time spectroscopic detection of enzyme
activity at the pNP absorbance peak of 405 nm.

Enzyme activity is strongly affected by changes in temper-
ature and pH level. It is also affected by engineered mutations
of the amino acid residues close to the binding pocket (also
called the active site) that captures the substrate molecule. In
the present paper, we examine the temperature dependence
of MalL activity for three settings of pH for both wild-type
(WT) MalL and four single-point mutations, giving a total of
15 distinct rate-versus-temperature experiments.

Because enzymes exist in a liquid water milieu, enzyme
function is only possible over the temperature range for which
water is liquid, i.e., 0 < T/◦C < 100 (assuming standard at-
mospheric pressure), but, in fact, most enzymes will begin to
denature (lose their 3D structure and hence their functionality)
at temperatures well below the boiling point of water. For ex-
ample, the melting temperature for the MalL maltase enzyme
is around 50 ◦C (e.g., see melting curves in Fig. 4).

As a general rule, the rate of chemical reaction k(T )
increases with temperature, showing a roughly exponential
growth with absolute temperature,

k(T ) = CeλT (simple exponential form), (2)

where C and λ are appropriate fitting constants with units s−1

and K−1, respectively.
In 1899, Arrhenius [7] showed empirically that the tem-

perature dependence of the reaction rate is more accurately
modeled by

k(T ) = Ae− Ea
RT (Arrhenius form), (3)

where Ea is the activation energy (J/mol), R is the universal
gas constant, A is the number of reactant collisions per second,
and e−Ea/RT is the probability that a collision produces a
reaction. Reaction rate k carries the same units as the pre-

exponential factor A (s−1), and we are assuming the reaction
is first order.

Eyring’s 1935 transition state theory [8] provided an al-
ternative form for the rate equation with Gibbs energy of
activation �G‡ replacing activation energy Ea in the Eq. (3)
exponent,

k(T ) = kBT

h
e− �G‡

RT

=
(

kBT

h
e

�S‡

R

)
e− �H‡

RT

= BT e− �H‡

RT (Eyring form), (4)

where �G‡ ≡ �H‡ − T �S‡; �H‡ is the activation enthalpy,
�S‡ is the activation entropy, and both are assumed to be
temperature independent. The Arrhenius (3) and Eyring (4)
equations are mathematically very similar, apart from the fact
that the bracketed prefactor in (4) scales weakly (linearly)
with temperature. The applicability of these models can be
tested by plotting [ln(k) vs 1/T ] (Arrhenius) or [ln(k/T ) vs
1/T ] (Eyring); straight-line graphs are expected with slopes
−Ea

R and −�H‡

R , respectively, with Ea ≈ �H‡ + RT .
In practical application, it is not unusual to find that the

Arrhenius and Eyring models fit the data equally well, and
this is certainly the case for the low-temperature portion of
the enzyme-catalyzed sugar reaction that we report here; see
Fig. 2. However, it is clear from Fig. 2 that exponential
extrapolations to higher temperatures (T � 310 K, 37 ◦C)
dramatically overestimate measured reaction rates and fail
to predict the emergence of an optimum temperature Topt ≈
318 K that maximizes production rate.

Similar production rate-versus-temperature experiments
have been repeated for the WT variant of MalL at three pH
levels (6.5, 7.0, 8.0) and for four distinct point mutations of the
native WT enzyme (V200 → V200S, V200T, V200A, S536R)
for a total of 15 experiments (see Appendix for details). In
every case, we find ∼exponential growth at low bath tempera-
tures, emergence of an optimum temperature, then rapid decay
towards zero at higher temperatures. Thus, Fig. 2 (WT at pH
6.5) can be taken as representative of the thermal behavior of
all of the MalL mutants tested.

Because a given enzyme loses catalytic function when it
melts (unfolds), it is plausible to assume that the downturn
in production is a direct result of enzyme denaturation as
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FIG. 2. Rate of glycosidic bond cleavage, k(T ), for the wild-type (WT) MalL enzyme-catalyzed hydrolysis reaction pNPG → (nitrophenol
+ glucose) at pH 6.5 as a function of bath temperature T . Production rate increases ∼exponentially with temperature for T → 310 K [filled
black circles: see red curve-fits in (a), (b)], but falls below the exponential growth projection for T � 310 K (circled dots). Peak production
occurs at Topt ≈ 318 K, followed by a monotonic decline towards zero production at higher temperatures. The early growth (filled circles)
is equally well described by (c) an Arrhenius fit [Eq. (3)] or (d) an Eyring fit [Eq. (4)]; the rmse values give the respective root-mean-
square curve-fitting errors for the low-temperature measurements. The black-dashed curve in (a) demonstrates that a k(T ) fit across the
full temperature range can be realized by convolving early exponential growth with late Gaussian decay: see Eq. (6d). Low-temperature
curve fits: (a), (b) exponential: [C = 3.40 × 10−20 s−1, λ = 0.160 K−1]; (c) Arrhenius: [A = 1.34 × 1021 s−1, Ea = 113.5 kJ/mol]; (d) Eyring:
[B = 1.69 × 1018 s−1, �H = 111.1 kJ/mol].

the bath temperature approaches, then exceeds, the melting
temperature Tm. This explanation cannot be sufficient, how-
ever, since protein unfolding is a slow process that runs on
timescales several orders of magnitude slower than the fast
kinetics associated with the cleavage reaction [9,10]. This
difference in timescales means that it is possible to obtain
meaningful production rates at temperatures above Tm (as
illustrated later in Fig. 4). Consequently, the emergence of an
optimum temperature has been described as strange (i.e., not
explained by denaturation), suggesting the existence of hidden
conformational states [10].

Arcus et al. [11,12] have developed a macromolecular
rate theory (MMRT) to account for the emergence of an
optimum temperature in the absence of denaturation; this
theory has been used in more recent work by Bunzel et al.
[13]. In this picture, the deviations from Arrhenius kinetics
at higher temperatures are the result of a significant differ-
ence in heat capacity between the enzyme-substrate complex
and the enzyme-transition-state complex. This follows from
the dramatic increase in binding affinity when proceeding

along the reaction coordinate from the enzyme-substrate to
enzyme-transition state. A change in heat capacity implies
that both �H‡ and �S‡ will be strongly temperature depen-
dent, resulting in the observed curvature in the Arrhenius plot
(Fig. 2). In the present paper, we consider a complementary
explanation that analyzes enzyme rate curves to extract proba-
bility distributions, associating a very short-lived species with
single-particle energy fluctuations. We note that while MMRT
accounts for the deviations from Arrhenius kinetics due to
�C‡

p < 0, the same enzyme kinetics data may also be used to
extract the lifetime of a metastable state close to the transition
state for the chemical reaction, as we set out below.

As illustrated by the black-dashed curve in Fig. 2(a), and
the dotted red curves of Fig. 4, we can achieve a good fit
to the k(T ) rate measurements across the full temperature
range by convolving a (truncated) exponential growth curve
(representing low-temperature acceleration) with a Gaus-
sian temperature profile (at higher temperatures) to give the
characteristic peaked distribution whose rates fall off asym-
metrically either side of the production peak at Topt. We find

064407-3



MOIRA L. STEYN-ROSS et al. PHYSICAL REVIEW E 107, 064407 (2023)

that this exponential-Gaussian convolution approach works
equally well across all 15 mutant experiments, and thus rec-
ommends itself as a universal fitting function for enzyme
performance with respect to temperature. This fitting success
raises the immediate question: What is the significance of the
location and width of the Gaussian profile?

We will argue that the convolution fit, when expressed
as a probability density function, represents the probability
summation of two independent processes: an Arrhenius-like
transition from a ground-state A to a metastable-state B, and
Gaussian-distributed single-particle temperature fluctuations
of a short-lived resonance state. This convolutional probability
summation requires the introduction of an offset temperature
scale � = (Tref − T ), where Tref is the temperature at which
the enzyme has become inactive, marking an absolute zero
for enzyme activity.

Assuming that the standard thermodynamic relations for
temperature and energy fluctuations can be mapped to this
enzyme-relative � frame of reference, the width of the Gaus-
sian profile allows us to calculate the lifetime of the resonance
state via application of Heisenberg’s energy-time uncertainty
principle. We obtain resonance lifetimes which are in good
agreement with the putative duration of a single oscilla-
tion of the glycosidic bond, as computed from wave-number
absorbtion signatures reported in the infrared spectroscopy
literature.

The paper is structured as follows. In Sec. II A, we de-
fine the exponentially modified Gaussian (EMG) probability
distribution as the convolution product of a (truncated) expo-
nential growth density function with a Gaussian distribution.
This is the EMG form used for fitting to the k(T ) enzyme rate
curves, but needs to be mapped back to the standard expo-
nentially decaying EMG form to make use of the fundamental
convolution theorem of statistics for addition of independent
random variables.

In Sec. II B, we compare four source Gaussians—retrieved
from k(T ) convolutional fitting—against MalL melting curves
obtained from differential scanning colorimetry (DSC) mea-
surements. In each case, the retrieved Gaussian distribution
is significantly broader than the DSC signal, indicating that
the high-temperature roll-off in enzyme production rate is not
primarily driven by protein denaturation.

Section II C invokes the convolution theorem of statistics
to motivate the mapping of the three probability distribu-
tions [ f (·) = Arrhenius-like acceleration; g(·) = Gaussian
distribution; h(·) = resultant EMG convolution] from tem-
perature T space to an enzyme-based offset-temperature
�-space.

We present an energy cartoon and enzyme-recycling
scheme in Sec. II D. We highlight the vast difference in
timescales between the rate of enzyme turnover (of order mil-
liseconds) versus duration of the putative metastable B state
that comes into existence immediately prior to bond cleavage
(tens of femtoseconds). The extreme rarity and brevity of
the B state means it can be treated as a single particle whose
internal energy is uncoupled from the thermal temperature
of the reaction chamber. This leads naturally in Sec. II E to
the notion of single-particle fluctuations in temperature and
internal energy, as measured in the enzyme frame of reference.
These fluctuations are coupled via the effective single-particle

heat capacity, allowing us to derive an expression for the
lifetime of the B-state resonance in Sec. II F.

Finally, in Sec. III we show how the Gaussian fluctuation,
when expressed as a standard normal probability curve, serves
to unify all 15 MalL enzyme experiments. We discuss the
implications of our theoretical findings and suggest future
work.

II. THEORY

A. Convolution fitting

The exp-Gauss convolution fit to the full k(T ) rate curve
shown in Fig. 2(a) is obtained in two steps. First, we con-
volve f (T ), an exponential growth curve truncated at selected
maximum temperature Tref, with g(T ), a Gaussian distribution
centered at temperature μT with variance σ 2

T ; this generates
the full convolution function h′(T ). In the second step, we
shrink the domain of the convolution curve by displacing the
h′(T ) curve to the left by temperature offset Tref to form the
reduced fitting function h(T ). We write the full convolution
as

h′(T ) = f (T ) ⊗ g(T )

≡
∫ ∞

0
f (τ ) g(T − τ ) dτ, (5)

where f (T ), g(T ), h′(T ) are probability density functions
(i.e., each has unit area) defined by

f (T ) = λ e−λ(Tref−T ) u(Tref − T ), (6a)

g(T ) = 1√
2π σT

e−(T −μT )2/2σ 2
T , (6b)

h′(T ) = h(T − Tref ),

h(T ) = λ exp

(
λ(T − μT ) + (λ σT )2

2

)

× 1

2
erfc

[
1√
2

(
(T − μT )

σT
+ λ σT

)]
. (6c)

The growth function f (T ) can be interpreted as Arrhenius-
like transition probability density. The unit-step u(·) in
Eq. (6a) truncates the exponential growth curve at an appro-
priate maximum temperature Tref,

u(Tref − T ) =
{

1, T � Tref

0, T > Tref.
(7)

Here, erfc(·) in Eq. (6c) is the complementary error func-
tion. The three density functions f (·), g(·), h(·) are plotted
in Fig. 3(b). The reduced-domain temperature convolution
of f (T ) (truncated exponential growth, in dot-dashed black),
with g(T ) (Gaussian, blue), produces h(T ), an optimized vari-
ant of the EMG (dotted red) that we designed to provide a
good fit to k(T ) enzyme production rate curves with their
characteristic gradual rise to peak, followed by faster decay.
Note that this slow-rise-fast-decay profile is the mirror image
of that generated by the standard EMG definition commonly
used for curve fitting in chromotography, psychophysiology,
cell and molecular biology (see Golubev [14] and references
therein) as illustrated in Fig. 3(a).
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FIG. 3. Illustrative probability density functions for f (·) and g(·), and their convolution h(·) = f (·) ⊗ g(·) plotted as a function of x (left
panel) and T (right panel). (a) Standard exponentially modified Gaussian with x taken to represent absolute temperature; model settings:
λ = 0.12 K−1 (exponential decay), (μx, σx ) = (30, 5) K (Gaussian). Expected mean values: E[ f (x), g(x), h(x)] = [8.33, 30, 38.33] K; vari-
ances: var[ f (x), g(x), h(x)] = [69.44, 25, 94.44] K2. (b) Remapped EMG for representative enzyme-rate model λ = 0.12 K−1, Tref = 360 K
(truncated exponential growth); (μT , σT ) = (330, 5) K (source Gaussian). The g(·) and h(·) curves intersect at the convolution peak (circled
point). The subsidiary � scale in (b) is given by � = Tref − T , with � = 0 Ko corresponding to the temperature T = Tref at which the
enzyme-substrate complex becomes fully denatured.

The linear mapping from our customized enzyme form (6)
back to EMG standard form (9) is given by

T = −x + Tref

μT = −μx + Tref

σT = σx.

⎫⎬
⎭ (8)

With these substitutions, Eqs. (6) reduce to

f (x) = λ e−λx u(x), (9a)

g(x) = 1√
2π σx

e−(x−μx )2/2σ 2
x , (9b)

h(x) = λ exp

(
−λ(x − μx ) + (λ σx )2

2

)

× 1

2
erfc

[
1√
2

(−(x − μx )

σx
+ λ σx

)]
, (9c)

with the u(·) gating function in Eq. (9a) forcing the exponen-
tial to zero for x < 0,

u(x) =
{

1, x � 0
0, x < 0.

(10)

With mapping (8), the sign reversal of x flips the expo-
nential growth (approximating Arrhenius acceleration at low
temperatures) of (6a) to an exponential decay in (9a), and
the +Tref offset shifts the exponential truncation point from
T = Tref to x = 0. The mirror equivalence of the two EMG
forms is demonstrated in Fig. 3. Note that the value of Tref will
be specific to a given enzyme experiment, since it depends on
both MalL mutant type and selected pH level.

Although we use Eqs. (6) for k(T ) curve fitting, we need
to return to standard EMG form (9) for the analysis of fluctua-
tion statistics and subsequent determination of the lifetime of
the proposed metastable resonance state. This is because the
h(T ) fitting function has been constructed to provide a good
match over the reduced temperature range (∼280 K to Tref)
(rather than the full convolution domain which extends out to

2 × Tref); consequently, the convolution theorem for addition
of random variables does not apply to h(T ) when plotted in
physical temperature space. Instead, we define a remapped
temperature scale � = Tref − T , thus the x scale for the left
panel of Fig. 3 becomes the left-running � scale shown in the
right panel; we revisit this temperature rescaling in Sec. II C.

For the purposes of initial curve fitting, it is sufficient to set
Tref to a value well above Topt, the temperature of maximum
production (e.g., Tref = Topt + 40 K). But once the mean μT

and variance σ 2
T of the source Gaussian of (6b) have been

determined, we can refine Tref to represent the reference tem-
perature at which the enzyme has fully unfolded. This more
precise value then allows us to estimate the lifetime of the
proposed enzyme-substrate resonance state.

Close inspection of Fig. 2 shows that Arrhenius and Eyring
models provide a more accurate low-temperature fit (lower
rms fitting error) than the simple exponential model. This
raises the obvious question: Why not use (appropriately trun-
cated) Arrhenius (3) or Eyring (4) forms—instead of simple
exponential (2)—for the convolution? We have tested both
alternatives against simple exponential for all 15 enzyme ex-
periments. We find that while Arrhenius and Eyring retrievals
for the source Gaussian parameters (μT , σT ) are essentially
identical (rounding to 4 sig figs in μT ; 3 sig figs in σT ),
on average the exponential convolution underestimates the
Arrhenius/Eyring value for Gaussian mean μT by 0.2 K
but overestimates the standard deviation σT by 0.15 K. See
Table I. These small offset errors do not have any material
impact on our conclusions.

Although Arrhenius and Eyring convolutions give better
fits at low temperatures, they both share a major disadvantage:
unlike the simple exponential, there is no closed form for
their convolution with a Gaussian. This means that the fitting
must be done by iterative numerical convolution integrations;
consequently, the fitting algorithm runs about two orders of
magnitude slower than does fitting against the EMG closed
form.
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TABLE I. Extracted parameters (μT , σT ) (in K) for source Gaussians obtained via (A) exponential-Gaussian and (B) Arrhenius-Gaussian
convolution for each of the 15 MalL enzyme experiments. (Note that at the displayed resolution (4 sig figs for μT , 3 sig figs for σT ), the
Eyring-Gaussian convolution results are indistinguishable from Arrhenius-Gaussian, so the Eyring retrievals are not shown here.)

(A) exp Gauss (B) Arrh Gauss �μT �σT

Expt. Mutant pH μT σT μT σT μB − μA σB − σA

1 WT 6.5 322.9 5.42 323.1 5.33 0.2 −0.09
2 7 321.0 5.05 321.2 4.97 0.2 −0.08
3 8 317.6 6.66 317.7 6.61 0.1 −0.05

4 V200S 6.5 331.1 8.28 331.4 7.84 0.3 −0.44
5 7 328.7 6.58 329.0 6.32 0.3 −0.26
6 8 324.4 8.93 324.7 8.77 0.3 −0.16

7 V200T 6.5 327.9 5.83 328.1 5.58 0.2 −0.25
8 7 327.1 6.01 327.3 5.78 0.2 −0.23
9 8 324.4 8.02 324.7 7.87 0.3 −0.15

10 S536R 6.5 323.2 5.81 323.3 5.73 0.1 −0.08
11 7 322.1 4.87 322.2 4.80 0.1 −0.07
12 8 317.9 5.63 318.0 5.55 0.1 −0.08

13 V200A 6.5 326.1 7.22 326.3 7.14 0.2 −0.08
14 7 327.7 6.08 327.8 5.98 0.1 −0.10
15 8 324.2 5.82 324.4 5.74 0.2 −0.08

Mean discrepancy: 0.19 −0.147

B. Comparison of source Gaussian with enzyme melting curves

The denaturation characteristics of an enzyme can be quan-
tified using DSC. The difference in the amount of energy
required to increase the temperature of a sample (buffer-
enzyme) versus a reference (buffer-buffer) is measured as
a function of temperature as it is increased linearly at
∼1 ◦C/min. The differential power delivered to the enzyme
sample typically shows a well-defined endothermic peak at
Tm, the so-called melting temperature, marking the point at
which 50% of the protein is presumed to have unfolded to its
denatured (inactive) state. The time integral of the differential
power curve gives the enthalpy change for the (folded) →
(unfolded) melting transition.

The panels of Fig. 4 show the curve fits, expressed as
probability densities, for four enzyme mutants at pH 6.5. The
dotted red curves are the Eq. (6) EMG fits to the measured
data, and the blue and dot-dashed black curves show, respec-
tively, the Gaussian and exponential density components of
the convolution. These are superimposed on the DSC melt
curves (obtained in separate thermostatics experiments) for
the selected MalL mutant. We note that in each case, the melt
curve (filled gray) is much narrower than the production curve
(dotted red), with melt onset consistently occurring beyond
the point of inflexion of the production curve. This means
that production starts to fall away from the (low-temperature)
accelerating Arrhenius trend at a temperature well below melt
onset.

Further, the data points show that useful production is still
possible beyond the peak of the DSC curve. This feature is
not so surprising when we consider that production kinetics
are orders of magnitude faster than unfolding kinetics, and
that production is measured over a time span of a few seconds
(∼10 s at low temperatures, dropping to ∼3 s at the highest

temperatures), while the melting curve is obtained over a
period of 10–15 min.

It is clear that the turnover in the production curve is not
primarily a function of temperature-driven protein unfolding.
Instead, we will argue that the turnover characteristics are,
in fact, determined by the source Gaussian revealed via the
convolution fitting. The variance of the Gaussian provides
a measure of the single-particle (enzyme-substrate complex)
temperature fluctuations from which we can deduce the
heat capacity of the particle, the internal energy fluctuations
(relative to Tref, the temperature at which the protein is com-
pletely unfolded), and hence estimate the lifetime of the
metastable complex. Thus, we interpret the emergence of the
Gaussian component as providing evidence of the existence of
a short-lived metastable state.

C. Interpretation of convolution components

As shown in Fig. 4, the k(T ) MalL-catalyzed pNPG →
glucose production curves—expressed as probability density
functions—are well-fitted by convolving a (truncated) ex-
ponential growth with a broad Gaussian distribution whose
peak appears in the vicinity of the MalL melting temperature.
The fact that the production density function h(·) [Eq. (6c)]
can be decomposed into two convolutional components f (·)
and g(·) suggests that the MalL enzyme function can be
modeled as the sum of two independent random processes:
f (T ) is the Arrhenius-like probability density for an A → B
barrier crossing; g(T ) describes Gaussian-distributed temper-
ature fluctuations (mean μT , variance σ 2

T ) for the metastable
state.

To make this probabilistic interpretation more precise,
we invoke the fundamental convolution theorem of statistics
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FIG. 4. Exponential (dot-dashed black), Gaussian (solid blue), and EMG (dotted red) probability density curve fits superimposed on DSC
(differential scanning colorimetry) melting curves for four enzyme experiments. To aid visual comparison, each DSC plot (filled gray) has
been scaled to the same height as the source Gaussian. We note that at half height, the Gaussians are two to three times broader than the melt
profiles, indicating that protein unfolding is not the primary driver for the temperature dependance of enzyme dynamics.

[15,16]. In Fig. 3(a), let X1 be a random variable with ex-
ponentially decaying probability density f (x), and X2 be a
second random variable with Gaussian density function g(x).
Provided that X1 and X2 are independent, then the probability
density function for the sum X3 = X1 + X2 is given by the
EMG convolution product h(x) = f (x) ⊗ g(x). This implies
that the mean of the EMG distribution equals the sum of
the means of the exponential and Gaussian distributions, and
similarly the variance of the EMG distribution equals the sum
of the variances of the two component distributions:

〈X3〉 = 〈X1〉 + 〈X2〉, (11a)

var[X3] = var[X1] + var[X2] (11b)

[see caption of Fig. 3(a) for numerical confirmation]. How-
ever, it is not possible to make similar statements for the
enzyme temperature distributions of Fig. 3(b). That is, if
T1 is the random variable described by the f (T ) truncated
exponential growth distribution, T2 the random variable for
the g(T ) Gaussian distribution, and T3 the random variable
for (reduced) convolution product h(T ), then it is clearly not
the case that T3 = T1 + T2, and therefore 〈T3〉 = 〈T1〉 + 〈T2〉.
(This is despite the fact that the shapes of the distributions are
preserved so the variances add: var[T3] = var[T1] + var[T2].)

This apparent failure of the convolution probability ad-
dition in physical temperature space T arises because, as
discussed earlier in Sec. II A, fitting function h(T ) has been
constructed to have a reduced convolution domain. This
difficulty is resolved by recognizing that the rightward ex-
ponential growth function f (T ) can be mapped to a leftward
exponential decay f (Tref − T ) ≡ f (�) relative to the denatu-
ration reference temperature Tref. The (reflected and offset) �

space is marked in the subsidiary abscissa scale of Fig. 3(b).
With this revised temperature mapping, random variables
[�1, �2, �3], respectively associated with probability distri-
butions [ f (�), g(�), h(�)], can be summed via �3 = �1 +
�2, with statistics,

〈�3〉 = 〈�1〉 + 〈�2〉, (12a)

var[�3] = var[�1] + var[�2]. (12b)

Thus, � provides an offset-temperature measure for en-
zyme catalysis, with denaturation point Tref defining the
absolute zero of enzyme activity. We now revisit and refine the
probabilistic interpretation for MalL enzyme catalysis (as out-
lined above in the first paragraph of this section) by replacing
physical temperature T (in kelvin, K) with offset temperature
� = (Tref − T ), measured in units of offset-kelvin, Ko, the
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FIG. 5. Potential energy and enzyme cartoons for MalL enzyme-catalyzed (pNPG → glucose) sugar reaction as detailed in enzyme-flow
sequence (13). Coiled spring represents glycosidic bond between pNP (1) and glucose (2) residues. The pNPG substrate bonds to MalL via
lodgement of glucose residue within enzyme pocket to form bound-state A. Favorable conformational changes lead to the rare metastable-state
B (tightly coiled spring), followed promptly by cleavage of glycosidic bond (spring disappears) and release of free glucose and pNP products.
Key: Ea = activation energy; E = MalL enzyme; pNPG = p-nitrophenyl-α-D-glucopyranoside; pNP = p-nitrophenol; G = glucose; TS =
transition state; E+P = enzyme + products; • = stable or metastable states (valley minima); ◦ = unstable transition states (energy maxima).
The implicit reaction coordinate runs from left to right. Cleavage of the glycosidic bond occurs during the (B → TS2) step.

temperature displacement below the fully unfolded reference Tref, and write

f (�1) = distribution of offset temperatures �1 for A → B transition across activation energy barrier,

g(�2) = distribution of �2 offset-temperature fluctuations for short-lived metastable state,

h(�3) = distribution of �3 = (�1 + �2) for A → B transition (�1) and metastable fluctuations (�2).

Since h(�3) is the probability density function computed
from the k(�3) enzyme turnover rate, we infer that the
h(�3) distribution gives the probability (per unit Ko) for
MalL-catalyzed hydrolysis of substrate pNPG to release free
glucose. We will argue below in Sec. II E that the g(�2)
Gaussian density corresponds to the distribution of single-
particle temperature fluctuations from which we can estimate
a lifetime for the metastable B state.

D. Energy diagram for enzyme-catalyzed sugar cleavage

Figure 5 cartoons a potential energy diagram for
the MalL-catalyzed cleavage of synthetic substrate pNPG
(p-nitrophenyl-α-D-glucopyranoside) into its constituent glu-
cose and p-nitrophenol components. The energy diagram is a

simplified representation of the full chain of enzyme-related
events shown in sequence (13).

The substrate pNPG spontaneously bonds with the MalL
enzyme (E) to form an enzyme-substrate complex (E·pNPG)
that can exist in one of three forms: (E·pNPG)A = stable
ground-state A, (E·pNPG)* = unstable transition-state TS1,
and (E·pNPG)B = metastable short-lived state B.

The transition from A to B requires sufficient energy to
overcome the Ea potential barrier to reach the TS1 turning
point representing formation of the (E·pNPG)* unstable com-
plex; this then spontaneously decays to metastable-state B.
We envisage that B is a short-lived state which terminates
with the scission of the pNPG glycosidic bond to form the
unstable TS2 product complex (E<

pNP
G )

*
: see dot-dashed box
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in enzyme-flow sequence (13):

(13)

The unbonded nitrophenol (pNP) and glucose (G) com-
ponents are then released from the enzyme, completing the
catalysis reaction and freeing the enzyme molecule to be-
gin another reaction cycle. Note that flow sequence (13)
shows only forward arrows since we are measuring initial
reaction rates from a system with reactant only, so the re-
verse reaction is expected to be very slow and therefore
negligible.

Figure 2(a) shows that at optimum temperature ∼318 K,
each WT MalL enzyme molecule captures and cleaves
about 170 pNPG molecules per second, implying an enzyme
turnover period of 1/(170 s−1) ≈ 6 ms. In contrast, the time
required for bond cleavage (fracture of the glycosidic bridge
that binds the glucose and nitrophenyl residues) is many or-
ders of magnitude smaller. We can estimate the timescale
for bond fracture by noting that infrared spectroscopy indi-
cates stretching vibration resonances for the glycosidic bond
lie within the frequency range (980–1160) cm−1 = (2.94–
3.48) × 1013 Hz (see Fig. 2(c) of Ref. [17]), corresponding
to a bond oscillation period in the range (28.8–34.0) ×
10−15 s. That is, in round numbers, the bond period is
of order ∼30 fs. We assume that this bond oscillation pe-
riod is also the time required to cleave the glycosidic
bond.

This means that, within each 6-ms enzyme turnover cycle,
the 30-fs bond cleavage event serves as a near instantaneous
reset of the catalysis production engine, forcing a recycling

through the states A → B
reset−−→ A.

We acknowledge that this two-state description is an over-
simplification since it neglects both (a) the time required for
the (E<

pNP
G )

*
activated complex to release the glucose and

nitrophenol molecules at the end of the cycle and (b) the time
required for the enzyme to bond to the pNPG substrate at
the start of the cycle. However, the experiment is set up so
the substrate is available in excess (concentration of pNPG is
∼105 times greater than that of enzyme), so the latter neglect
is not unreasonable.

This vast difference between the turnover and resetting
timescales (6 ms : 30 fs = 2 × 1011 : 1) implies a correspond-
ingly vast difference in species abundance at any instant of
time, i.e., for each enzyme complex in the B state, there will
be ∼1011 enzyme-complex molecules in the A state [1]. Thus
the B state is both extremely rare and extremely short-lived,
when compared with the dominant A state. The fact that
each B species has a femtosecond-scale lifetime means that
there is no opportunity for it to come into thermodynamic
equilibrium with the bath thermostat. This has significant im-
plications for single-particle temperature fluctuations, as we
now discuss.

E. Molecular-scale temperature fluctuations

As pointed out by Landau and Lifshitz [18, pp. 8, 341],
a thermodynamic quantity, such as temperature, will vary
with time, fluctuating about its mean value. The relative size
of these fluctuations will decrease rapidly as the size of the
system (i.e., the number of particles) increases, so in the
macroscopic limit the fluctuations become vanishingly small.
However, we are interested here in the opposite case. How
large do temperature fluctuations become when we shrink the
system size to a single particle?

Consider an aqueous reaction chamber containing N
enzyme-substrate molecules, maintained at (mean) macro-
scopic temperature T by a thermostat. We imagine inserting
a sufficiently small thermometer that is able to sense τ , the
local temperature of n of these molecules. Following Mazo
[19], the mean value of τ is 〈τ 〉 = T , and its variance is

var[τ ] = σ 2
τ = 〈τ 2〉 − T 2 = kBT 2

n cv

≈ kBT 2

n cp
, (14)

where cv is the per-molecule heat capacity at constant volume.
Since water is essentially incompressible, we can replace cv

with cp, the molecular heat capacity at constant pressure.
Equation (14) is a well-established result [18–21]. These
fluctuations in local temperature will be Gaussian distributed
about mean temperature T with probability density

p(τ ) = 1√
2π στ

e−(τ−T )2/2σ 2
τ . (15)

The reaction chamber used for our MalL enzyme experiments
has a volume of 0.5 mL. A typical value for MalL concen-
tration is 3.1 × 10−8 mol/L, so the chamber contains ∼1013

enzyme molecules. In the macroscopic limit, n → N ∼ 1013,
the fluctuation variance in (14) becomes vanishingly small,
and the density in (15) tends to a delta-function spike at
τ = T . At the opposite extreme, consider the single-molecule
limit n → 1 in (14). This limit gives the desired expression for
maximal fluctuation variance in temperature:

var[τ ] = σ 2
τ = kB〈τ 〉2

cp
= kBT 2

cp
. (16)

Given the single-particle heat capacity cp of (16), we may also
define Gaussian-distributed fluctuations in internal energy U
about mean value 〈U 〉 with variance [18,20,22]:

var[U ] = σ 2
U = kB〈τ 〉2 cp = kBT 2 cp. (17)

(We will use this result later in Sec. II F to estimate the lifetime
of metastable-state B.)
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We assume that these Gaussian-distributed single-particle
fluctuation statistics (15)–(17) describe the thermal charac-
teristics of the extremely rare and fleeting B-state species
(E·pNPG)B, which comes into existence one bond oscillation
prior to the cleavage of the glycosidic bond to form (E<

pNP
G )

*

and thence product (nitrophenol and glucose). We further
assume that the single-particle Gaussian (15) corresponds to
the source Gaussian density function (6b) retrieved via k(T )
convolution fitting and illustrated in Fig. 4.

As described in Sec. II A and Eq. (6a), the A → B
Arrhenius transition [(E·pNPG)A → (E·pNPG)B] is well
approximated by a growing exponential function that is
truncated at a suitably selected maximum temperature Tref.
This is the temperature at which—within the ∼10-s assay
timeframe—the MalL protein has become completely un-
folded, and so marks the thermal point at which all enzyme
activity ceases. This thermal limit varies with the MalL mutant
type and pH setting.

By mapping from physical temperature T to offset-
temperature � = Tref − T [via (8) with x ≡ �], we can
rewrite Eqs. (9) in terms of independent random variables
�1 (exponential decay) and �2 (Gaussian), and their sum
�1 + �2 = �3 (EMG),

f (�1) = λ e−λ�1 u(�1), (18a)

g(�2) = 1√
2π var[�2]

exp

(
− (�2 − 〈�2〉)2

2 var[�2]

)
, (18b)

h(�3) = λ exp

(
−λ(�3 − 〈�3〉) + λ2 var[�3]

2

)

× 1

2
erfc

[
1√

2 var[�3]

(−(�3 − 〈�3〉)

+λ var[�3]
)]

, (18c)

where the variance of the g(·) Gaussian in (18b) is given by

var[�2] = kB 〈�2〉2

c′
p

, (19)

obtained from (16) with the mappings 〈τ 〉 → 〈�2〉 and cp →
c′

p. Here, c′
p = dU ′/d�2 is the single-particle heat capac-

ity measured in what we refer to as the enzyme frame of
reference, and U ′ is the corresponding single-particle internal
energy measured in this frame, i.e., as measured relative to
unfolding temperature Tref using � offset-temperature coor-
dinates. Applying the same mappings to (17), we obtain an
expression for the variance for the fluctuations in internal
energy, as measured in the enzyme frame:

var[U ] = kB 〈τ 〉2cp → var[U ′] = kB 〈�2〉2c′
p. (20)

Note that we have assumed that the fluctuation expressions
(16) and (17) in T space can be rewritten as fluctuation state-
ments (19) and (20) relevant to offset-temperature � space.

F. Lifetime estimation for metastable-state B

Located in a local energy minimum of Fig. 5, state B—
representing enzyme-substrate configuration (E·pNPG)B—is
locally stable, and so can be pictured as a well-defined single-

particle quantum state which obeys Heisenberg’s energy-time
uncertainty principle,

�E �t � h̄

2
,

with h̄ ≡ h/2π ; we take �E to be the full width at half max-
imum of the Gaussian distribution for the U ′ internal energy
fluctuations:

�E = 2
√

2 ln 2 σU ′ ≈ 2.355 σU ′ , with (σU ′ )2 ≡ var[U ′].

By eliminating heat capacity c′
p between fluctuation equa-

tions (19) and (20), we can express internal energy variance
in terms of displaced-temperature variance,

var[U ′] = (kB〈�2〉2)2

var[�2]
⇒ σU ′ = kB〈�2〉2

σ�2

= kB(Tref − μT )2

σT
,

where μT and σT are the mean and standard deviations of
the retrieved g(T ) source Gaussian expressed in temperature
space. Tref is the temperature at which the enzyme has be-
come fully unfolded, and we locate this point at temperature
Tref = μT + zσT , i.e., at a point z standard deviations above
the Gaussian mean temperature μT . A sensible value would
be z = 3, but larger values could be considered. With this
substitution for Tref, the U ′ standard deviation simplifies to

σU ′ = kB z2 σT ⇒ �E ≈ 2.355 kB z2 σT ,

and, hence, from the uncertainty principle, we can deduce a
lower bound for lifetime (in s) for the B-state resonance:

�t � h̄

2 �E
≈

(
h̄

(2)(2.355)kB

)
1

z2 σT

≈ (1.62 × 10−12 s K)

z2 σT
. (21)

For the WT MalL experiment shown in Fig. 4(a), the re-
trieved source Gaussian has standard deviation σT = 5.42 K.
Setting z = 3 in Eq. (21) gives a B-state lifetime �t � 33.2 ×
10−15 s, remarkably close to the 30 fs glycosidic bond oscilla-
tion period estimated earlier from infrared spectroscopy (see
Sec. II D).

Table I summarizes the statistics for the source Gaussian
profiles retrieved via convolutional fitting for each of the 15
enzyme experiments (five MalL mutants × three pH settings).
Examining the σT column for the exp-gauss (EMG) retrievals,
the range of standard deviations is (4.87–8.93) K, leading to
Eq. (21) lifetime predictions (for z = 3) in the range �t ∼
(20.2–37.0) fs, with mean and standard errors:

〈�t〉EMG � (29.0 ± 1.3) fs.

The Arrhenius-Gaussian (and Eyring-Gaussian) retrievals
(column 7 of Table I) give σT values that are consistently
smaller (by ∼2%) than the EMG values, leading to B-state
lifetime estimates that are slightly larger,

〈�t〉ArrhG � (29.6 ± 1.3) fs,

but both are in good agreement with the ∼30-fs spectral esti-
mate for the resonance period of the glycosidic bond.

We have defined Tref to be the temperature at which
the MalL protein has become fully unfolded and therefore
enzymatically inert. Because we reference Tref to the g(·)
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TABLE II. Dependence of B-state lifetime �t on definition for
the zero-activity reference temperature Tref. Pr(Z > z) gives the prob-
ability that the enzyme is still functioning at temperatures T >

Tref. Here, σT = 6.41 K. Lifetime is expressed in femtoseconds,
fs = 10−15 s.

z Tref Pr(Z > z) �t (fs)

0 μT 0.5 ∞
1 μT + σT 0.16 252
2 μT + 2σT 0.023 63.2
3 μT + 3σT 0.0013 28.1
4 μT + 4σT 31.7 × 10−6 15.8
5 μT + 5σT 0.29 × 10−6 10.1

fluctuation Gaussian via Tref = μT + zσT , the transition to
inactivity is not abrupt, but rather is graded, following the
upper wing of the Gaussian curve towards asymptotic zero.
Setting z = 3, as we have done here, implies a tail probability
Pr(Z > 3) = 0.13% that the enzyme remains active at tem-
peratures T > Tref. The single-tail probability implications
for other choices for z are illustrated in Table II using the
standard-normal curve identity:

Pr(Z > z) = 1
2 erfc[z/

√
2].

Also shown are the corresponding Eq. (21) lifetime predic-
tions for the 15-experiment mean value 〈σT 〉EMG = 6.41 K.
It is clear from Table II that z = 3 is the minimum viable
choice for setting the value of Tref, the nominal zero-activity
reference temperature. Choosing larger values for the z offset
leads to smaller estimates for B-state lifetime; these scale as
the inverse-square of z: �t ∝ 1/z2.

By invoking single-particle fluctuation theory, we are
making the implicit assumption that the B-state transient
exists in some degree of local thermal equilibrium on reac-
tive timescales. Recent work on biological energy transport
(e.g., Refs. [23–25]) shows that direct ballistic (nondiffusive)
thermal transport can occur on picosecond timescales over
nanometer distances. Thus, if the lifetime of a reactive in-
termediate falls within the range of several bond oscillations,
then our assumption of local thermal equilibrium might be-
come questionable.

Generalizing from Rubtsova and Burin [24] and Elenewski
et al. [25], let us assume that ballistic thermal transport
can occur along the protein backbone of the MalL macro-
molecule at speeds of order v ∼ 1 nm/ps = 10 Å/ps. Based
on crystallographic data (PDB 4M56), the WT MalL protein
molecule has a volume (estimated via convex hull, convhull
in MATLAB) of V ≈ 107 × 103 Å3, containing Natm ∼ 4600
atoms and Nres = 561 amino-acid residues. A localized ther-
mal impulse could propagate ballistically until it encounters
a scattering center, then more slowly via thermal diffusive
processes thereafter. Assume the volume-averaged distance
between residues is a measure of the thermal mean-free path,
d = (V/Nres)

1
3 ≈ 5.8 Å. This implies a ballistic transit time of

τ = d/v ≈ 0.6 ps, about 20 times larger than the glycosidic
bond oscillation period of 30 fs.

If the B-state lifetime is as small as �t ∼ 30 fs, then there
is no opportunity for ballistic (or diffusive) thermal transfer

from the pNPG substrate to the bulk protein, suggesting that
the single-particle fluctuation profile retrieved from the fitted
Gaussian is describing thermal motion that is local to the
C–O glycosidic linkage. That is, the fluctuating particle is the
glycosidic linkage itself, rather than the cluster of nearest-
neighbor residues that define the reaction pocket, or some
larger residue domain. If, however, the lifetime were an order
of magnitude larger, then the assumption of a truly localized
thermal equilibrium would be less robust because of stronger
coupling to the pocket and its residue surrounds. Neverthe-
less, this enlarged fluctuation domain could still be thermally
uncoupled from the bath temperature given the fleeting nature
of the B-state resonance.

III. DISCUSSION

We have put forward a simplified two-state mechanism to
describe the MalL-catalyzed sugar reaction that splits pNPG
(p-nitrophenyl-α-D-glucopyranoside) into its nitrophenol and
glucose components by cleaving the glycosidic bond between
them. As shown earlier in flow sequence (13), we propose
that the reaction proceeds via a slow–fast process in which
ground-state A transforms to metastable-state B on a millisec-
ond timescale, whereupon state B promptly dissociates into
products on the femtoseconds timescale of a single bond os-
cillation, allowing the enzyme molecule to reset to its ground
state,

to repeat the catalytic cycle. We have noted previously that
this idealized two-state picture ignores the time required for
the release of products at the end of the cycle, and also the time
it takes for the free enzyme E to bond to a nearby substrate
molecule via E + pNPG → (E·pNPG)A at the start of cycle;
effectively, these steps have been subsumed into the slow
A → B Arrhenius process.

The motivation for developing this two-state description
comes from the fact that the experimental k(T ) rate curves
for MalL-catalyzed cleavage of pNPG are well fitted by con-
volving a low-temperature Arrhenius-like exponential growth,
appropriately bounded, with a high-temperature Gaussian dis-
tribution, giving an EMG function of temperature that exhibits
slow acceleration to a peak, followed by rapid deceleration
towards zero production at higher temperatures. This loss of
enzyme function at higher temperatures is unsurprising given
that the probability of protein unfolding (denaturation) rapidly
increases as the melting point of the enzyme is approached
and then exceeded. However, for each of the four MalL mu-
tants shown in Fig. 4, the left-hand point of inflection for the
h(T ) production curve occurs well before the onset of melting.
In addition, we observed that the melt curves are considerably
narrower than the g(T ) source Gaussians obtained from con-
volution fitting. These two observations suggest that protein
denaturation is not the primary driver for the high-temperature
rolloff in enzyme productivity, nor does it prescribe the width
and location of the source Gaussian.

Each productivity experiment involves measuring the per-
enzyme turnover rate (s−1) at n ∼ 16 temperature points
(three technical replicates at each point) over the operational
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range of the enzyme (∼5 to 55 ◦C). By applying an EMG
convolution fit to these point measurements, then normalizing
to unit area, we constructed h(T ), a probability density over
temperature which gives the probability, per unit kelvin, of
enzyme turnover at temperature T . In this way, the discrete
k(Ti ) [with i = 1 . . . n] point measurements have been mapped
to a continuous density h(T ) with T now being a continu-
ous random variable. Similarly, the exponential and Gaussian
source components of h(T ) are density functions over their
respective random variable domains, which we distinguish
with subscripts, writing f (T1), g(T2), h(T3).

To develop an interpretation for the convolution compo-
nents, we invoked the fundamental convolution theorem of
statistics for the addition of independent probability distribu-
tions, but this theorem could not be applied in temperature
space because—by design—the fitting function h(T ) has a
reduced convolution domain. By making the change of vari-
able to offset-temperature � ≡ (Tref − T ), where Tref is the
truncation temperature for the f (T ) exponential, we obtained
new density functions f (�1), g(�2), h(�3) whose random
variables can be summed,

�3 = �1 + �2 ⇒ 〈�3〉 = 〈�1〉 + 〈�2〉, and

var[�3] = var[�1] + var[�2],

where � = 0 Ko corresponds to T = Tref, the temperature at
which the protein becomes fully unfolded, and so represents
an absolute zero of enzyme activity. The enzyme pool be-
comes more potent (less denatured) as � increases (i.e., as
T decreases below Tref).

In this enzyme frame of reference, we proposed that
exponential decay f (�1) is the probability, per unit offset-
kelvin, of an Arrhenius-like A → B transition across the
activation energy barrier. Gaussian g(�2) describes B-state
single-particle fluctuations about mean value 〈�2〉 with vari-
ance var[�2]. This state is presumed to be both metastable and
short-lived. The convolution of these two densities then gives
the probability, per unit Ko, of enzyme turnover.

Assuming that the thermodynamic concepts of heat capac-
ity cp and internal energy U can be mapped to corresponding
quantities c′

p and U ′ in � space, we reformulated the classical
expressions for single-particle fluctuations in temperature (16)
and energy (17) as offset-temperature analogs (19) and (20),
respectively, and hence were able to derive estimates for the
lower bound of the B-state lifetime (21). For the 15 mutant
experiments reported in Table I, these minimum lifetimes
range from �t = 20.2 fs (V200S at pH 8) to 37.0 fs (S536R
at pH 7), with 15-experiment mean 〈�t〉 � (29.0 ± 1.3) fs,
in remarkably good agreement with the ∼30-fs estimate for
the period of glycosidic bond oscillations as computed from
published IR spectroscopy [17,26].

This concordance between �-space theory and IR spec-
troscopic measurement suggests that the two-state model for
MalL enzyme catalysis has some predictive utility. Within
the enzyme frame of reference, the B-state Gaussian fluctu-
ation acts as an organizing center for catalysis by providing a
metastable low-energy target that is unavailable to the naked
(i.e., nonenzyme assisted) pNPG → glucose reaction. The
metastable target provides an alternative axis for the reaction

coordinate by presenting a much reduced activation energy
barrier.

To illustrate the notion that—in the enzyme frame of
reference—the distribution of B-state fluctuations act as a
catalytic organizing center, in Fig. 6 we have plotted the 15
enzyme-rate experiments from three different perspectives:
Figures 6(a) and 6(b) show measured k(T ) data points and
EMG curve-fits in the laboratory frame of reference; Fig. 6(c)
shows the same rate curves, but now expressed in � space
where the � = 0 Ko origin corresponds to full-denaturation
temperature T = Tref; Fig. 6(d) converts the curves of Fig. 6(c)
into probability densities, showing the set of source expo-
nentials f (·), the source Gaussian g(·) (heavy black curve),
and the EMG convolution resultants h(·). Here the abscissa
has been expressed in Z-normal coordinates in which Z� =
(� − 〈�〉)/σ�. In this space, all source Gaussians map to
the standard normal, and the variation between enzyme prob-
ability densities lies entirely in the exponential and EMG
components. As expected from EMG theory, the trailing edge
of the Gaussian intersects each h(·) productivity curve at the
peak of enzyme production.

The present paper assumes that the �t timescale for bond
cleavage is paired to the stretching period of the glycosidic
linkage. From the energy-time uncertainty principle, the �t �
30 fs estimate gives a lower bound for the lifetime of the short-
lived bond-breaking intermediate, but this (fast) timescale
does not determine the overall catalytic rate. In our picture,
the rate-determining step is the (slow) A → B Arrhenius
transition from the enzyme-substrate complex (ground state)
to the activated B-state intermediate, with this slow transition
running on a millisecond timescale. A more complicated en-
zymatic reaction might require a sequence of several bond
cleavages represented by distinct shallow energy minima (in-
termediates) along the reaction coordinate, each characterized
by a distinct lifetime. Given sufficient thermal resolution in
the measurements, it may be possible to discern these events
as fine structure details in the k(T ) rate curve.

The analysis presented here has been entirely theoretical
and based solely on the MalL–pNPG hydrolysis reaction, so
it would be useful to learn if the convolution-fitting rationale is
applicable to other enzyme-catalyzed reactions. But, moving
beyond simple rate-curve fitting, one would like to verify (or
invalidate) experimentally our claim that the source Gaus-
sian derived from EMG fitting captures the single-particle
temperature fluctuations of the short-lived metastable B-state
enzyme-substrate complex. One obvious test would be to use
an isotopically labeled substrate whose period of bond vibra-
tion is changed significantly. The resulting alteration in the
zero point energy for the bond should manifest as a change
in the width of the source Gaussian for the temperature fluc-
tuations. Further, it might be possible to monitor the growth
in kinetic energy fluctuations for individual enzyme–complex
molecules, tagged with gold nanoparticles, as the complex
transitions from its ground-state A towards metastable-state
B using molecular imaging techniques such as fluorescence
quenching [27].

Our assumption of a Gaussian fluctuation profile implies
harmonic energy fluctuations about the local minimum of the
B-state energy well. This is the simplest case. If there were a
pair of closely spaced energy minima (corresponding to a pair
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FIG. 6. Enzyme rate curves and probability density functions for all 15 MalL experiments listed in Table I. (a), (b) Measured production
rates (discrete symbols) and k(T ) EMG convolution fits (smooth curves) for each experiment. V200A mutant productivities (experiments 13–
15) are ∼5× higher than those of the other mutants, so are displayed in separate panel (a) to improve visibility. (c) Productivity curves expressed
in the enzyme displaced-temperature frame of reference using � = (Tref − T ) coordinates. (d) Probability densities for the exponential f (·)
and Gaussian g(·) source components, and the resultant exponentially modified Gaussian h(·), expressed in Z� coordinates where Z� =
(� − 〈�〉)/σ�. In this view, all source Gaussians collapse to the standard normal distribution.

of intermediate metastable states), then one might expect to
see some non-Gaussian structure (e.g., broadening, multiple
peaks, asymmetry) in the fluctuation spectrum with a shape
dependent on the degree of mode coupling. In principle, one
could form a curve fit to the k(T ) kinetics data by convolv-
ing an exponential (or Arrhenius) growth function against
any suitable non-Gaussian target function, but this would
only be feasible if the kinetics measurements had (i) suffi-
ciently fine temperature sampling and (ii) adequate signal-
to-noise quality to allow these second-order features to be
resolved.

APPENDIX: MEASUREMENT OF MALL ENZYME
TURNOVER RATES

1. Protein expression and purification

MalL enzyme WT and variants (V200S, V200T, S536R,
V200A) were produced by standard biochemistry protocols
that yield a quantifiable solution of isolated protein in a
defined buffer system. Specifically, expression systems of
Bacillus subtilis MalL and the single amino-acid variants were
set up in E. coli BL21 DE3 cells, genetically encoded within
a pPROEX plasmid containing an N-terminal hexa-histidine
tag. These cell lines were used for protein production via in-
duction with 0.75 mM isopropyl β-D-1-thiogalactopyranoside
of Luria broth cultures in exponential phase, followed by
growth overnight at 18 ◦C.

Purification from the crude cell protein was carried out
in two steps via immobilized metal affinity chromatogra-
phy and size exclusion chromatography (IMAC and SEC,

respectively) at pH 7.0. Initially, cell pellets were lysed via
sonication on ice. Target protein was initially isolated by
IMAC over a 50-mL imidazole gradient (25 mM to 0.5 M),
utilizing the hexa-histidine tag to isolate target protein from
cellular proteins. Further purification by size was carried out
by SEC in 20-mM HEPES buffer. Enzymes were dialyzed into
40-mM NaPO4 buffer with 150-mM NaCl (at the specified
assay pH of 6.5, 7.0, or 8.0).

2. MalL temperature assays

Enzyme assays were specifically designed to measure the
catalytic capacity of MalL over a wide temperature range,
with the heating protocols and timing optimized to elimi-
nate effects of enzyme denaturation prior to or during the
measured assay. The KinetAsyst Stopped-Flow System (TgK
Scientific, UK) with a connected circulating water bath for
temperature control was used to characterize the catalytic rate
of MalL via cleavage of saturating concentrations of the en-
zyme substrate p-nitrophenyl-α-D-glucopyranoside (pNPG).
In this system, the reaction is measured in real time by the
absorbance at 405 nm of the formed reaction product, p-
nitrophenol. Reactions were completed in triplicate with five
0.2-s dummy shots to clear the system between each reaction.
Each reaction was carried out for 45 s with fresh enzyme
(stored on ice), rapidly heated (0.2 seconds) prior to the as-
say commencing (through mixing of enzyme and substrate
solutions). Temperature values reported are those from the
thermostat control monitoring the reaction chamber. Stability
of the enzyme master mix, stored on ice over the course of
the experiment (∼5 h), was confirmed by a repeated midrange
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temperature assay at the end of the experimental time
period.

3. Turnover-rate calculation

Linear regression of (at most) the first 10 s of the reaction
was carried out using Kinetic Studio (TgK Scientific, UK)

to eliminate any denaturation effects over time. Observed
catalytic rates k(T ) [s−1] were determined using the mo-
lar extinction coefficient (ε) specific to the given assay pH
to convert from measured absorbance to p-nitrophenol con-
centration: ε = [4061, 7413, 13 249] L mol−1 cm−1 for pH
values [6.5, 7.0, 8.0], respectively.
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