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Locality of contacts determines the subdiffusion exponents in polymeric models of chromatin
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Loop extrusion by motor proteins mediates the attractive interactions in chromatin on the length scale of
megabases, providing the polymer with a well-defined structure and at the same time determining its dynamics.
The mean-square displacement of chromatin loci varies from a Rouse-like scaling to a more constrained
subdiffusion, depending on cell type, genomic region, and time scale. With a simple polymeric model, we show
that such a Rouse-like dynamics occurs when the parameters of the model are chosen so that contacts are local
along the chain, while in the presence of nonlocal contacts we observe subdiffusion at short time scales with
exponents smaller than 0.5. Such exponents are independent of the detailed choice of the parameters and build
a master curve that depends only on the mean locality of the resulting contacts. We compare the loop-extrusion
model with a polymeric model with static links, showing that also in this case only the presence of nonlocal
contacts can produce low-exponent subdiffusion. We interpret these results in terms of a simple analytical model.
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I. INTRODUCTION

During interphase, chromosomes assume a globular phase
in the cellular nucleus characterized by well-defined, al-
though rather mobile domains. Domains at the scale of
megabases [1–4] are called “topological associating do-
mains” (TADs) and are quite relevant for the control of gene
activity [5].

The mutual attraction between chromosomal regions at
this scale is regarded to be mediated by a loop-extrusion
mechanism [6]. This is based on the action of cohesin, a
ringlike protein that binds randomly to the chromatin fiber
and extrudes actively the two arms of the fiber, consuming
energy. When cohesin meets CCCTC-binding factor (CTCF),
a protein bound at specific sites of the DNA, it stops extruding
until either it is released from the fiber or it succeeds in over-
coming CTCF. Thus cohesin mediates an effective interaction
that is stronger between sites containing CTCF [7]. In fact, the
removal of cohesin results in the disappearance of TADs [8].

Such a mechanism is intrinsically out of equilibrium, and
it is quite different from that of stabilizing chromatin at larger
scales. For example, at the scale of hundreds of megabases,
where one can identify “compartments,” the mutual attraction
between chromosomal regions is thought to be mediated by
DNA-binding proteins, such as HP1 [9,10], that dimerize, thus
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stabilizing loops in a framework of equilibrium thermody-
namics.

Recent experiments have shown that chromosomal regions
undergo anomalous diffusion with different scaling expo-
nents, depending on cell type, genomic region, and time scale.
In the case of mouse embryonic stem cells (mESCs) the scal-
ing exponent is ≈0.55 over a time scale of minutes [11,12],
where CTCF-mediated contacts assemble and disassemble.
This is the same exponent of a Rouse chain with excluded
volume [13], which is the least-structured possible polymer.
Surprisingly, this scaling exponent does not change if cohesin
is depleted. This dynamical freedom is unexpected since co-
hesin strongly constrains the equilibrium structure of TADs.
On the other hand, in HeLa and HT-1080 cells, the scal-
ing exponents decrease to 0.45 and 0.38, respectively [14].
Moreover, in HeLa cells, different exponents are observed for
euchromatin-rich and heterochromatin-rich regions (0.44 and
0.39, respectively [15]).

We present an analysis of the dynamics of simple poly-
meric models of chromatin interacting with a loop-extrusion
mechanism. The goal is to study the conditions under which
the chain can move more freely, in a way that is indistinguish-
able from that of a Rouse-like chain, and whether there are
conditions under which the subdiffusion is not Rouse-like. We
show that the key quantity that controls the diffusion character
of the beads of the chain is the average linear separation of the
beads that make the contacts.

The idea that interactions between nonconsecutive beads
in a Rouse model can affect its diffusion properties was
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introduced in Ref. [16], in which it is shown that modifying
the eigenvalues that define the rates of the normal modes of the
chain by a specific potential leads to nonstandard exponents
of the mean-square displacement of the beads. Moreover, dy-
namical loops between close beads, which can be formed and
disrupted stochastically, have been shown to produce anoma-
lously low subdiffusion exponents in a polymeric model of
chromatin at the scale of compartments [17].

We first present the results of a minimal polymeric model
in which the motion of the chain in three-dimensional (3D)
space is coupled with the motion of extruders along the chain,
studying the mean-square displacement of the beads (Sec. II).
Then we study the effect of CTCF bound to the chain, mod-
eled as obstacles that block the 1D motion of the extruders
(Sec. III). The results obtained simulating the extruders are
compared with a simpler polymeric model with static links
(Sec. IV), for which an analytical argument explaining the low
subdiffusion exponents can be worked out (Sec. V).

II. SUBDIFFUSION UNDER LOOP EXTRUSION

We simulated the dynamics of a polymeric model made
of beads connected by harmonic springs and subject to hard-
core repulsion. Extruders are described by other harmonic
springs connecting pairs of beads whose identity depends on
time. The dynamics of the system is described by a Langevin
equation

m
dvn

dt
= −γ vn − ∇n

[
k

2
(|rn+1 − rn| − a)2

]

− ∇n

[
k

2
(|rn−1−rn| − a)2

]
−

N∑
m=1

∇nULJ (|rn − rm|)

+ k′

2

∑
m∈Ln (t )

∇n(|rn − rm| − a)2 + η(t ), (1)

where rn is the position vector of the nth bead, ∇n is the
gradient operator for the nth particle in Cartesian coordi-
nates, k is the harmonic constant of the polymer, γ is
the friction coefficient, ULJ (r) is a truncated Lennard-Jones
potential ε[(r0/r)12 − (r0/r)6] for r < 21/6r0 and zero oth-
erwise, k′ is the harmonic constant of the extruder, Ln(t ) is
the time-dependent set of beads connected by an extruder to
bead n, and η(t ) is the Gaussian noise with ηn(t ) = 0 and
ηi(t )η j (t ′) = 6γ T δi jδ(t − t ′).

The dynamics of the extruders is modeled as a Markov
process. An extruder can be loaded with rate kl on the polymer
to connect sites i and i + 1, where i is a site chosen at random
with uniform probability. A bound extruder can leave the
polymer with rate ku. An extruder bound to sites i and j (i < j)
can step to sites i − 1 and j + 1 with rate ks if these are free;
extruders cannot overcome each other. This Markov process
is simulated with the Gillespie algorithm [18] along with the
Langevin simulation.

The resting distance a of the beads is set to 1 in the
simulations and is chosen to represent a segment of 8 kbp,
corresponding to approximately 70 nm; we also chose r0 = 1.
We set the temperature of the system to T = 104, which is the
order of magnitude of biological temperature if expressed in
J/mol (thus the Boltzmann’s constant is set to 1); the energy

scale ε of the repulsive Lennard-Jones potential is also set
to 1. The friction coefficient is γ = 105, in such a way that
the mean time of displacement of a bead τb ≡ a2γ /6T ∼ 1,
interpreted in seconds, gives the experimental order of magni-
tude [11]. The masses are set to m = 103, so that the damping
time is τD ≡ m/γ ∼ 10−2 � 1; at the time scales longer than
τD in which we are interested, the motion is overdamped,
and the results are independent of m. The unloading rate of
cohesin is ku = 10−2 (thus, in s−1), as measured from fluores-
cence experiments [19]; consequently τD � τb � k−1

u . The
other two rates, kl and ks, are varied, exploring their effect
in the dynamics of the model. The motion of the polymer of
N = 103 beads is simulated with a velocity-Verlet algorithm
with time step �t = 2.5 × 10−3 s. Simulations are performed
with a modified version of the Large-Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) code [11,20].

For each choice of the parameters, we first equilibrated the
system for 105 s. Then, the mean-square displacement (MSD)
for five of the central beads n of the polymer (100 < n < 900)
selected at random is calculated from simulations of 106 s.
Assuming that the initial equilibration is long enough to make
the MSD homogeneous in time, we used the formula

MSD(t ) = 1

Nt

Nt∑
k=0

[r(k · τp + t ) − r(k · τp)]2, (2)

where we recorded Nt = 104 conformations, one every τp =
102 s, also averaging over the five beads. Since τp 	 τD, we
expect the system to behave as overdamped and inertia not to
play any role.

The shape of the MSD varies according to the choice of
kl and ks (some examples are shown in Fig. 1). For small ks,
all the choices of kl give a power law tα with an exponent α

compatible with the value 0.55 that one expects for a Rouse
chain with excluded volume [13]. When ks is increased, the
exponent at small times is not monotonic (cf. Ref. [11]), and
a new regime appears on the intermediate time scale (∼104 s)
with α < 1/2, corresponding to a more constrained dynamics;
we focus our attention on this time scale. The value of α here
decreases with kl .

More specifically, when both the extrusion rate ks and the
loading rate kl are small, the dynamics is hardly distinguish-
able from that of a Rouse polymer with excluded volume;
higher values of ks produce a sub-Rouse dynamics at inter-
mediate times whose exponent depends on the loading rate.
Particularly low exponents are obtained when ks 	 kl , that is,
when few extruders are moving at high velocity on the chain,
forming very large loops [Fig. 2(a)].

At large times, one expects to observe only the diffusion
(α = 1) of the center of mass of the polymer. The Rouse time,
corresponding to the onset of this regime, is expected to be of
the order of N2τb ∼ 106 s, and thus this regime is not observed
in our simulations.

Realistic parameters of the model can be determined from
experiments for a chromatin segment of N = 1000 sites of
8 kbp each and are ks = 10−1 s−1 [21] and kl = 1 s−1 [11].
This corresponds to the regime in which the motion is Rouse-
like, not far from the border of the phase diagram [Fig. 2(b)]
with the regime characterized by α < 1/2 that can be reached
by increasing ks.
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FIG. 1. Examples of MSD calculated keeping fixed ku = 0.1 s−1 and varying the other parameters, ks/ku = [0.21, 0.62, 1.85, 16.67]
and kl/ku = [0.1 (brown, upper curve), 0.31 (violet), 0.93 (red), 2.78 (green), 8.33 (orange), 25.00 (cyan, lower curve)]. The dashed line cor-
responds to the exponent 0.55, while the dot-dashed lines are the power-law fits.

Interestingly, the complexity of the behaviors observed
for different choices of ks and kl can be easily rationalized
in terms of the mean length 	 ≡ |i − j| of the loops of the
polymer, generated by cohesin binding at sites i and j. The ex-
ponent α of the intermediate-time region depends on the mean
loop length independently of the specific value of the rates
[Fig. 2(c)]. The master curve that describes the intermediate-
time exponents can be fitted from

α = 	−0.43 (3)

for 	 � 10 and the standard Rouse-like (with excluded vol-
ume) value 0.55 for smaller 	.

An observation that is not straightforward is that 	 de-
creases when increasing the loading rate kl [Fig. 2(d)]. This
is a consequence of the fact that extruders cannot overcome
each other; the result of crowding the polymer with extruders
by increasing kl is not to increase the chance that they can go
further along the chain, making 	 larger, but to increase the
probability that they get stuck, decreasing 	.

III. THE EFFECT OF OBSTACLES

The extrusion of chromatin by cohesin is stopped by the
CTCF protein that binds to specific loci and acts as an obsta-
cle, stabilizing the interaction between the corresponding pair
of loci [6].

We repeated the simulations using a model similar to that
of Sec. II but introducing CTCF in 10% of sites chosen at
random with uniform distribution. When an extruder reaches
a CTCF molecule, it cannot cross it but can only unbind
from the fiber (in this simple model we do not specify the
direction of CTCF, which in chromosomes is asymmetric).
For the choice of parameters that in the absence of CTCF
gives a Rouse-like behavior (i.e., exponent 0.55), the presence
of CTCF has no effect (upper panel of Fig. 3). In contrast,
for the parameters that give a different kind of subdiffusion

at different time scales, CTCF makes the system Rouse-like
(lower panel of Fig. 3).

This behavior agrees with the idea that the non-Rouse
behavior is due to the presence of long-range contacts; the
presence of CTCF blocks the extrusion and reduces the range
of the contacts to linear distances which are of the order of the
mean spacing between consecutive CTCF molecules, in this
case, ≈10 beads.

IV. A SIMPLER MODEL WITH QUENCHED LINKS

To gain a deeper understanding of the effect of long-range
contacts on the dynamics of the polymer, we have studied the
MSD of a simpler model in which, instead of being mediated
by moving extruders, random pairs of beads are linked to-
gether by quenched harmonic springs (with the same constant
as the springs that maintain the topology of the chain). In
this way, we can disentangle the time-dependent effect of the
kinetics of the extruders from that of the long-range contacts
they can make when we interpret the results of Sec. II. We
tested different numbers of links and different probability
distributions from which to extract the linked pairs, defined
as a function of 	. We also run some simulations with no
excluded volume to check the effects of hard-core repulsion
on the dynamics.

We have first simulated the dynamics of a chain of N =
1000 beads interacting with λ = 10 or λ = 100 links extracted
by a uniform distribution. For both cases, we generated five
independent realizations of the links and studied the MSD of
ten beads randomly extracted from the central portion of the
chain (100 < i < 900). For λ = 10, some of the curves of the
MSD(t ) display a power law with exponent ≈0.55, but others
are slightly bent with both kinds of concavity [Fig. 4(a)]. The
average curve anyway displays the single-exponent power law
typical of a Rouse-like chain with excluded volume.
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FIG. 2. Dynamics of the polymer model with loop extrusion. (a) Examples of mean-square displacement of single beads as a function
of time t . (b) Heat map of the scaling exponent α for different values of cohesin loading rates and extruder rates. Blue indicates sub-Rouse
regimes, while yellow indicates a super-Rouse regime; within parentheses the average number of active extruders is given. (c) The scaling
exponent α as a function of the mean loop size; darker points indicate a smaller number of bound extruders. (d) Mean loop size, computed
as the average genomic distance between linked beads, for different ratios kl/ku ranging from 0.10 (blue, lower curve) to 8.33 (purple, upper
curve).

If we increase the number of links [Fig. 4(b)], all the
realizations of the dynamics display a multiexponent subd-
iffusion at small time scales, which eventually converge to
α ≈ 0.55, although the instantaneous diffusion coefficient
(i.e., the vertical offset) is dependent on the specific re-
alization. The average MSD maintains in this case the
two-exponent behavior of the single realizations.

The interpretation of the average MSD curve as typical of
the different realizations is correct only if the MSD is self-
averaging [22]. To assess whether this is the case, we have
studied the normalized variance

ρ(t ) ≡
∑n

k=1 MSD2
k (t )[∑n

k=1 MSDk (t )
]2 − 1 (4)

of n instances MSDk (t ) of the dynamics (1 < k � n), as a
function of n [Figs. 4(c) and 4(d)].

For both the choice λ = 10 and the choice λ = 100, the
curves of ρ(t ) decrease with respect to n [Figs. 4(c) and 4(d)].

The decrease in ρ is clearer if studied as a function of n at
selected times [t = 103 s and t = 104 s; insets in Figs. 4(c)
and 4(d)]. This suggests that the MSD is a self-averaging
property of the system.

The shape of the MSD, averaged over the quenched disor-
der and on the choice of the bead, depends on the form of
the distribution and on the number of links l (Fig. 5). For
example, if we choose links between beads i and j from a
normal distribution with average d ,

p(i, j) ∝ exp

[
− (|i − j| − d )2

10

]
; (5)

if 	 = d � N , the MSD is Rouse-like even in the presence of
a large number of links (λ ∼ N). Vice versa, a small number
(λ � N) of long-range links (	 = d ∼ N) is sufficient to bend
the MSD and have a short-time subdiffusion with an exponent
smaller than 0.55.
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FIG. 3. Comparison of dynamics obtained with (blue curves) and
without (orange curves) CTCF. (a) When the extruder speed ks is
low (ks/ku = 0.21, kl/ku = 0.1), the loops usually do not reach the
barriers; in this case, the dynamics is not affected by CTCF and
remains Rouse-like. (b) When ks 	 ku (ks/ku = 16.67, kl/ku = 0.1),
the loops grow rapidly and often get stuck on the barriers. The mean
loop size 	 is thus limited by the mean distance between CTCF
sites (using a density 0.1 of CTCF sites, the mean distance between
barriers and maximum loop size is ∼N/100 � N).

Choosing a power-law distribution

p(i, j) ∝ 1

|i − j|β (6)

with β = 0.8 or a uniform distribution (β = 0) which yield
large loops 	 	 1, the dynamics in the intermediate-time
regime is sub-Rouse with exponents as low as α ≈ 0.2. For
long times the MSD approaches a linear scaling α = 1, sug-
gesting that one of the effects of links between beads is
to decrease the Rouse time, anticipating the effect of the
diffusion of the center of mass. Finally, we observe that
by removing the interactions that cause excluded volume,
the range of times associated with low exponents is shifted
forward.

The exponents α of the MSD for the small-time regime
of the chain with fixed links depend not only on the average
linear distance 	 between the linked beads but also on the
number λ of links (red points in Fig. 6). When the number
of links is large, the exponents coincide with those obtained
from loop extrusion. Only for very large 	 does the exponent
saturate, because the number of pairs of beads that can be
linked decreases with 	 decreasing the (effective) number of
independent pairs.

When the number of pairs λ is smaller (blue and green
points in Fig. 6), α seems to still follow a power law similar

to that at large λ but leaving the Rouse-like exponent 0.55 at
larger values of 	.

V. A SIMPLE ANALYTICAL MODEL

The polymer with quenched links allows one to develop a
minimal analytical model to investigate the role of long-range
contacts. The goal is to show that links that are local along the
chain affect only the diffusion coefficient, but not the subd-
iffusion exponent, while highly nonlocal contacts can change
the exponent. Assume that a Rouse chain [23] of length 2N
is linked by harmonic springs of constant k. Moreover, each
bead i interacts with beads i + m with a harmonic spring of
constant k′. Let us assume that this interaction occurs with a
random bead, so that m is a random variable. The Brownian
dynamics of the chain is controlled by the Langevin equation
drn

dt
= k

γ
(rn+1 + rn−1 − 2rn) − k′

γ
(rn − rn+m) + 1

γ
ηn(t ),

(7)

where −N � n � N , γ is the friction constant, and η(t )
is a random noise satisfying ηn(t ) = 0 and ηi(t )η j (t ′) =
6γ 2Dδi jδ(t − t ′). In the limit of large N , one can consider n
as a continuous variable and rewrite the Langevin equation as

∂r(n, t )

∂t
= k

γ

∂2r
∂n2

− k′

γ
[r(n, t ) − r(n + m, t )] + 1

γ
η(n, t ).

(8)

Using the boundary conditions as in Ref. [24], one can study
the system in Fourier space by defining

yp(t ) = 1

2N

∫ N

−N
dn r(n, t ) cos(π pn/2N ), (9)

with 0 � p � N ; one obtains

dyp(t )

dt
= − π2k

N2γ
p2yp(t ) − k′

γ
yp(t )[1 − cos(π pm/2N )]

+ 1

γ
ηp(t ), (10)

whose solution is

|r(x, t )|2 = 3Dt

N
+

∑
p�=0

∣∣∣∣Dτp

N
[1 − e−t/τp]

∣∣∣∣, (11)

which is formally the same as the standard Rouse model [23],
but now with

τp ≡ N2γ

πkp2 + N2k′[1 − cos(π pm/2N )]
. (12)

Clearly, the extra links affect τp mainly at small p, that is, at
large length scales, while at large p the Rouse term πkp2 dom-
inates at the denominator. The term with the sum in Eq. (11)
can be approximated for large N as being proportional to the
integral

I (t ) =
∫ ∞

0
d p |τp[1 − e−t/τp]|, (13)

whose integrand increases with τp and thus decreases with p.
If contacts are local (m � N), then the cosine can be

approximated as 1 − π2m2 p2/4N2, the integral (13) is still
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FIG. 4. Spread of trajectories and the self-averaging property. (a) The realizations of the MSD of a chain of 1000 beads with λ = 10 fixed
links extracted from a uniform distribution; curves with the same color come from different beads of the same realization of links. The solid
black curve is the average of all the trajectories. The dashed line is the reference with a slope 0.55. (b) The same as (a), but with l = 100 links.
(c) The self-averageness parameter ρ(t ) for a different number of instances n when λ = 10. The inset shows the curves of the relative variance
as a function of the number of trajectories N , at t = 103 s (blue curve) and t = 104 s (orange curve). (d) The same as (c), but with λ = 100
links.

Gaussian, and one obtains the standard results for the Rouse
chain I (t ) ∼ t1/2, just renormalizing the diffusion coefficient.

If contacts are nonlocal, the argument of the cosine is no
longer small, and the dependence on time can be different.

FIG. 5. Dynamics of the polymer model with static links. Some
examples of the mean-square displacement of beads for the polymers
with quenched links with different numbers of links λ and different
link distributions (uniform, power law, or normal) are given. Some
of the simulations are performed without excluded volume (NEV;
dashed curves).

In this case, we expect that if m 	 1, each bead is linked
with other beads whose specific index is not relevant; thus
we will assume that x ≡ 1 − cos(π p/2N · m) is a random
variable independent of p. More specifically, if m 	 1 and
p � N , cos(π p/2N · m) fluctuates so rapidly with respect to
p that its evaluation at a given p gives a number with the
features of a stochastic variable, similarly to pseudorandom

101 102

= 10
= 100
= 300

0.6

0.4

0.2

FIG. 6. Relationship between α and 	 with static links. The
scaling exponent α as a function of the mean loop size 	 for three
different choices of the number of links. The black line is the fitting
curve obtained from Fig. 2 with loop extrusion.
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numbers generated by the linear congruential algorithm [25].
The integral of Eq. (13) for given x is then

Ix(t ) = π1/2Nγ

2(kk′x)1/2
erf

(
(k′xt )1/2

γ 1/2

)
. (14)

To calculate the distribution of x given a specific value of m,
one uses

P(x|m) = P(p|m)

∣∣∣∣d p

dx

∣∣∣∣
= θ

(
2

πm
arccos [1 − x] − 1

)
2N

πm
√

x(2 − x)
, (15)

where Heaviside’s theta comes from the fact that p � N . As-
suming that m is a random variable as well, with distribution
P(m) = m−β as usually found in chromatin [26], then

P(x) =
∫ N

0
dm P(x|m)P(m)

= 1

[1 − 2 arcsin (1 − x)/π ]β[x(2 − x)]1/2
∼ 1

x(β+1)/2
,

(16)

where 0 � x � 2. The expectation value of I (t ) with respect
to the distribution P(x) is then

Ex[Ix(t )] =
∫ 2

0
dx P(x)Ix(t )

= erf(
√

2t ) + tβ/2[�(1/2 − β/2, 2t )

− �(1/2 − β/2)], (17)

where the � are the incomplete and the complete Euler’s
functions, respectively. For large t ,

Ex[Ix(t )] ∼ tβ/2, (18)

meaning that the MSD can display nonstandard exponents if
β �= 1.

VI. DISCUSSION AND CONCLUSIONS

The dynamics of chromatin, quantified by its MSD, is
determined by different factors. On the one hand, it is a poly-
mer with a consistent degree of structure, which is intimately
connected with the control of gene activity. Thus one can
expect strong subdiffusion, caused by the constraints that the
polymeric bonds and the other interactions exert on the motion
of each portion of the chromosome. On the other hand, loop
extrusion is an active process that can cause different types of
dynamics, including superdiffusion.

Experiments show that chromatin undergoes subdiffusion
with variable exponents, which are in all available cases sim-
ilar to or somewhat smaller than the exponents of a Rouse
chain with excluded volume [11,12,14,15]. This result is not
straightforward because a polymer with complex interactions
among its parts and with the nuclear lamina, resulting from
an active, energy-consuming process, can in principle display
any kind of dynamics, from superdiffusive to nondiffusive.
On the other hand, the observed kind of dynamics leaves to
the chain the ability to undergo fast conformational changes
following the cellular cycle and as a response to stimuli. It is

then interesting to ask whether this is the typical dynamics of
a polymer caused by loop extrusion or whether evolution had
to fine-tune the mechanism to achieve this result.

Simulations of a polymer model with loop extrusion show
that two types of behavior are possible, either a Rouse-like dy-
namics with exponent α = 0.55 (due to the excluded volume)
up to the Rouse time, or a more complex subdiffusion that
at intermediate times displays an exponent α < 0.5. Clearly,
the latter case corresponds to much slower dynamics, which
according to our estimates occur on the time scale of hours to
days, which is the time scale of most cellular processes.

What determines the type of subdiffusion is only the av-
erage length 	 of the loops created by the extruders, within
our model and in the range of parameters we studied. In fact,
the value of the exponent α for the intermediate time win-
dow obtained from the simulations is described by a simple
function of 	 independently of the parameters used in the
simulations. This function is constant (0.55) up to 	 ≈ 10
and then decreases as α ≈ 	−0.43. This fact suggests that it
is only the presence of nonlocal contacts that slows down
the dynamics, not the presence of any kind of contact. On
the length scale of TADs, chromatin displays an architecture
rich in local contacts, similar to a Peano curve [26], with a
hierarchical structure of contacts [5], and thus its dynamics
remain Rouse-like. This is mainly due to the presence of
CTCF, which hinders the motion of the extruder, reducing 	.

The role of nonlocal contacts can be studied in an easier
way by introducing static links in the polymer. A sensible
way to implement this is by linking pairs of monomers of
the chain, chosen at random with a probability that depends
on their distance, with harmonic springs. The links are kept
fixed during each simulation, and eventually we studied the
quenched average of the MSD. We first showed that the MSD
is self-averaging, meaning that its average is representative of
the MSD of a typical realization of the links. Also this model
can display subdiffusion with α < 0.5, and α depends only on
	. If the number of links is large, the function α(	) is the same
as that obtained with loop extrusion. This fact suggests that
the dynamics of the extruder plays no role in determining the
MSD and only the range of the resulting contacts is relevant.

Decreasing the number of links changes the function α(	),
extending the region of 	 where α = 0.55 and increasing
overall α. With a small number of links, it is more difficult for
the quenched links to constrain efficiently all the monomers
of the polymer, something that the extruders can do moving
along the chain.

The effect of the quenched links can be captured by a
minimal analytic model that follows the idea of the Rouse
derivation [23]. The effect of the nonlocal contacts is to mod-
ify the relaxation times of the normal modes of the polymer
in a way that depends on the degree of nonlocality. This can
change the exponent of the resulting MSD as a function of
time. In the limit of local contacts, the relaxation times reac-
quire the 1/p2 dependence, and α returns to that of standard
Rouse subdiffusion.
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