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Periodic orbits in deterministic discrete-time evolutionary game dynamics: An
information-theoretic perspective
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Even though the existence of nonconvergent evolution of the states of populations in ecological and evolu-
tionary contexts is an undeniable fact, insightful game-theoretic interpretations of such outcomes are scarce in
the literature of evolutionary game theory. As a proof-of-concept, we tap into the information-theoretic concept
of relative entropy in order to construct a game-theoretic interpretation for periodic orbits in a wide class of
deterministic discrete-time evolutionary game dynamics, primarily investigating the two-player two-strategy
case. Effectively, we present a consistent generalization of the evolutionarily stable strategy—the cornerstone
of the evolutionary game theory—and aptly term the generalized concept “information stable orbit.” The
information stable orbit captures the essence of the evolutionarily stable strategy in that it compares the total
payoff obtained against an evolving mutant with the total payoff that the mutant gets while playing against
itself. Furthermore, we discuss the connection of the information stable orbit with the dynamical stability of the
corresponding periodic orbit.
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I. INTRODUCTION

Many ecological systems are known to exhibit cyclic
evolution of the abundance of the constituent species—well-
studied examples include the snowshoe-hare–lynx system [1],
the wolf-moose system [2], and lemming populations [3].
The simplest explanation for such a cyclic behavior is
mostly attributed to predation, which may be modeled by the
corresponding Lotka-Volterra equation [4]. Since the Lotka-
Volterra equation is mathematically mappable [5] onto the
replicator equation [6,7]—a paradigmatic evolutionary dy-
namic in the theory of evolutionary games [8]—the relevance
of oscillatory dynamics in evolutionary game theory is worth
pondering.

One of the central ideas in evolutionary game theory is
that of evolutionarily stable strategy (ESS) [9], which hap-
pens to be Nash equilibrium [10,11] as well. Through the
folk theorem (and other similar theorems) [12] of evolu-
tionary game theory, the convergent outcomes—represented
by a fixed point in phase space—of the replicator dynamics
can be interpreted as Nash equilibrium and ESS when-
ever achievable. These game-theoretic interpretations of the
fixed points can be further supplemented with interesting
information-theoretic connection: A fixed point that is an
ESS is locally asymptotically stable, and an appropriately
constructed Kullback-Leibler (KL) divergence (also called
relative entropy) [13] is a Lyapunov function [14] for the
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fixed point, i.e., the non-negative function decreases with the
passage of time [15] until the dynamics converges onto the
fixed point eventually.

Nevertheless, there is a dearth of literature about the
game-theoretic and the information-theoretic interpretations
for nonconvergent oscillatory outcomes. In this paper, we con-
tribute to this area. For pragmatic reasons, it is rather conve-
nient to work with a discrete-time replicator equation (replica-
tor map) as even with a population with two strategies (pheno-
types), one can witness cyclic behavior [16,17]. In fact, using
the replicator map, it was shown earlier [18] that a game-
theoretic interpretation of periodic orbits is possible—an
extension of ESS, called heterogeneity stable orbit (HSO),
was proposed. However, unlike the ESS, the concept of the
HSO does not consider fitness as the quantity to be opti-
mized during natural selection; rather, it concerns itself with
the optimization of a weighted fitness—the weight being
heterogeneity. The heterogeneity is the probability that two
arbitrarily chosen members of the population belong to two
different phenotypes. Although a justification for the HSO
could be found in its connection with the stable periodic orbits
just as ESS is connected with stable fixed points, going be-
yond the well-accepted notion of fitness to a weighted fitness
appears unconventional. Moreover, it is not clear if HSO con-
forms with the principle of decreasing relative entropy [13].

A natural question emerges at this point: Using the notion
of decreasing relative entropy during the evolution of the
system, does there exist a natural extension of ESS for the case
of periodic orbits such that fitness (without any weight) is the
object of optimization? We answer this question affirmatively
in this paper by the introduction of the extension of ESS
termed appropriately as information stable orbit (ISO). We
also find an encouraging connection of this game-theoretic
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concept—obtained though information-theoretic ideas—with
the dynamical system-theoretic concept of stability of peri-
odic orbits. Our investigation is not restricted to only the
replicator map, rather we expand our investigations to en-
compass a much wider class of evolutionary dynamics like
incentive [19] and escort-incentive dynamics [20] (which ac-
count for many well-studied dynamics like logit [21] and
best-reply [22]).

Given the rather technical nature of the results in our work,
below we first provide a succinct outline of the key aspects of
our work and the main results.

A. Outline of the paper

As noted in the Introduction, the central result of this work
is a generalization of the game-theoretic notion of evolution-
arily stable strategies (ESS)—traditionally only defined for
fixed points—to periodic outcomes in discrete-time evolu-
tionary dynamics. To do this, we revisit the relative entropy
minimization principle for evolutionary dynamics [15,23,24].
As per this principle, if an evolving population state is close
to an equilibrium point, the relative entropy [quantified using
the Kullback-Leibler (KL) divergence, defined in Eq. (1)]
decreases monotonically. This heuristic principle may be con-
sidered as an application of Kullback’s general proposal of
the principle of minimum discrimination information—which
has been used successfully in various contexts [25–27]—to
evolutionary systems. In fact, this may be interpreted quite
physically: Darwinian evolution ensures that the amount of bi-
ological information produced during evolution, as compared
to the equilibrium state, is optimized [24].

In Sec. II, we explicitly demonstrate how minimization
of the KL-divergence yields the well-known game-theoretic
stability criteria (such as ESS) for fixed points in evolutionary
dynamics. While such results have been explored recently
for continuous-time dynamics, we extend this to discrete-time
dynamics. In addition to the paradigmatic replicator map [see
Eq. (2)], we also discuss two generalized classes of evolu-
tionary dynamics as well—the incentive and escort-incentive
dynamics. The incentive dynamic [Eq. (3)] accommodates for
various update protocols of incentive in evolutionary games,
while the escort-incentive dynamic [Eq. (8)] additionally gen-
eralizes the averaging procedure in the incentive map.

Our main results are in Sec. III, where we extend this
program for periodic orbits in discrete-time evolutionary dy-
namics. A previous (purely game-theoretic) endeavor [18]
to construct a generalization of ESS for periodic orbits in
such dynamics was the heterogeneity stable orbit (HSO) [see
Eq. (13)], which was also accompanied by a generalization of
the Nash equilibrium, known as the heterogeneity orbit (HO)
[Eq. (11)]. From a game-theoretic perspective, the hope was
straightforward: Just as an ESS state yields the maximum pay-
off against an arbitrary state in its neighborhood as compared
to the state playing against itself, a generalization of ESS for
periodic orbits—which would be a sequence of states—would
achieve this in a periodically averaged sense. In other words,
we intuit that the periodic orbit would yield the maximum
total payoff when played against a sequence of evolving
states as opposed to the evolving states playing against them-
selves. The HSO condition achieves this in a slightly weak

fashion because it involves a weighted payoff, where the
weight measures the heterogeneity in the evolving population
state. Quite elegantly, our information-theoretic technique,
adopted in this paper, achieves our intuition exactly: We do
not require a weighted payoff and simply compare the sum of
payoffs over a period, thus generalizing the notion of ESS for
periodic orbits in the discrete-time evolutionary dynamics. We
dub this generalization the information stable orbit (ISO), and
we formulate it for the replicator map [Eq. (14)], the incentive
map [Eq. (17)], and the escort-incentive map [Eq. (18)].

Finally, before we conclude the work in Sec. IV, we analyt-
ically indicate how an ISO may correspond to a dynamically
stable periodic orbit (in Sec. III C), and we verify the analysis
for various evolutionary dynamics numerically (in Sec. III D).
Having presented the brief outline of the body of this paper,
we now discuss the technical details in the body of this paper
without further ado.

II. INTERPRETING FIXED POINTS

With a view to keeping the presentation of the main ideas
of the paper succinct, we confine ourselves to the simplest
yet conceptually nontrivial setup of two-person two-strategy
games. Specifically, we consider an infinite unstructured pop-
ulation of two types whose frequencies change over time
under some replication-selection rule. Between the individ-
uals (or the players, in game-theoretic terminology), the
interactions are assumed random and of the two-player kind.
The frequencies of the ith type is denoted by xi, and thus
x = (x1, x2) = (x1, 1 − x1) = (x, 1 − x), in different equiv-
alent notations, is the frequency (or state) vector of the
population. Thus, throughout the paper, the states are re-
stricted to the unit interval, i.e., 0 � x � 1, as discussed
briefly in the subsection below. Many kinds of dynamics for
the evolution of the frequencies are studied in the literature.

First, let us recall the paradigmatic continuous-time repli-
cator dynamic [6,7] in light of information-theoretic ideas. Of
particular use is the relative entropy or the Kullback-Leibler
(KL) divergence given by

DKL(p||q) :=
∑

y

p(y) ln[p(y)/q(y)], (1)

where y belongs to the support of the probability distributions
p and q. The KL-divergence helps to measure the distance
between two probability distributions, and we use it herein as
a measure of the distance of an evolving population state from
a fixed (equilibrium) population state. Note that the states can
be interpreted as distributions, even though the dynamics is
not stochastic. If the fixed population state is chosen as the
ESS state, the aforementioned KL-divergence decreases with
time [15]. Given that the KL-divergence fits the criteria for
being a valid Lyapunov function, one may also interpret this
as a statement for dynamical stability. There exists, however,
an important nuance to this fact: While the local asymptotic
stability and the evolutionary stability of a fixed point state
are synonymous only for two-strategy games, for games with
a higher number of strategies, ESS implies local asymptotic
stability of the corresponding fixed point, but the converse is
not necessarily true [6].
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A. Incentive dynamics

In this paper, we are motivated to carry out our inves-
tigations with discrete-time dynamics because they are a
convenient test-bed for investigating nonconvergent outcomes
like periodic orbits and chaos. In particular, the following is a
version of the discrete-time replicator dynamic [16–18,22,28–
33], henceforth referred to as the replicator map, that exhibits
periodic orbits and chaos even in the simple two-strategy case:

�x(k)
i = x(k)

i [ fi(x(k) ) − 〈 f (x(k) )〉]. (2)

Here �x(k)
i := x(k+1)

i − x(k)
i represents the difference between

consecutive population states, and f is the fitness function for
the types, with the average population fitness being given by
〈 f (x(k) )〉 := ∑

j x(k)
j f j (x(k) ). The superscript denotes the time

step. We also note that as per our notation, f (x) denotes a
vector with components fi(x). For this discrete map, it can be
shown that a locally asymptotically stable fixed point implies
ESS for two-strategy games [17,34], without its converse be-
ing necessarily true. To ensure that the solutions of the above
discrete replicator map (and all such subsequently introduced
maps) are physical (i.e., 0 � x(k)

i � 1 for all i and k), we must
restrict the parameter space of the map [here captured by the
function f ; for details, see Eq. (23)] to the strict physical
region, as defined in Refs. [17,35].

The replicator map in Eq. (2) phenomenologically models
the replication-selection dynamics in line with the Darwinian
tenet of natural selection. We know [17] that its fixed points
correspond to the Nash equilibria [10], and the evolutionarily
stable strategies or states [36] are associated with the folk
theorems of the evolutionary game theory [12], just as in the
continuous-time case. However, we remark that this form of
the replicator equation should not necessarily be seen just
as an Euler discretization of the continuous-time equation: It
has its own existence unrelated to its counterpart continuous
equation. One can motivate this replicator map from viability
selection rules [31]. Also, this replicator equation appears to
model intergenerational cultural transmission [30,32], bound-
edly rational players, imitational behavior in bimatrix cyclic
games [29], and reinforcement learning [28]. Thus, it has
applicability even beyond usual evolutionary contexts in the
biological systems.

In fact, a unification of quite a few evolutionary dy-
namics is mathematically possible through the incentive
dynamic [19,20,37–41] whose discrete-time representation is
given by

�x(k)
i = x(k)

i (δϕ )(k)
i ≡ ϕi(x(k) ) − x(k)

i

∑
j

ϕ j (x(k) ), (3)

where ϕ(x(k) ) is the incentive vector. The notation (δϕ )(k)
i

has been introduced for future convenience. The incentive
dynamic arises by generalizing the notion of incentive for the
players of a game, accounting for different updating proce-
dures utilized by the players. The choice of different incentive
functions, ϕ, corresponds to different dynamics (such as repli-
cator, projection [42], logit [21], and best response [43,44]) as
exhibited in Table I. A state of the population is an incentive
stable state (ISS) [20], x̂, if for any x in the local deleted

TABLE I. Incentive functions for various evolutionary dynamics.

Evolutionary dynamic Incentive [ϕi(x)]

Projection fi(x)

Replicator xi fi(x)

Logit exp(β fi (x))∑
i exp(β fi (x))

a

Best reply xiBRi(x)b

aHere, β is called the rationality factor; see [21].
bBR(x) is the best response function; a detailed discussion is given
in [22].

neighborhood of x̂ we have∑
i

x̂i
ϕi(x)

xi
>

∑
i

ϕi(x). (4)

ISS reduces to ESS for the replicator equation, given explicitly
by x̂ · f (x) > x · f (x).

For the two-strategy incentive map—as a generalization
of the corresponding result of replicator map [17]—one can
quite readily show using linear stability analysis that a locally
asymptotically stable fixed point obeys the ISS condition.
Moreover, it is an easy exercise to show that just like for the
replicator dynamic, the ISS for the continuous incentive dy-
namic implies that the time derivative of the KL-divergence,
DKL(x̂||x), is negative. In what follows, we observe that the
negative discrete-time derivative of the KL-divergence, de-
fined as

�DKL(x̂||x(k) ) := DKL(x̂||x(k+1)) − DKL(x̂||x(k) ), (5)

implies the ISS state. The discrete-time derivative measures
the change in relative entropy between an evolving state and
an equilibrium (fixed) state. Notice,

�DKL(x̂||x(k) ) = −
2∑

i=1

x̂i ln
(
x(k+1)

i

/
x(k)

i

)
(6a)

= −
2∑
i

x̂i ln
[
1 + (δϕ )(k)

i

]
(6b)

� − ln

[
1 +

2∑
i

x̂i(δϕ )(k)
i

]
. (6c)

The last inequality is obtained using Jensen’s inequal-
ity [13,45] for convex functions. Now, for decreasing
KL-divergence, we should have �DKL(x̂||x(k) ) <

0 or
∑

i x̂i(δϕ )(k)
i > 0. This implies

∑
i ϕi(x(k) ) −∑

i x̂i(ϕi(x(k) )/x(k)
i ) < 0 for all x(k) in the deleted

neighborhood of x̂, which is the ISS condition. Note that
if one could interpret the KL-divergence as the discrete-time
Lyapunov function [46,47] for this dynamic, this result shows
that the stable fixed point implies ISS for two-strategy games,
which is in line with the result known using linear stability
analysis. Furthermore, an extension to higher (n > 2) strategy
games is immediate: the superscripts in the summations can
be replaced by n in Eq. (6).

For the results on information-theoretic interpretations of
stability conditions in evolutionary dynamics in the subse-

064405-3



SAYAK BHATTACHARJEE et al. PHYSICAL REVIEW E 107, 064405 (2023)

TABLE II. Escort and incentive function combinations for vari-
ous evolutionary dynamics.

Evolutionary dynamic Incentive [ϕi(x)] Escort [σi(x)]

Replicator xi fi(x) xi

Replicator with selection βxi fi(x)a βxi

q-deformed replicator xq
i fi(x) xq

i
b

Exponential escort exi fi(x) ex

aHere, β is the intensity of selection in the dynamic.
bHere, q = 1 will give the replicator dynamic.

quent parts of the paper, we will follow a line of reasoning
similar to Eq. (6), with the details of the mathematical steps
relegated to the Appendixes.

B. Escort-incentive dynamics

There is yet another way the replicator dynamic can be
generalized. Specifically, consider the discrete q-deformed
replicator dynamic [48] given by

�x(k)
i = (

x(k)
i

)q
[ fi(x(k) ) − 〈 f (x(k) )〉q], (7)

where q is a positive real number and 〈 f (x(k) )〉q :=∑
j (x

(k)
j )q f j (x(k) )/

∑
j (x

(k)
j )q is the q-generalized mean.

Clearly, setting q → 1 reduces this dynamic to the standard
replicator dynamic. Equation (7) is, in turn, a special case of
a larger set of dynamics given by the following discrete-time
escort-incentive dynamic [20]:

�x(k)
i = ϕi(x(k) ) − σ̃i(x(k) )

∑
j

ϕ j (x(k) ), (8)

where the escort distribution vector σ̃(x(k) ) =
(σ̃1(x(k) ), σ̃2(x(k) )) is defined as [

∑2
i=1 σ (xi )]−1(σ (x1),

σ (x2)). Nondecreasing and strictly positive on (0,1), the
escort function, σ (appropriately normalized), maps a discrete
probability distribution into itself. In our context, the escort
distributions, which are often relevant in nonextensive
statistical systems [49], help further generalize the notion
of mean—used, e.g., in defining the mean fitness of a
population. Different choices for different escort and incentive
functions correspond to different dynamics, such as replicator,
q-deformed replicator, projection, and exponential escort (see
Table II). It is interesting to note that this generalization
of the replicator dynamic is actually motivated through the
information-theoretic framework [20]. In fact, Eq. (3) is a
special case of Eq. (8) [when σi(x) = xi].

It is natural that the concepts of ESS and ISS can be further
extended for the escort-incentive dynamics: A state of the
population is an escort incentive stable state (EISS) [20], x̂,
if for any x in the local deleted neighborhood of x̂, we have∑

i

x̂i
ϕi(x)

σi(x)
>

∑
i

xi
ϕi(x)

σi(x)
. (9)

Again, for the two-strategy escort-incentive map, using lin-
ear stability analysis, it is an easy exercise to show—as
a generalization of the corresponding result of a replicator
map [17]—that a locally asymptotically stable fixed point of
the two-strategy escort-incentive map is an EISS.

It stands proven in the literature [48] that the escort
divergence is the Lyapunov function for the continuous
escort-replicator equation (which is an alternate escort dis-
tribution motivated evolutionary dynamic). We recall that
the escort divergence, Dσ (x||x′)—a generalization of the
KL-divergence—is given by Dσ (x||x′) := ∑

i

∫ xi

x′
i
[logσ (v) −

logσ (x′
i )]dv, where logσ (x) := ∫ x

1 σ (u)−1du is called the es-
cort logarithm. Motivated by this result, it is natural to
check what the negative discrete-time derivative of the es-
cort divergence, defined as �Dσ (x̂||x(k) ) := Dσ (x̂||x(k+1)) −
Dσ (x̂||x(k) ), implies and how it is connected with a fixed point,
x̂, that is an EISS. Here, demanding �Dσ (x̂||x(k) ) < 0 implies

∑
i

x̂i
ϕi(x)

σi(x)
>

∑
i

xi
ϕi(x)

σi(x)
− Cσ (x̂, k), (10)

where Cσ (x̂, k) is a non-negative correction term (specific to
two types) that arises because of the choice of bounds of the
integrals. The details of this computation and the explicit form
of Cσ (x̂, k) are provided in Appendix A. Since the correction
term is non-negative, the obtained condition is automatically
satisfied by the EISS condition in Eq. (9).

In summary, we have understood how the decrease in
an information-theoretic divergence, namely the escort diver-
gence (of which KL-divergence is a special case), corresponds
to the fixed points that are ESS, ISS, and EISS of a wide class
of discrete-time evolutionary dynamics.

III. INTERPRETING PERIODIC ORBITS

Nonconvergent outcomes, like periodic orbits, are quite
common in evolutionary dynamics. In the discrete-time
dynamics discussed in the preceding section, such out-
comes [16–18,50] are possible even with only two-strategy
games, thus rendering the investigations about them analyti-
cally tractable. If we represent a finite sequence of m states
representing iterates of a map by {x(k)}k=m

k=1 (where k denotes
the time step), then a periodic orbit of orbit m (i.e., an m-
period orbit) can be denoted by an infinite sequence {x(k)}k�1

such that x(k) = x(k+m) for any k � 1, where m is the least
(also known as prime) period of the orbit. Since a periodic
orbit only has m distinct states, it may be compactly de-
noted by a finite sequence given by {x(k)}k=m

k=1 —a time-ordered
collection of m-period points. Now we intend to show that
the information-theoretic concept of KL-divergence (or more
generally the escort divergence) presents a unique viewpoint
that helps to construct a game-theoretic interpretation for the
nonconvergent dynamical equilibrium, specifically a periodic
orbit.

It is imperative to bring to the readers’ attention that an
exercise of imparting game-theoretic meaning to the periodic
orbits was performed in Ref. [18]. We first critically revisit
that work and scrutinize the concepts related to the periodic
orbits within the game-theoretic framework. We confine our-
selves only to the standard replicator map in this discussion.

A. Scrutiny of a heterogeneity stable orbit

Two definitions were introduced [18] as extensions of
Nash equilibrium and evolutionarily stable strategy, namely a
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heterogeneity orbit (HO) and a heterogeneity stable orbit
(HSO). We formally define them below.

Definition 1(a) (HO for a replicator map). A sequence of
m distinct states {x̂(k)}k=m

k=1 is an HO of order m if for all states
x̂( j) (1 � j � m) of this sequence,

m∑
k=1

Hx̂(k) [x̂( j) · f (x̂(k) )] =
m∑

k=1

Hx̂(k) [x · f (x̂(k) )]. (11)

Here, the heterogeneity factor, Hx ≡ 2x(1 − x), is the proba-
bility that two arbitrarily chosen members of the population
belong to two different types. The condition of HO is equiva-
lent to the condition of periodicity given by

k+m−1∑
j=k

x̂( j)(1 − x̂( j) )[ f1(x̂( j) ) − f2(x̂( j) )] = 0, (12)

where x̂(k) (1 � k � m) is any one of the m states of an
m-periodic orbit. For m = 1, it reduces to the condition of
the Nash equilibrium—x̂ · f (x̂) = x · f (x̂) for any x in the
interior of the simplex.

Definition 1(b) (HSO for replicator map). An HSO of order
m is a sequence of m distinct states, {x̂(k)}k=m

k=1 , such that

m∑
k=1

Hx(k) [x̂(1) · f (x(k) )] >

m∑
k=1

Hx(k) [x(1) · f (x(k) )] (13)

for any sequence of states {x(k)}k=m
k=1 of the map starting in

some infinitesimal deleted neighborhood of x̂(1). The HSO
reduces to ESS for m = 1 and extends the concept of ESS
to periodic orbits.

Using linear stability, one can show that all locally
asymptotically stable periodic orbits obey the HSO criterion,
although the converse is not necessarily true [18]. Moreover,
HSO implies HO, just as ESS implies Nash equilibrium. To
truly interpret the condition game-theoretically, however, a
connection to underlying strategy space is necessary, and in
this context it can be shown that just as the ESS condition is
associated with the idea of strong stability [5], HSO may also
be associated with the extension of strong stability for periodic
orbits [18].

Two criticisms of the definition of the HSO are in order.
First, the introduction of the heterogeneity factor is somewhat
ad hoc. Second, a close inspection reveals that the HSO con-
dition is a bit odd in the following sense: The total payoff on
the right-hand side of Eq. (13) is not the sum of the evolving
mutant state playing with itself, but instead is the sum of pay-
offs of the mutant playing against a chosen temporally fixed
mutant state [note the fixed (1) superscript on the right-hand
side of Eq. (13)]. In this paper, we circumvent the aforemen-
tioned two drawbacks by introducing a new generalization of
the ESS.

B. Information stable orbit

Let us generalize the concept of ESS to define an informa-
tion stable orbit (ISO) as follows:

Definition 2(a) (ISO for a replicator map). A sequence of
m distinct states, {x̂(k)}k=m

k=1 , is ISO of order m of the replicator

map if

m∑
k=1

x̂(1) · f (x(k) ) >

m∑
k=1

x(k) · f (x(k) ) (14)

for any sequence of m states, {x(k)}k=m
k=1 , of the map starting in

some infinitesimal deleted neighborhood of x̂(1).
The definition of the ISO of order m qualifies any given

finite sequence of m states of a map, {x̂(k)}k=m
k=1 , by comparing

it—using Eq. (14)—with a finite sequence of m mutant states,
{x(k)}k=m

k=1 , also governed by the map. In doing so, only the
first element of the given sequence, x̂(1), is explicitly used in
the inequality, with the implicit knowledge that the remaining
elements of this sequence are specified by the map exactly.
The sequence for mutant states starts from the deleted neigh-
borhood of the first element of the ISO, and the remaining
elements of this sequence are also determined exactly by the
map. This formulation of a stability criterion for periodic
orbits is inspired by the previously defined HSO [18].

Note that explicitly, Eq. (14) is blind to the notion of a
periodic orbit. Thus, in order to qualify a periodic orbit by
ISO, we must ensure that each of the m sequences of length
m starting from each of the m distinct states of an m-periodic
orbit should obey the ISO condition. Here, all the m sequences
{x̂( j)} j=k+m−1

j=k equivalently denote the same m-periodic orbit.

and corresponding nearby sequences {x( j)} j=k+m−1
j=k start in

the infinitesimal deleted neighborhood of x̂(k). Hence, we can
recast the ISO condition [Eq. (14)] for periodic orbits as

k+m−1∑
j=k

x̂(k) · f (x( j) ) >

k+m−1∑
j=k

x( j) · f (x( j) ) (15)

for all m states x̂(k) of the sequence {x̂(k)}k=m
k=1 . Note that the

ISO reduces to the ESS for m = 1, which is consistent with
the fact that a fixed point can be understood as a one-period
orbit.

Since any state of an m-period orbit of a nonlinear map is
a fixed point of the mth iterate of the map, it is very natural to
ask if the condition of decrease in the KL-divergence leads
to an extension of ESS, either HSO or ISO; after all, we
have seen earlier that �DKL(x̂||x(k) ) < 0 leads to ESS [see
Eqs. (6a)–(6c)]. To this end, we introduce the notation

�mDKL(x̂(k)||x(k) ) ≡ DKL(x̂(k)||x(k+m) ) − DKL(x̂(k)||x(k) ),
(16)

which measures the change in the KL-divergence over m
time steps. Thus, it is a measure of the total change in the
relative entropy over a time period of a periodic orbit of the
replicator map. Using Jensen’s inequalities as used in the
fixed-point computation [see Eq. (6)], we find that demanding
�mDKL(x̂(k)||x(k) ) < 0 implies the ISO condition as given in
Eq. (15) and not the condition of HSO. The details of this
proof are provided in Appendix B.

Thus, this information-theoretic fact justifies the aptness of
the name ISO. One should observe the unidirectionality in the
arguments presented in Appendix B. In particular, just as there
exist some unstable fixed points that are ESS in the discrete
replicator map, we may also find some unstable periodic orbits
that obey the ISO condition. This unidirectionality is also true
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for the HSO condition, and it appears to be an artefact of the
temporal discretization.

As can be guessed, the generalization of the ISO for the
incentive dynamics is straightforward:

Definition 2(b) (ISO for incentive map). A sequence of m
distinct states, {x̂(k)}k=m

k=1 , is ISO of order m of the incentive
map if

m∑
k=1

∑
i

x̂(1)
i

ϕi(x(k) )

x(k)
i

>

m∑
k=1

∑
i

ϕi(x(k) ) (17)

for any sequence of states, {x(k)}k=m
k=1 , of the map starting in

some infinitesimal deleted neighborhood of x̂(1).
We observe that this condition reduces to ISO on setting

ϕ(x) = x f (x) as expected for the replicator map. Also, m = 1
reproduces the ISS condition [Eq. (4)] as required. We remark
that for the condition in Eq. (17) to hold for periodic orbits,
we can recast it into a more general form similar to Eq. (15).
Then, just like for the ISO of the replicator map, here one can
show that the decreasing KL-divergence constructed using a
periodic orbit and its neighboring orbit implies the ISO crite-
rion for an incentive map—to prove this, all one has to do is
to replace δx f by more general δϕ in the proof in Appendix B.

As in the discussion for fixed points, we now generalize
ISO for the escort-incentive dynamic.

Definition 2(c) (ISO for the escort-incentive map). A se-
quence of m distinct states, {x̂(k)}k=m

k=1 , is ISO of order m of the
escort-incentive map if

m∑
k=1

∑
i

x̂(1)
i

ϕi(x(k) )

σi(x(k) )
>

m∑
k=1

∑
i

x(k)
i

ϕi(x(k) )

σi(x(k) )
(18)

for any sequence of states, {x(k)}k=m
k=1 , of the map starting in

some infinitesimal deleted neighborhood of x̂(1).
The condition in Eq. (18) can also be recast to a form like

in Eq. (15) for periodic orbits. Here, in the context of the
information-theoretic interpretation of this condition that is an
m-periodic orbit, the appropriate information-theoretic con-
cept is the escort divergence. Hence, we introduce the notation
�mDσ (x̂(k)||x(k) ) := Dσ (x̂(k)||x(k+m) ) − Dσ (x̂(k)||x(k) ), which
measures the change in the escort divergence over m time
steps. We find that demanding �mDσ (x̂(k)||x(k) ) < 0 implies

k+m−1∑
j=k

∑
i

x̂(k)
i

ϕi(x( j) )

σi(x( j) )
>

k+m−1∑
j=k

∑
i

x( j)
i

ϕi(x( j) )

σi(x( j) )

−
k+m−1∑

j=k

Cσ (x̂(k), j), (19)

where Cσ (x̂(k), j) is the non-negative correction term intro-
duced in Eq. (10), which arose due to the choice of bounds
in the computation. The derivation of this result is given in
Appendix C. We observe that if a periodic orbit satisfies the
definition of ISO for an escort-incentive map [Eq. (18)], then
it automatically satisfies the immediately preceding inequal-
ity (19). Hence, the relation of the ISO for the escort-incentive
map, which is a periodic orbit, with decreasing escort diver-
gence is transparent.

C. Dynamical stability and game-theoretic interpretation

In Sec. III B, we have motivated the ISO condition from
information-theoretic grounds. We now illustrate the cen-
tral idea of the paper through a proposition that brings
together the three perspectives—information-theoretic, game-
theoretic, and dynamic—whose interconnection is what this
paper is all about.

For simplicity, we consider the replicator map. As de-
scribed in Sec. III A, we note that a locally asymptotically
stable periodic orbit of a (two-player, two-strategy) replicator
map is an HSO [18]. Does such a fact exist between a periodic
orbit and ISO as well? We find that the answer is yes (although
the mathematical proof is elusive for a periodic orbit of gen-
eral period). We provide the following result for a two-period
orbit:

Proposition 1. A locally asymptotically stable 2-period
orbit of a replicator map for a two-player, two-strategy game
is an ISO.

Proof. Since we know that a locally asymptotically stable
2-periodic orbit must be HSO [18], we rewrite the HSO con-
dition [Eq. (13)] as follows:

2∑
j=1

[x̂(1) · f (x( j) ) − x( j) · f (x( j) )] >

×
[

Hx(2)

Hx(1)
((x(1) − x̂(1) ) · f (x(2) )) − (x(2) − x̂(1) ) · f (x(2) )

]
.

(20)

This way of writing makes the terms required to define the
ISO condition appear conveniently together on the left-hand
side; hence, to show that the ISO condition holds, one has to
simply show that the right-hand side is non-negative. Now, the
right-hand side may be recast as

[ f1(x(2) ) − f2(x(2) )]

[(
x̂(1) − x(2)

) − Hx(2)

Hx(1)

(
x̂(1) − x(1)

)]

= 2(Hx(2) )−1�x(2)

[(
x̂(1) − x(2)

) − Hx(2)

Hx(1)

(
x̂(1) − x(1)

)]
,

(21)

where �x(2) := x(3) − x(2) [as in the notation introduced in
Eq. (2)]. We are free to choose a small enough neighborhood
of x̂(1) so that x(1) is close enough such that the term con-
taining x̂(1) − x(1) on the right-hand side of Eq. (21) can be
made arbitrarily small (note that its prefactor composed of het-
erogeneity factors is finite). Furthermore, for stable periodic
orbits and the aforementioned small neighborhood, �x(2) and
x̂(1) − x(2) are of the same sign. In conclusion, the right-hand
side of Eq. (20) is a positive quantity for some small neigh-
borhood of x̂(1). Therefore, the right-hand side of Eq. (20) is
greater than zero, and the aforementioned proposition stands
proven.

Thus, Proposition 1 illustrates a connection between the
dynamical stability of periodic outcomes and the ISO equi-
librium. We conjecture that such results may also be derived
for higher period orbits, although it appears to be mathemati-
cally more involved and require the specific properties of the
dynamic in question.
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To appreciate the game-theoretic point-of-view, we ob-
serve how the game-theoretic idea of stability in terms of
comparison between payoffs seamlessly translates to the sta-
bility criterion for periodic orbits as well. There is no explicit
need for a heterogeneity-weighted payoff as considered in a
prior work [18]. The periodicity condition in Eq. (12) can
be treated as the extension of Nash equilibrium for periodic
orbits. ISO serves as the extension of ESS. An ESS state is
a state such that its payoff, when played against any other
state in its neighborhood, is greater than the payoff gained
when the other state plays with itself. Analogously, for the
ISO, we see that the relevant quantity for comparison is the
sum of payoffs for a particular state x̂ of the m-period orbit.
Here we must look at a sequence of m states starting from
the neighborhood of the state x̂ and compare the sum of the
payoffs—as gained by the state x̂ while in play with each of
the states in the sequence—with the sum of the payoff that
the states in the sequence gains while playing against them-
selves. In other words, we may say that the m-period orbit is
evolutionarily stable when a state in the orbit outperforms an
evolving mutant state as compared to when the mutant state
keeps playing with itself.

Finally, we remark that the definitions of ISO [Definitions
2(a)–2(c)] are constructed from a game-theoretic perspective,
without invoking any notion of (periodic) dynamics. Thus, al-
though our entire analysis pertains to two-player, two-strategy
games, these definitions also hold for two-player n-strategy
games (with n > 2).

D. Numerical verification

We now undertake the exercise of numerically illustrating
that the periodic orbits indeed are ISO or its generalizations
for the incentive and escort-incentive maps. For this purpose,
it helps to denote an m-period orbit as {x̂(k)}k=m

k=1 , and so
{x(k)}k=m

k=1 is the neighboring trajectory with x(1) = x̂(1) + ε.
Furthermore, the ISO condition for the escort-incentive map
(it being the most general version) may be compactly written
as δm

ϕ,σ (x̂(k) ) > 0, where

δm
ϕ,σ (x̂(k), ε) :=

k+m−1∑
j=k

∑
i

[
x̂(k)

i

ϕi(x( j) )

σi(x( j) )
− x( j)

i

ϕi(x( j) )

σi(x( j) )

]
.

(22)
We want to show that the condition is satisfied at least for
some small values of ε.

In addition to the replicator map, we take two more maps—
the logit map and the q-replicator map—to represent the
classes of incentive and escort-incentive maps, respectively.
The fitness of the ith strategy (or type), fi(x), is calculated
using a payoff matrix,

Π =
[

R S
T P

]
(R, S, T, P ∈ R), (23)

so that fi(x) = (Πx)i. It should be remarked that the elements
of the payoff matrix must be chosen carefully so as to achieve
forward-invariability of the corresponding maps, as noted in
Sec. II (see Refs. [17,35]).

For each of the dynamics, we first demonstrate the ex-
istence of periodic orbits by generating their bifurcation

FIG. 1. Stable periodic orbits are ISO for replicator map: The
figure presents the bifurcation diagram for the replicator map for a
two-player two-strategy game. The payoff matrix, Π, is chosen such
that T = 1.5 + S, R = 1, and P = 0. The dash-dotted line, S = 4.5,
intersects the bifurcation diagram at 2-period points—a ≈ 0.73 (in-
verted triangle) and b ≈ 0.26 (diamond)—of the 2-period orbit. The
dashed line, S = 5.7, cuts the bifurcation diagram at the 4-period
points of the 4-period orbit—{c, d, e, f } ≈ {0.74, 0.63, 0.20, 0.14};
the points are, respectively, marked by a circle, triangle, square,
and cross. Upper inset: positivity of δ2 ≡ δ2

ϕ,σ (x̂(k), ε) [calculated for
the stable 2-period points a and b; see Eq. (22)] for small values
of ε. The curves for δ2

ϕ,σ ((a, 1 − a), ε) vs ε and δ2
ϕ,σ ((b, 1 − b), ε)

vs ε are marked, respectively, by inverted triangles and diamonds.
Lower inset: Similar to what is done in the upper inset, it showcases
the positivity of δ4 ≡ δ4

ϕ,σ (x̂(k), ε) corresponding to the 4-period
points—c, d, e, and f —represented by the curves marked by cir-
cles, triangles, squares, and crosses, respectively.

diagrams, and subsequently we choose parameter values to
obtain examples of 2-period and 4-period orbits. We then
verify the positivity of δm

ϕ,σ (x̂(k), ε) for each of these exam-
ples using small values of ε. The stability of the periodic
orbit can be further verified using linear stability analysis and
by observing the asymptotic behavior of the corresponding
time series. We systematically exhibit examples of a stable
2-period orbit ({a, b}) and a 4-period orbit ({c, d, e, f }) of
replicator, logit, and q-replicator dynamics (see Figs. 1–3,
respectively) to illustrate that they follow the ISO criterion.

IV. DISCUSSION AND CONCLUSIONS

Our results in this paper lie in the exciting overlapping
area of evolutionary game theory, dynamical systems theory,
and information theory. Specifically, we have shown that an
extension of the idea of ESS is possible for periodic orbits in
a large class of discrete-time evolutionary dynamics. We have
termed the extended concept as ISO (and its generalizations)
because it can be motivated through the information-theoretic
idea of decreasing KL-divergence—a rather general principle
that extends the idea of entropy maximization [13] in the nat-
ural world. Thus, the concept of the ISO—in line with similar
recent developments [15,51,52]—highlights the tightly knit
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FIG. 2. Stable periodic orbits are ISO for incentive map: The
figure—analogous to Fig. 1—presents the bifurcation diagram for
the logit map for a two-player two-strategy game. The payoff
matrix, Π, is chosen such that R = 1, S = 2, T = 3, and P = 1.
Upper inset: positivity of δ2 ≡ δ2

ϕ,σ (x̂(k), ε) for the two states of
the stable 2-period orbit points—a ≈ 0.59 (inverted triangle) and
b ≈ 0.06 (diamond)—corresponding to β = 3.8 (see the vertical
dash-dotted line intersecting the bifurcation diagram). Lower inset:
positivity of δ4 ≡ δ4

ϕ,σ (x̂(k), ε) for the four states of the 4-period orbit,
{c, d, e, f } ≈ {0.72, 0.50, 0.10, 0.09}, denoted by a circle, triangle,
square, and cross, respectively, corresponding to β = 4.5 (see the
vertical dashed line intersecting the bifurcation diagram).

connections between the fields of evolutionary dynamics and
information theory. These connections between evolutionary
game dynamics and information theory is a promising avenue
of research, and we suspect that a lot of information-theoretic
concepts (such as Rényi entropy, Fisher information, and in-
formation geometry) may be transported to this context to
improve our understanding of evolutionary systems. In par-
ticular, the possibility of an information-metric under which
the discrete-time replicator map is a gradient-like system is
worth pondering, and it could lead to tighter conditions of the
stability for periodic orbits in game-theoretic terms.

From the game-theoretic viewpoint, the ISO is a more
satisfying extension of the ESS as compared to HSO [18]
because it does not require the use of the ad hoc heterogeneity
factor in its definition. Furthermore, recall that the ESS con-
dition is tied to the concept of strong stability [5] and it is not
surprising that HSO is connected to the concept of the strongly
stable strategy set (SSSS) [18]—the extension of strong sta-
bility for periodic orbits. This is an important qualification,
for the strong stability provides perhaps the “best validation
for the concept of evolutionary stability” [5]. Since a locally
asymptotically stable 2-period orbit—being HSO—is ISO,
when the orbit is SSSS, it is ISO as well.

Before we end, we would like to delve into some related
subtlety that deserves thorough future investigation. We won-
der how the unstable periodic orbits connect with the ISO.
We know that some unstable orbits are HSO and some are
not [18]. Although we are presently unable to provide any

FIG. 3. Stable periodic orbits are ISO for escort-incentive
map: This figure—analogous to Fig. 1—showcases the bifurca-
tion diagram for the q-replicator map for two-player two-strategy
games. The payoff matrix, Π, is chosen such that R = 1, P =
0, and T = 2.5 + S; q has been chosen to be 3. Upper inset:
positivity of δ2 ≡ δ2

ϕ,σ (x̂(k), ε) for the two states of the stable
2-period orbit points—a ≈ 0.56 (inverted triangle) and b ≈ 0.36
(diamond)—existing at S = 19.0 (see the vertical dash-dotted line
intersecting the bifurcation diagram). Lower inset: positivity of δ4 ≡
δ4
ϕ,σ (x̂(k), ε) for the four states of the 4-period orbit, {c, d, e, f } ≈

{0.60, 0.55, 0.34, 0.30}, denoted by a circle, triangle, square, and
cross, respectively, corresponding to S = 25.0 (see the vertical
dashed line intersecting the bifurcation diagram).

rigorous proof, we conjecture that a similar scenario is true
for the case of ISO: A trivial example is that of the replicator
map for a two-player two-strategy stag-hunt game where there
is an unstable interior fixed point (1-period orbit) that is not an
ESS (or ISO of order 1) [17] (cf. Appendix D).

Since the replicator dynamic in a structured population
remains the same as the one for the unstructured population—
only the payoff matrix gets modified [53,54] to include the
effects of the structure—our conclusions should carry over
to structured infinite populations. To end with an optimistic
note, we envisage useful extensions of the concepts developed
in this paper for asymmetric games and extensive games,
as well as for games in the finite populations. However, for
finite populations [55], the notions of mixed ESS and the
existence of periodic orbits have to be defined before an
information-theoretic perspective may be constructed. It is
likely that the idea of ISO can be useful for continuous-
time evolutionary dynamics as well through the construc-
tion of Poincaré maps—an avenue worth pursuing in the
future.
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APPENDIX A: ESCORT-INCENTIVE STABLE STATE

In this Appendix, we show how demanding decreasing relative entropy gives a condition consistent with the game-theoretic
EISS condition for escort-incentive dynamics. For this computation, we need the following two inequalities obtained via usual
bounds on Riemann integrals:

∫ b

a
logσ (v)dv � (b − a) logσ (a), (A1a)

∫ b

a

1

σ (u)
du � b − a

σ (b)
. (A1b)

By making use of these inequalities, we compute the total change in relative entropy over a time period as follows:

�Dσ (x̂||x(k) ) =
2∑

i=1

[
−(

x̂i − x(k+1)
i

)
logσ

(
x(k+1)

i

) + (
x̂i − x(k)

i

)
logσ

(
x(k)

i

) +
∫ x(k)

i

x(k+1)
i

logσ (v) dv

]
(A2a)

�
2∑

i=1

[(
x̂i − x(k)

i

)(
logσ

(
x(k)

i

) − logσ

(
x(k+1)

i

))]
(A2b)

=
2∑

i=1

[(
x̂i − x(k)

i

) ∫ x(k)
i

x(k+1)
i

1

σ (u)
du

]
(A2c)

�
2∑
i

[(
x̂i − x(k)

i

)(
x(k)

i − x(k+1)
i

)
σ
(
x(k)

i

)
]

+ (
x̂2 − x(k)

2

)(
x(k)

2 − x(k+1)
2

)[ 1

σ
(
x(k+1)

2

) − 1

σ
(
x(k)

2

)
]

(A2d)

= −
2∑
i

x̂i
ϕi(x(k) )

σ
(
x(k)

i

) +
2∑
i

x(k)
i

ϕi(x(k) )

σ
(
x(k)

i

) − Cσ (x̂, k), (A2e)

where the correction term, Cσ (x̂, k), is given by

Cσ (x̂, k) :=∣∣x̂1 − x(k)
1

∣∣(x(k)
2 − x(k+1)

2

)[
σ
(
x(k+1)

2

)−1 − σ
(
x(k)

2

)−1]
. (A3)

The first inequality in Eq. (A2b) is obtained by using the bound in Eq. (A1a), while the second inequality in Eq. (A2d) is obtained
by using Eq. (A1b). However, to compare with the EISS expression, we notice that it is necessary to separate out a correction
term Cσ (x̂, k) given explicitly in Eq. (A3). This expression is obtained from Eq. (A2d) by noting that (x̂2 − x(k)

2 ) = −(x̂1 − x(k)
1 ),

and that without any loss of generality, one can fix x̂1 − x(k)
1 > 0. Further, we note that since the escort function is nondecreasing,

we have (x(k)
2 − x(k+1)

2 )[σ (x(k+1)
2 )

−1 − σ (x(k)
2 )

−1
] � 0. This implies that the Cσ (x̂, k) is non-negative. Now, requiring the stability

of a fixed point implies �Dσ (x̂||x(k) ) < 0, which gives us Eq. (10), and that is consistently satisfied by the EISS condition
[Eq. (9)].

APPENDIX B: INFORMATION STABLE ORBIT FOR THE REPLICATOR MAP

Here, we show how the requirement of decreasing total relative entropy leads to the ISO condition for the replicator map. We
compute this as follows:

�mDKL(x̂(k)||x(k) ) = −
2∑

i=1

x̂(k)
i ln

x(k+m)
i

x(k)
i

(B1a)

= −m
2∑
i

x̂(k)
i

k+m−1∑
j=k

1

m
ln

[
1 + (δx f )( j)

i

]
(B1b)

� −m
2∑
i

x̂(k)
i ln

⎡
⎣1 +

k+m−1∑
j=k

1

m
(δx f )( j)

i

⎤
⎦ (B1c)

� −m ln

⎡
⎣1 +

2∑
i

x̂(k)
i

k+m−1∑
j=k

1

m
(δx f )( j)

i

⎤
⎦, (B1d)
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where the last two inequalities are obtained using Jensen’s inequality. One finds that demanding �mDKL(x̂(k)||x(k) ) < 0 implies
the ISO condition as given in Eq. (15). Also note that an extension to higher strategy space may be possible here too [as for the
fixed point analysis in Eq. (6)]; we simply replace the superscripts on the summations by n (n > 2).

APPENDIX C: INFORMATION STABLE ORBIT FOR ESCORT-INCENTIVE MAP

Here, we show how the requirement of decreasing total relative entropy leads to a condition consistent with the ISO condition
for the escort-incentive map. We compute this by observing that the total relative entropy can be written as a telescoping sum of
intermediate differences of relative entropies. Thus,

�mDσ (x̂(k)||x(k) ) =
k+m−1∑

j=k

[Dσ (x̂(k)||x( j+1)) − Dσ (x̂(k)||x( j) )] (C1a)

=
k+m−1∑

j=k

�Dσ (x̂(k)||x( j) ) (C1b)

� −
k+m−1∑

j=k

2∑
i=1

x̂(k)
i

ϕi(x( j) )

σ (x( j)
i )

+
k+m−1∑

j=k

2∑
i=1

x( j)
i

ϕi(x( j) )

σ (x( j)
i )

−
k+m−1∑

j=k

Cσ (x̂(k), j). (C1c)

The last inequality is obtained by using Eq. (A2e), and hence
∑k+m−1

j=k Cσ (x̂(k), j)—a sum of non-negative quantities—is non-
negative. This means that if the total escort divergence is decreasing, i.e., �mDσ (x̂(k)||x(k) ) < 0, then the following is implied:

k+m−1∑
j=k

∑
i

x̂(k)
i

ϕi(x( j) )

σi(x( j) )
>

k+m−1∑
j=k

∑
i

x( j)
i

ϕi(x( j) )

σi(x( j) )
−

k+m−1∑
j=k

Cσ (x̂(k), j), (C2)

which is consistent with the ISO condition given in Eq. (18).

APPENDIX D: A NOTE ON 2-PERIOD ORBIT AND ISO

Here we demonstrate a curious result for the analytically tractable case of 2-period orbits in the replicator map. In particular,
we prove the following.

Proposition 2. A two-period orbit of the replicator map for a two-player two-strategy game is an ISO.
Proof. Consider a periodic orbit {x̂(1), x̂(2)} and note that, by definition, �x̂(1)�x̂(2) < 0. If we consider the two points of the

periodic orbit to be well-separated and a state x(1) in the infinitesimal small neighborhood of x̂(1), then we expect �x(1)�x(2) <

0—even if the periodic orbit is unstable, as long as x(2) (the state to which x(1) is mapped) is in a small neighborhood of x̂(2), far
away from x(1). We should always be able to write

�x(1)�x(2) +
2∑

j=1

(
Hx(2)

Hx( j)

)
�x( j)(x(1) − x̂(1) ) < 0 (D1)

because the second term on the left-hand side can be made infinitesimally small by taking x(1) → x̂(1) as the heterogeneity factor
is a positive quantity. Rewriting this equation, we arrive at

2∑
j=1

(Hx( j) )−1�x( j)(x( j) − x̂(1) ) < 0, (D2)

which may be further rewritten using the replicator map to yield

2∑
j=1

(x( j) − x̂(1) )[ f1(x( j) ) − f2(x( j) )] < 0. (D3)

This equation is equivalent to the ISO condition for 2-period orbits.
Thus, it appears that a 2-period orbit is ISO irrespective of its stability property (and hence Proposition 1 naturally follows

from Proposition 2). However, the fraction of mutants required to invade ISO has to be comparatively larger for the case of stable
2-period orbits. It must be kept in mind that the analytically tractable case of the 2-period orbits of the replicator map appears
to be very special in this respect: It remains to be proven how much of this discussion goes over to the higher period orbits in
arbitrary escort-incentive dynamics.
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