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Mutual consistency of multiple visual feature maps constrains combined map topology
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The primary visual cortex (V1) is the first cortical area that processes visual information relayed from the
thalamus. The topologies permitted in joint ocular dominance (OD), orientation preference (OP), and direction
preference (DP) maps in V1 are considered, with the aim of finding a maximally symmetric periodic case that
can serve as the basis for perturbations toward natural realizations. It is shown that mutual consistency of the
maps selects just two possible such lattice structures, and that one of these is much closer to experiment than
the other. This comprises a hexagonal lattice of alternating positive and negative OP singularities, with each
unit cell or hypercolumn containing four such singularities, each of which radiates three DP discontinuities that
follow OP contours and end at OP singularities of opposite sign. Other DP discontinuities emanate at 90 degrees
to the midpoints of the ones that link OP singularities, and cross OP contours perpendicularly. These features
explain experimentally observed relationships between DP discontinuities and OP contours, including sudden
approximately 90-degree changes of direction in the former.

DOI: 10.1103/PhysRevE.107.064401

I. INTRODUCTION

Visual stimuli are mapped in a one-to-one manner to
primary visual cortex (V1) via the retinotopic map, which pre-
serves topology but disproportionately represents the center
of the visual field relative to the periphery [1]. V1 processes
multiple stimulus features, including ocular dominance (OD;
i.e., preference for stimuli from a particular eye), edge ori-
entation, direction of motion, spatial frequency, and color.
This processing is arranged in such a way that all features
from each segment of the field of view are processed in a
small neighborhood in V1, termed a hypercolumn [2–5]. Each
hypercolumn is of order 1–2 mm in linear size and contains
cells sensitive to each possible feature; hypercolumns do not
have structural boundaries, but are analogous to the unit cell
of a crystal lattice, being defined only in that each contains
cells with a full set of stimulus responses in aggregate. Indeed,
previous studies have suggested that V1 can be approximated
by a lattice of hypercolumns [6–8].

Cells that respond preferentially to a given feature are
arranged in a column that spans the cortical thickness and se-
lectivity to specific features changes in an orderly way within
each hypercolumn, and across V1 more generally, to form a
feature map. Each cell typically responds to several features
via these overlapping maps, which are described in detail in
the next section.
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Because each hypercolumn must contain cells that respond
to all possibilities for each of multiple features, the various
feature maps are not arbitrary, but are closely interrelated.
For example, motion of an oriented edge is only detectable
if a component of the motion is perpendicular to the edge
[9–11], so maps of orientation preference (OP) and direction
preference (DP) are inextricably linked, and both must be
consistent with the ocular dominance (OD) map. We must
thus ask what topologies of the combined maps are allowed
under the constraints of mutual consistency, complete feature
coverage in each hypercolumn, and periodicity. We seek exact
periodicity in order to provide a starting point for pertur-
bation analyses via which topological and geometric lattice
imperfections can be introduced. Although previous studies
[6–8,12–14] have employed regular planar lattices to inves-
tigate the spontaneous formation of activity patterns in V1,
these studies mostly focused on modeling the combined ef-
fects of local and long-range lateral connections within and
between hypercolumns, as well as the impact of lattice sym-
metry on the possible activity patterns. These authors studied
the lattice structures of cytochrome oxidase (CO) blobs, OP,
and spatial frequency (SF) preference, but not DP, and they
did not explore the mutual consistency of feature maps. The
present study is complementary in that it investigates how
mutual consistency of OD, OP, and DP maps constrains their
characteristics and possible regular lattice structures.

In this paper, we first unify different experimental ob-
servations of the feature maps, and discuss their main
characteristics in Sec. II. Then, in Sec. III we consider how
mutual consistency of the OD, OP, and DP maps restricts
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the possible structure of the combined multi-feature map.
Moreover, we explore how imposition of symmetry further
constrains the combined map, ultimately leading to a unique
maximally symmetric topology. We then compare the results
with experiments and discuss the effects of lattice imperfec-
tions introduced when we relax some idealizations. Finally,
the main findings are summarized and discussed in Sec. IV.
Throughout this study, we focus only on simple cells in V1,
which respond best to oriented bar stimuli and have separated
antagonistic excitatory and inhibitory subregions in their re-
ceptive fields [15,16].

II. FEATURE MAPS

In this section we briefly summarize key experimental
findings relating to observed OD, OP, and DP maps and
their relationships. We are not concerned with the structure
of feature-preference columns versus depth through cortical
layers but only with the dependence of feature preference on
location on the surface of V1.

OD maps reflect the arrangement of neurons with particu-
lar left- or right-eye preference. In Ref. [16] it was first found
that neurons that respond to same eye preference (left, L, or
right, R) are aggregated into columns that span several cortical
layers vertically, and are laterally arranged as approximately
parallel alternating stripes, in a pattern that is reminiscent
of a fingerprint. The width of each (L or R) OD stripe is
approximately 0.4 mm in macaque monkeys and 0.8–1.2 mm
in humans [3,17–22], giving overall spatial periodicities of
twice that distance perpendicular to the stripes between points
of the same OD preference. OD selectivity is highest in the
middle of each OD stripe, and decreases toward the stripe
borders where binocular cells are found that respond to both
eyes [23,24]. This enables the OD map to be continuous by
making the net OD preference zero at boundaries where there
would otherwise be a discontinuity.

OP columns consist of neurons that respond to particular
edge orientations of features in the visual field. OP nor-
mally varies continuously as a function of cortical position
and covers the complete range of orientations from 0◦ to
180◦ within each hypercolumn [4,22,25]. Optical imaging
[26–29] shows that key features of the OP map are that:
(i) OP varies azimuthally around singularities, often termed
pinwheel centers (PWCs), where all preferences meet; (ii)
the OP in each pinwheel increases either clockwise (nega-
tive PWC) or counterclockwise (positive PWC) and around
85% of neighboring PWCs have opposite signs [26,30,31];
(iii) neighboring pinwheels are usually directly connected by
iso-orientation contours that are relatively straight; (iv) there
is low OP selectivity at PWCs, near which all OPs occur,
consistent with achieving map continuity by means of selec-
tivity going to zero at the PWCs; mechanistically, this could
be the result of the overall response at each point being the
average of responses of nearby neurons, which have a wide
range of OPs near PWCs [32,33]; and (v) occasionally the
smooth OP map is interrupted by lines, termed OP fractures,
perpendicular to which OP changes of more than 45◦ occur
over short distances [26,34]. However, later studies found
that most OP discontinuities are at PWCs and fractures are
much less common [11,35]. It is thus likely that a significant

proportion of regions identified as fractures actually contain
rapid, but smooth, changes of OP. We do not consider OP
fractures in the present work.

Certain V1 neurons have been found to be selective for the
direction of motion of edges in the visual field in cats, ferrets,
and humans [11,35–37]. The resulting DP map is thus closely
tied to the OP map and consequently varies smoothly over
most of V1. A key difference is that two possible directions of
motion correspond to each edge orientiation, so a 360◦ range
of DP must be accommodated within each hypercolumn. This
results in the widespread presence of lines, termed DP frac-
tures, along which DP suddenly jumps by 180◦, while being
low at the fracture itself; these fractures usually radiate from
PWCs, and often connect them, but can also terminate at other
locations [9–11,35–37].

OD, OP, and DP maps are closely interrelated because
they must be mutually consistent and must represent a full
range of features in each hypercolumn so all features can be
detected at each point in the overall visual field. Experimental
observations of relationships between OP and OD include that
most PWCs lie near the middle of OD stripes and lines of con-
stant OP usually cross OD boundaries nearly perpendicularly
[25,26,38]. Both these aspects are seen in Fig. 1(a), which
shows the combined OD-OP map in adult macaque monkey
cortex.

Figure 1(b) shows an experimental OP contour map over-
laid with DP fractures of an adult cat [9]. The organization
of DP map is strongly constrained by the arrangement of the
OP map. As noted above, most fractures end very near or
at PWCs, but some terminate between PWCs. Most of the
DP fractures tend to run parallel to iso-orientation contours,
and separate subregions with opposite DP, while a smaller
proportion of DP fractures intersect the OP contours at steep
angles, with examples indicated by black arrows in Fig. 1(b).

To bring together the experimental observations mentioned
above, we show a schematic of a combined OP-OD-DP map
within a hypercolumn in Fig 2. The left and right OD stripes
run from top to bottom and within each there are two pin-
wheels with opposite signs. Dashed lines indicate contours of
constant OP and DP directions are indicated by arrows. Each
PWC is the origin of one or three DP fractures.

III. TOPOLOGY OF MUTUALLY CONSISTENT MULTIPLE
FEATURE PREFERENCE MAPS

Here we progressively build an idealized, mutually con-
sistent, exactly periodic OD-OP-DP map across a lattice of
hypercolumns and discuss its properties. At each stage, we
discuss connections to experimental observations, including
those mentioned in Sec. II.

A. Possible OD-OP topologies

To allow for maximal symmetry, we first approximate OD
stripes as being parallel and of equal width, with a pair of such
stripes in each hypercolumn. Each OD stripe must then con-
tain two PWCs of opposite sign, located close to the midlines
of the hypercolumns, each having PWCs of opposite sign as
its nearest neighbors both within and outside the hypercol-
umn.
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FIG. 1. Experimental feature maps in V1. (a) Combined OD-OP
map, reprinted with permission from Ref. [25]. The bold black lines
are the OD borders, and the gray curves are iso-orientation contours.
(b) Combined OP-DP map of adult cat, adapted with permission
from Ref. [9]. The OP and PWCs are represented by the thin black
contours and the blue stars, respectively. Thick red lines are DP frac-
tures. Some examples of DP fractures that intersect iso-orientation
contours at steep angles are marked by black arrows.

The arrangement of hypercolumns into a periodic lattice
is restricted by the requirement that PWCs alternate in sign.
Only triangular, square, and hexagonal lattices of PWCs are
topologically distinct in two dimensions (2D). Of these, the
triangular lattice cannot satisfy the need for PWC signs to
alternate, as seen in Fig. 3(a), a situation that is exactly analo-
gous to frustration in a triangular lattice of antiferromagnetic
spins [39,40]. Therefore, we eliminate the triangular lattice
from further consideration. However, the square and hexag-
onal lattices do allow PWC signs to alternate and a number
of studies have used them to model various aspects of V1
structure, function, and activity, including during visual hal-
lucinations [6–8,41].

For the square and hexagonal topologies, we show the
possible orientations of OD stripes as gray and white stripes in
Figs. 3(b) and 3(c). Aside from rotations and translations that
leave the system unchanged, there is only one topologically
distinct possibility in the square case, with a hypercolumn
outlined in the green square, which contains four pinwheels

FIG. 2. Schematic of the combined OD-OP-DP map in one
hypercolumn containing four PWCs. The thin solid black lines repre-
sent the borders of the left and right OD stripes, within each of which
there are two PWCs with opposite signs, as shown by the heavy dots.
Dashed lines represent OP contours, and the thick green contour lines
and arrows show DP fractures and adjacent direction preferences.

in Fig. 3(b), and OD bands as shaded and labeled. For the
hexagonal case there are two topologically distinct OD-OP
maps whose corresponding hypercolumns are shown as green
parallelograms in Fig. 3(c), corresponding to horizontal and
vertical OD stripes, respectively. In the horizontal case, PWCs
lie exactly on the midline of the OD stripes shown, but these
are narrow, each with a width of a

√
3/2, where a is the

PWC separation. In the vertical case, the width of each OD
stripe is 3a/2 and the PWCs are placed a/4 either side of
the midline. Previous studies revealed that PWCs tend to lie
near the midlines of OD stripes [25,38,42]. More precisely,
the mean distance between the midline of the OD stripe and
the nearest PWCs is around 100 µm in cat, which is around
1/5 of the single OD stripe width [23]. Hence, the latter of the
above alternatives better matches the experiments, a point we
consider further below. Additionally, the OP-OD topology of
our hexagonal lattice also closely matches previous findings
that columns with the same OP are approximately arranged in
a perturbed hexagonal lattice [43,44].

In both square and hexagonal cases, the distances between
pinwheels with opposite signs are shorter than the distances
between PWCs of the same sign, which matches the ex-
perimental findings in Ref. [45]. Additionally, the OP-OD
topologies in the two cases are not affected if we stretch or
compress the hexagons in the vertical or horizontal direction.

B. Possible OP-DP topologies

We now discuss constraints on the combined OP-DP map,
both locally and across square and hexagonal lattices.

As noted above, OP for oriented edges strongly constrains
DP, because only the component of motion perpendicular to
an edge is detected, at least by simple cells in V1, so DP
and OP angles are always perpendicular [9–11,35,36]. An
important difference exists because OP only has a range of
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FIG. 3. Schematic of possible hypercolumn topologies formed
from lattice of regular polygons. The blue and red dots indicat-
ing positive and negative PWCs, respectively. (a) Triangular lattice,
showing that it is impossible for all neighboring PWCs to have
opposite signs. (b) Square lattice. The gray and white stripes bounded
by dashed lines show a pair of left and right OD stripes. The large
green square outlines a hypercolumn containing four pinwheels. (c)
Hexagonal lattice showing two possible hypercolumn arrangements
as green parallelograms. Blue arrows indicate distances between
positive PWCs parallel (λ‖) and perpendicular (λ⊥) to the OD stripe
borders, respectively.

180◦ because rotation of an edge through this angle leaves
it unchanged; in contrast, DP covers the full 360◦ range of
possible directions of motion of edges.

Figure 4(a) shows the variation of OP versus azimuth
around a positive PWC, starting at 0◦ and increasing linearly

FIG. 4. Fracture geometry near a positive PWC. (a) OP (blue)
and DP (red) vs azimuth around the PWC showing one fracture as
a vertical arrow. (b) OP-DP map corresponding to frame (a), with
arrows indicating DP and colors showing OP. (c) As for (a) but
with three equally spaced fractures. (d) OP-DP map corresponding
to frame (c).

to 180◦, which is equivalent to 0◦. (Note that all angles can be
globally incremented by any fixed amount without changing
our arguments.) If DP correspondingly starts at 90◦, then it
reaches 270◦ (i.e., covers half of the full DP cycle of 180◦)
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FIG. 5. Simulated map showing the relationship between OP
map and DP fractures. Reprinted with permission from Ref. [46].
The OP is plotted by blue contour lines and the DP fractures are in
black.

after a complete circuit around the PWC, meaning that it is
pointing in the opposite direction and there must be a dis-
continuity of 180◦ at that point—a DP fracture—as shown in
Fig. 4(b). Although the fracture could equally well occur at
some other OP angle, its existence is inescapable. Figures 4(c)
and 4(d) show another possibility, in which three fractures
occur during the circuit around the PWC. In general, the total
rotation of DP during a circuit of a PWC must be an integer
multiple of 360◦, so if there are n fractures, we must have

180◦(1 + n) = 360◦m, (1)

where m is a strictly positive integer. This equation can only
be satisfied for odd n = 2m − 1, which confirms that at least
one fracture must emanate from each PWC, consistent with
statistics of experimental DP maps that show that more than
90% of PWCs originate one or more observable DP fractures
(most commonly 1 or 3 were detected), and most of these end
at nearby PWCs [10,35]. In addition, simulations of multiple
feature maps [5,46] also predict the existence of DP fractures
originating from PWCs, as shown in Fig. 5. Moreover, this
figure shows that almost all DP fractures connect two neigh-
boring PWCs.

We saw in Fig. 4 that DP only covers a 180◦ range around
any given PWC, which is also consistent with experiments
[10,11]. This means that the other PWC in each OD stripe
within a hypercolumn must cover the remaining range to
preserve symmetry and the definition of the hypercolumn
as containing all feature preferences. Together with the fact
that the neighboring PWC is of opposite sign, this further
constrains the local topology of the combined map to be of
the form shown in Fig. 6(a) for a case of two PWCs linked by
a fracture. We see that DP ranges from 90◦ to 270◦ (equivalent
to −90◦) around the positive PWC at left, whereas the remain-
ing range of −90◦ to 90◦ is covered around the negative PWC

FIG. 6. Schematic of how full DP coverage is achieved between
adjacent PWCs linked by a fracture. The solid black line represents
the DP fracture, the black arrows show the DP, and the color bar
indicates the OP in degrees. The white dashed lines indicate loci of
zero DP selectivity. (a) One DP fracture per OP pinwheel. The left
pinwheel covers 180◦ of DP ranging from 90◦ to −90◦, and the right
pinwheel covers the rest 180◦ of DP. (b) Three DP fractures per OP
pinwheel. The left pinwheel covers DP ranging from 90◦ to 150◦,
−30◦ to 30◦, and −150◦ to −90◦, and the right pinwheel covers the
remaining three sectors of DP.

at right. Likewise, the case of three DP fractures per PWC in
Fig. 6(b) also covers the full range of DP, with each pinwheel
covering half of the range. The left pinwheel covers three
intervals of DP, from 90◦ to 150◦, −30◦ to 30◦, and −150◦
to −90◦, while the remaining DP intervals are covered by the
right pinwheel. Although it is locally possible to have 5, 7,
. . ., fractures emanating from each pinwheel, there cannot be
enough nearest neighbors of opposite sign to serve as termini
in any regular lattice. Nor are such numbers of fractures ob-
served, except perhaps rarely in perturbed lattices.

The topology seen in Fig. 6 implies the existence of im-
portant additional features of the DP map: at the midpoint (or
some other point in a less symmetric case) of the fracture,
regions of opposite DP abut on the same side of the fracture.
This can only occur if the DP selectivity vanishes at the
midpoints of OP contours both on the fracture and either side
of it, akin to the vanishing of OD selectivity at the boundary
between L and R stripes, of OP selectivity at PWCs, and of DP
sensitivity at fractures. A one-dimensional locus of vanishing
DP selectivity must then radiate in both directions from the
midpoint; in our idealized case, this will be a perpendicular
straight line, which is shown as white dotted line in Fig. 6 and
thus represents a further DP fracture.

The new constraints noted in the previous paragraphs are
consistent with experimental features seen in Fig. 7: (i) the
radiation of DP fractures from PWCs, parallel to OP contours;
(ii) the apparent “fading out” of many DP fractures between
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FIG. 7. Experimental map showing DP fractures (red) on OP
contours (black), adapted with permission from Ref. [11]. The num-
bered sites indicate some places where DP fractures intersect OP
iso-orientation contours at steep angle. The blue circles highlight
some locations where DP fractures fade out around their midpoints.

PWCs, examples of which are indicated by the blue circles,
with some apparently resuming in much the same direction
but opposite DP; and (iii) the sudden ∼90◦ changes in di-
rection of DP fractures often observed between PWCs, with
many crossing OP contours nearly perpendicularly.

The simulated DP maps in Fig. 5 do not show the fading-
out of fractures, a difference that may be due to the ability
of simulations to determine DP reversals even where DP se-
lectivity is too low to be observed experimentally. However,
simulated DP fractures do tend to follow OP contours, or to
intersect them roughly perpendicularly, consistent with our
predictions.

We now consider OP-DP maps when PWCs are arranged in
a square or hexagonal lattice. In a square lattice the only way
in which an odd number of fractures can emanate from each
PWC without any ending between PWCs is for there to be
one per PWC, with PWCs linked locally into pairs. Not only
is this in contrast to the prevalence of PWCs that radiate three
fractures to produce a network of links [9,10,36], but it cannot
be achieved while preserving the fourfold symmetry of the
lattice. The latter point is demonstrated in Fig. 8. Here we see
that if the upper left PWC in a hypercolumn is linked to the
upper right one, three possibilities exist for the fracture that
emanates from the lower left PWC, none of which preserves
both local and global symmetry—either they favor inter-OD
connections over intra-OD ones or they do not treat all PWCs
equally within the hypercolumn. Similar arguments apply if
the upper left PWC were instead connected to the lower left
one. Likewise, if the initial fracture crossed a hypercolumn
boundary, then the hypercolumn could simply be shifted to
encompass it and the same arguments would apply. Hence,
although symmetry may exist statistically at large scales, we
do not consider the square lattice further.

The symmetry of the hexagonal lattice is consistent with
there being three fractures emanating from each PWC and
connecting it those of its nearest neighbors that are of opposite
sign, as seen in Fig. 3(c). Topology does not force fractures
to parallel OP contours, but the requirement that neighbor-
ing pinwheels cover all possible DPs means that fractures

FIG. 8. Schematic of square lattice with one DP fracture per
PWC. Shading indicates left and right OD stripes (which is which
does not matter) and dots (filled or unfilled) indicate PWCs of alter-
nating sign. The solid black line is an assumed DP fracture, while
the dotted lines are possible fractures emanating from the lower left
PWC in the central square hypercolumn highlighted in red.

are directed toward one another along the same contour as
they emerge from PWCs, so contour following is favored. In
the most symmetric case, DP selectivity would vanish along
lines that are perpendicular to the midpoints of each edge
of the hexagons, and would meet at the hexagon centers.
Hence, we predict that the regions around the midpoints will
have low selectivity, consistent with the apparent “fading out”
commonly seen experimentally, and the fact that observed
fractures sometimes undergo abrupt 90-degree bends between
PWCs, as in Fig. 7, for example (presumably turning to follow
the midlines). We also predict the centers of hexagons to have
low DP selectivity, but have not yet been able to locate any
experimental results that would enable this prediction to be
tested.

C. Possible OD-OP-DP topologies

Having found that the hexagonal lattice is the only possi-
ble arrangement for our idealized OD-OP-DP map, we now
consider how the OD bands relate to the OP-DP map. Fig-
ure 3(c) shows the two topologically distinct arrangements.
We have already noted in Sec. III A that the case shown
with vertical OD stripes has a better match with the spread
of PWCs relative to the midlines of OD stripes than the case
shown with horizontal OD stripes. We now further evaluate
these alternatives against experimental data on PWC spacings,
density, and layout within OD stripes via estimating the side
length a of the hexagon and evaluating the compatibility with
experimental results.

1. PWC spacings

First, we compare the theoretical and experimental spac-
ings of nearest PWCs of the same sign. Let us denote the
spacings between PWCs of the same sign as λ‖ and λ⊥ in
directions parallel and perpendicular to the OD boundaries,
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TABLE I. Spacings of nearest PWCs of the same sign, λ‖ and
λ⊥, parallel and perpendicular to the OD boundary, respectively, for
the horizontal and vertical OD stripe orientations in Fig. 3(c), and for
experimental data of macaque monkey from Ref. [25].

Horizontal OD Vertical OD
arrangement arrangement Experiment

λ‖ 3a/2 a
√

3 0.64 ± 0.02 (mm)
λ⊥ a

√
3/2 3a/2 0.76 ± 0.04 (mm)

λ‖/λ⊥
√

3 ≈ 1.73 (2/
√

3) ≈ 1.15 0.85 ± 0.08

respectively, as shown in Fig. 3(c). Results derived from
the geometry of the two hexagonal cases are summarized
in Table I, together with corresponding experimental find-
ings from macaque monkey [25]. Experimentally, λ⊥ > λ‖,
whereas both our idealized arrangements exhibit the reverse
inequality. The experimental results thus correspond to the
hypercolumns being compressed in the parallel direction in
macaque relative to the idealized case, while leaving the topol-
ogy unchanged. However, the vertical OD arrangement in
Fig. 3(c) gives far better agreement with the observed λ⊥/λ‖,
being only (26 ± 7)% smaller. Because it also agrees better
with the spread of PWCs relative to the OD stripe midlines
[23], as discussed above, we argue that it is the better option.
For convenience below we write the ratio of the experimental
value of λ‖/λ⊥ to our theoretical prediction of this quantity:

� = 0.85

2/
√

3
≈ 0.74. (2)

The width of a single OD stripe equals λ⊥. If we choose
the side length of the hexagon to be a = 2λ⊥/3, so that λ⊥
matches the experimental width, and set λ‖/λ⊥ to 0.85 to
accord with experiment, then this gives the values of a shown
in the fourth column in Table II.

2. PWC density

We next use our hexagonal array to predict the average pin-
wheel density and compare it with results from experiments.
In our vertical OD arrangement, the pinwheel density is

ρ = 4

3
√

3a2�
≈ 0.77

a2�
, (3)

where a is the side length of the hexagon, and � is the
ratio from Eq. (2), which is included here to accommodate

the effect of real OP map being compressed in the direction
parallel to the OD stripes. The value of a in the sixth column
of Table II is calculated from Eq. (3) with the experimental
pinwheel density shown in the second column.

Several points are worth noting in Table II: (i) the value for
humans is the experimental one in a region at 5◦ eccentricity
(i.e., the angular distance from the center of the visual field)
[47], and the pinwheel densities for other species are averaged
values over the whole measurement area in each reference;
(ii) cats and ferrets have patchy OD bands, rather than stripes,
so the stated OD width for these two animals is actually the
average diameter of the OD patches; (iii) ocular dominance
stripes are not found in tree shrew and mouse lemur, so the
corresponding OD width does not exist; (iv) the uncertainties
of the predicted values in the fifth, sixth, and seventh columns
are calculated from the uncertainties of the experimental data
(i.e., the data in the second, third, and forth columns of the
Table). This also explains why part of the a values do not
include any error bar.

3. Comparison with experimental data

We show the compatibility of our hexagonal lattice with
experimental maps by comparing the OD widths and pin-
wheel densities (i.e., fifth and sixth columns of Table II). We
conclude that the estimates of a from human, macaque and
galago OD widths and PWC densities are similar in each
case, although not always to within the indicated uncertain-
ties. This implies that our hexagonal lattice is a reasonable
semiquantitative approximation to the spatial structure of the
experimental OP and OD maps in these three species. For
ferret and cat the a values estimated from OD stripe width are
smaller than those estimated from pinwheel density. A likely
reason for the mismatch is that the OD pattern in these animals
actually consists of elongated patches with variable width and
length, rather than true stripes. Although some patches are
connected and form short parallel bands of a few millimeters,
the overall OD pattern is more irregular than the striped OD
arrangement in macaque [23,53–55], so the poorer agreement
is not surprising.

Figure 9(a) shows a color coded OD-OP map correspond-
ing to the hexagonal lattice with vertical OD arrangement
shown in Fig. 3(c). It is obtained by finding the OP angle φ1

around one PWC from [58]

φ1 = tan

(
y − yc

x − xc

)
, (4)

TABLE II. V1 pinwheel density (pinwheels mm−2), average OD stripe width (λ⊥), and the mean periodicity of OP (�) from various
experiments. And the pinwheel spacing a of the hexagonal lattice that is derived from these three data sets.

ρ (mm−2) λ⊥ (mm) � (mm) a from λ⊥ (mm) a from ρ (mm) a from � (mm)

Human [47] 2.24 1.17 ± 0.08 1.43 ± 0.12 0.78 ± 0.05 0.68 0.65 ± 0.05
Macaque [25,48,49] 8.1 0.41 ± 0.03 0.695 0.27 ± 0.02 0.36 0.32
Galago [48,50,51] 6.64 0.53 ± 0.12 0.68 0.35 ± 0.08 0.39 0.31
Ferret [50,52,53] 4.16 ± 0.11 0.41 ± 0.14 0.87 0.28 ± 0.09 0.50 ± 0.01 0.40
Cat [52,54–56] 2.5 ± 0.5 0.6 ± 0.1 1.01 0.40 ± 0.07 0.66 ± 0.06 0.46
Tree shrew [48,57] 9.6 – 0.62 – 0.33 0.28
Mouse lemur [48] 10.8 – 0.54 – 0.31 0.25
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FIG. 9. Combined feature maps. (a) OP-OD map corresponding
to the hexagonal lattice with vertical OD stripes as shown in Fig. 3(c).
Positive and negative PWCs are marked by + and − signs. Black
dotted lines denote the OD borders and the white lines outline one
hypercolumn. The color bar indicated the orientation preference in
degrees. (b) OP-DP map of one hexagon extracted from (a). OP is
color coded and DP is shown by arrows. The white lines indicate DP
fractures and the dashed lines indicate zero DP selectivity. Positive
and negative PWCs are marked. (c) Examples of DP fractures that
parallel OP contours (solid lines) and intersect OP contours (dashed
lines) overlaid on colored OP contours. The color bar indicates the
OP in degrees.

FIG. 10. Power spectrum of the hexagonal lattice of OP shown
in Fig. 9(a). The color bar indicates the squared amplitude.

where (xc, yc) are the coordinates of the PWC, then reflecting
the resulting pattern across axes of symmetry to obtain the
OP near neighboring pinwheels. The PWCs are located at
the vertices of each hexagon, six of which are marked +
(for positive pinwheels) and − (for negative pinwheels). The
white border outlines a hypercolumn with four pinwheels and
the dashed lines are the OD borders. Figure 9(b) shows DP
arrows overlaid on an OP map of one hexagon extracted from
frame (a). DP reverses direction across fractures (white lines),
and loci of zero DP selectivity are marked by dashed white
lines. Figure 9(c) shows DP discontinuities overlaid on OP
contours to parallel the experimental results in Fig. 7 (i.e., the
numbered sites). This emphasizes the tendency for disconti-
nuities to either follow OP contours, especially near PWCs, or
sometimes to intersect them at ∼90◦ well away from PWCs.

4. Consistency of PWC density and spacing

Finally, we compare the PWC density in the hexagonal
lattice in Eq. (3) with the PWC density derived in previous
studies [48,50,52], which argued for a universal PWC density
in aperiodic arrangements of PWCs, expressed in terms of the
mean periodicity � of OP, independent of species, with

ρ = π

�2
. (5)

Equations (3) and (5) are equivalent if

� =
(

3π�
√

3

4

)1/2

a ≈ 1.86a. (6)

Since � is the mean periodicity of OP, we can estimate it for
our hexagonal lattice. We do so via Fourier analysis of the
hexagonal lattice in Fig. 9(a) [25,50,59]. First, we compute
the power spectrum of the hexagonal lattice as the squared
amplitude of its Fourier transform, and the resulting spectrum
is shown in Fig. 10. It has six peaks arranged in hexagon and
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the magnitude of the corresponding k is

k0 = 4π

3a
√

3
. (7)

As we mentioned earlier, the experimental map corre-
sponds to compressing the hexagonal lattice by a factor of
� [i.e., Eq. (2)] in the vertical direction. In order to take this
factor into account, the components of k in the Fourier domain
are stretched by a factor of 1/� in the vertical direction. If we
denote the stretched |k| by k, then the top and bottom k modes
in Fig. 10 have squared wave number

k2
1 =

(
k0

�

)2

, (8)

and the other four modes have squared wave number

k2
2 = k2

0

4

(
3 + 1

�2

)
. (9)

The averaged value of k2 is then

〈k2〉 = 1

6

(
2k2

1 + 4k2
2

) = k2
0

2

(
1 + �2

�2

)
. (10)

The mean periodicity of OP is evaluated via

� = 2π/
√

〈k2〉, (11)

= 3

√
3

2

�√
1 + �2

a, (12)

≈ 2.19a. (13)

The estimate of � from Eq. (6) is only 15% smaller than
that from Eq. (13), which is acceptable, given that we are
dealing with a specific regular lattice, whereas the expression
in Eq. (5) was postulated for irregular ones. Moreover, the
experimentally measured pinwheel densities had deviations of
up to ∼10% from π/�2, which further supports consistency
with Eqs. (6) and (13). We use the above equation to compute
a from the experimental � listed in the fourth column of
Table II. The resulting a values in the last column are similar
to the ones obtained from pinwheel densities, thus implying
that the hexagonal lattice with vertical OD stripes is also
semiquantitatively consistent with these data.

D. Selectivities

As noted above, the OD, OP, and DP selectivities vary with
cortical location and relate to the OD-OP-DP map topology.
The main features are

(i) OD selectivity peaks at the midlines of OD stripes and
falls off toward their borders [23,24]. If we define a net OD se-
lectivity (right minus left) νOD, normalized to unit maximum,
then we can approximate νOD for illustrative purposes as being
sinusoidal with extremums located at the centers of the OD
bands:

νOD = sin

(
2πx

3a

)
, (14)

where a is the side length of the hexagon. Figure 11(a) plots
the OD selectivity in one hexagon. Black and white represent

FIG. 11. OD, OP, and DP selectivity in one hypercolumn with
PWCs located at the vertices and a = 1 mm. The red lines outline
one hyper column and the dashed lines are the OD border. Four
positive and negative OP pinwheels are marked by the + and − signs.
(a) OD selectivity map with black and white indicate left and right
OD respectively. (b) OP selectivity map with zero selectivity around
PWCs and high selectivity elsewhere. (c) DP selectivity map. Zero
selectivity occurs along the DP fractures (i.e., hexagon sides) and the
perpendicular bisectors of these fractures.
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left and right OD selectivity, respectively, and the dashed line
is the OD border, where νOD = 0 and the overall response
is binocular. The centers of OD stripes are located at x =
±3a/4.

(ii) OP selectivity is low around PWCs, and initially in-
creases roughly linearly with radial distance before saturating
after 100–200 µm [25,26,29]. We thus approximate the OP
selectivity νOP for illustrative purposes as

νOP =
6∏

i=1

[
1 − exp

(−|r − ri|
r0

)]
, (15)

where the ri are the vertices of the hexagon, r0 = 80 µm
parametrizes the low OP selectivity around each PWC
[10,32,33,60]. The resulting map in Fig. 11(b) shows that OP
selectivity is relatively uniform away from PWCs. It is clear
from the figure that the low selectivity regions are around the
six pinwheel centers. Furthermore, the selectivity increases as
one moves away from the PWCs and reaches a maximum in
the center of the hexagon, where OP varies smoothly.

(iii) DP selectivity is low at fractures and reverses sharply
across these fractures [9,10,35]. Furthermore, DP selectivity
is zero along perpendiculars to the midpoints of DP fractures,
as was discussed in Sec. III B. We thus approximate the DP
selectivity νDP as

νDP =
3∏

i, j=1

|r · ui|
a

∣∣∣∣
(

r
a

− ui

)
· m j

∣∣∣∣
∣∣∣∣
(

r
a

+ ui

)
· m j

∣∣∣∣, (16)

for illustrative purposes where ui and m j are unit vectors
that point from the center of the hexagon toward the three
vertices located at (1/2,

√
3/2), (1,0), and (1/2,−√

3/2)
and the three edge midpoints at (0,

√
3/2), (3/4,

√
3/4), and

(3/4,−√
3/4). We take the absolute value of the dot product

in order to define the selectivity to be positive. This gives
the DP selectivity map shown in Fig. 11(c), which we have
normalized to unit maximum. A few features worth noting
are: (i) the DP fractures at hexagon sides have zero selectivity
where the DP reverses, consistent with the low selectivity
observed experimentally at these fractures [10,11], given that
neurons have nonzero size and measurements have limited
spatial resolution; and (ii) the selectivity is also zero at the
midlines that are perpendicular to the hexagon sides, so we
predict that it should be low in the center of the hexagon where
OP selectivity is high. We are not aware of any published
experiments on this point, but hope that the present work will
motivate quantitative tests.

IV. SUMMARY AND DISCUSSION

In this study, we have analyzed the possible topologies
of the combined OD-OP-DP map by requiring mutual con-
sistency, periodicity, and maximum symmetry. The main
findings are:

(i) We have combined the characteristics of OD, OP,
and DP maps from various experiments into a hypercolumn,
within which all possible values of these feature preferences
occur. In general, each hypercolumn contains parallel left and
right OD stripes with a pair of OP pinwheels of opposite sign
in each stripe. DP at each location is perpendicular to its OP

and each pinwheel center has an odd number DP fractures
originating from it.

(ii) We considered triangular, square, and hexagonal hy-
percolumn lattices as underlying possible OD-OP-DP map
topologies. The requirement of mutually consistent and sym-
metric layout of OD, OP and DP maps has restricted the
only possible lattice to be the hexagonal case with vertical
OD bands, as shown in Fig. 3(c). The triangular lattice is
eliminated because it can not satisfy the requirement of having
nearest neighboring pinwheels with opposite signs.

(iii) We demonstrated that there must be an odd number
of DP fractures originating from each pinwheel center, in
order to cover the full 360◦ of DP in a pair of connected
pinwheels. Furthermore, our arrangement also shows that the
DP selectivity vanishes in the middle of each DP fracture that
connects two PWCs. This explains the petering-out of some
DP fractures seen in experiments and sudden ∼90◦ bends in
others. The fourfold symmetry of the square lattice is not
consistent with an odd number of DP fractures emanating
from each PWC, and thus is eliminated. Threefold symmetry
in a hexagonal lattice, with three fractures emanating from
each PWC, is possible and is the most symmetric case. One
fracture per PWC is less symmetric, while other odd numbers
of fractures per PWC would not be compatible with the sym-
metry of any regular lattice.

(iv) We predict that a second type of DP fracture will em-
anate perpendicularly from the midpoints of fractures that link
PWCs, and cross OP contours at approximately 90◦. Together,
these fractures and the ones from Point (iii) account for the
experimentally observed relationships between OP contours
and DP fractures, including the frequent occurrence of ∼90◦
changes of observed direction in the latter between PWCs.

(v) Our idealized hexagonal lattice has been compared with
experimental data and shown to provide a close match. By
adjusting the spacing of PWCs, our lattice matches the ex-
perimental OD stripe width and pinwheel densities of human,
macaque monkey, and galago. However, there are mismatches
for cat and ferret, probably because these two species have
patchy regions of OD preference, rather than stripes, and this
is not consistent with our approximation of straight, paral-
lel OD bands. Furthermore, because tree shrews and mouse
lemurs lack apparent OD structure, we cannot evaluate OD
stripe width for these two animals. Nevertheless, these species
show good agreement for the pinwheel density and mean
OP periodicity. In all cases, the mean PWC density and OP
periodicity are approximately related by Eqs. (7)–(13), which
were previously derived for aperiodic cases [48,50,52].

(vi) The OD, OP, and DP selectivities within each hy-
percolumn are discussed in terms of cortical location. Near
pinwheel centers the OP and DP selectivity are both low,
while OD selectivity is low on the boundaries between OD
columns. Likewise, DP selectivity is low near DP fractures,
despite OP selectivity being high in those regions except near
PWCs.

Overall, we have constructed an idealized, maximally sym-
metric hexagonal lattice with a mutually consistent combined
OD-OP-DP map. The hexagonal lattice topology also re-
produces previous findings that the layout of OP regions
is approximately hexagonal [43,44]. This work can serve
as a basis for future studies the effects of adding perturba-

064401-10



MUTUAL CONSISTENCY OF MULTIPLE VISUAL FEATURE … PHYSICAL REVIEW E 107, 064401 (2023)

tions to the regular hexagonal lattice to model more realistic,
somewhat irregular, feature maps and to derive an analyti-
cal operator for combined OD-OP-DP feature detection, and
its map to the surface of V1. Other future directions could
include: (i) the modeling of neural dynamics in V1 that pro-
duces the desired combined map topology; (ii) extending the
regular lattice model to incorporate the patchy OD bands
via considering the skewed long-range connections in V1
[61]; (iii) including the effect of the retinotopic map in the
current model. Experimental tests of symmetries and depar-
tures therefrom could involve compilation of statistics of the

numbers of fractures per PWC and the relationship between
fracture direction and OD column direction, and simultaneous
mapping of OD, OP, and DP selectivity and their dependence
on fracture location.
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