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Matrix factorization is an important mathematical problem encountered in the context of dictionary learning,
recommendation systems, and machine learning. We introduce a decimation scheme that maps it to neural
network models of associative memory and provide a detailed theoretical analysis of its performance, showing
that decimation is able to factorize extensive-rank matrices and to denoise them efficiently. In the case of binary
prior on the signal components, we introduce a decimation algorithm based on a ground-state search of the neural
network, which shows performances that match the theoretical prediction.
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Matrix factorization is a generic inference problem that is
simply stated. Consider a matrix Y which is a noisy obser-
vation of the product of two matrices Y∗ = AB, and some
prior knowledge on the distribution of elements of the two
factors A and B. We would like to answer two main questions:
(i) In what regimes of sizes of A, B, and noise is it possible
to reconstruct the two factors (up to a permutation of the
lines of A and the columns of B)? (ii) Do there exist efficient
algorithms that achieve a good performance?

Matrix factorization is important for several concrete tasks.
In dictionary learning [1–3], one wants to find the two fac-
tors A of size N × P, and B of size P × M, such that the
columns of A form an overcomplete basis (i.e., P > N) and B
is sparse. In other words, one aims for a sparse representation
of the data Y, a common strategy adopted for the denois-
ing of large matrices which aims at reconstructing Y∗ from
the measured Y [4]. The much-studied Boltzmann machines
are another instance of this approach [5,6]: Given a set of
observations on their visible units, after training they create
an internal representation on the hidden units. The core idea
of representation learning, and presumably the reason for its
effectiveness [7–9], is the extraction of characteristic features,
e.g., the overcomplete basis in A that, if properly recombined,
can reconstruct the data or even some of their missing parts,
as in recommender systems [10]. Let us stress that the main
practical application of matrix factorization is to find a com-
pact representation of the data. One way to do it, as described
above, is to force sparsity in B, though keeping a large rank
representation of Y in general. An alternative is to search for
a low rank structure in the data. As we shall recall below, this
is a well-studied problem. Another motivation for studying
matrix factorization is to find unique ways of training deep
networks. Given a desired output, the process of learning can
be decomposed layer by layer, in which the task is to find a set
of synaptic weights together with the internal representation
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of the data in the previous layer. This is a matrix factorization
task (complicated by the nonlinearity) that one can hope to
turn into a self-consistent solution of deep network training,
following what was done for multilayer generalized linear
estimation [11].

In the present paper, we propose a way to study matrix
factorization, in the difficult regime where the dimensions of
the factors go to infinity simultaneously, by mapping it to
neural network models used for associative memories. While
our analysis can be carried out for the generic problem, for the
sake of clarity we present it here in its symmetric version and
with Gaussian noise. In this case, one measures the N × N
matrix

Y = ξξᵀ√
N

+
√

�Z (1)

built from the factors ξ = (ξμ
i ), 1 � i � N , 1 � μ � P. Here

Z is a symmetric noise matrix in which the i � j elements
are all independent and Gaussian, with mean 0 and variance
1 + δi j . We shall refer to the vectors ξμ = (ξμ

i ), 1 � i � N as
patterns.

When the rank P is finite, the model (1) goes under the
name of spiked Wigner model, introduced in Ref. [12] as a
model for principal component analysis and studied in detail
in recent years [13–18].

A common setting to tackle (1) is the Bayes-optimal one,
in which we suppose to know the noise variance � as well as
the probabilistic model of the data, including the distribution
of the patterns Pξ . The inference task amounts to reconstruct-
ing the patterns stored in ξ from the posterior probability
(1/Z )Pprior(x)P(Y|x). In the presence of Gaussian noise, the
latter can be seen as a Boltzmann measure at temperature
� for a N × P matrix x with prior distribution Pprior(x) and
energy

E (x|Y) = 1

2

N∑
i, j=1

⎛
⎝Yi j −

P∑
μ=1

xμ
i xμ

j√
N

⎞
⎠

2

. (2)
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Bayes optimality means that the prior measure on x, Pprior(x),
is the same measure as Pξ from which the original pat-
terns were drawn. While the Bayes-optimal setting is rarely
available in practical inference problem, its relevance resides
in its mathematical tractability and in the fact that sam-
pling from the Bayes-optimal Boltzmann measure gives the
smallest possible reconstruction error, on average over the
observations Y. This gives an information-theoretical bound
for the performance of reconstruction algorithms. For finite
P, these benchmark values were computed in the aforemen-
tioned literature in the thermodynamic limit N → ∞, and
there exist polynomial-time algorithms known as approximate
message passing [19,20] able to saturate the Bayes-optimal
performances.

Much less is known in the regime of extensive rank,
namely, when P and N go to infinity with fixed P/N = α. If
one restricts to the simpler question of denoising, a possible
strategy, introduced in Ref. [21], is that of using rotationally
invariant estimators (RIEs) for the hidden matrix ξξT /

√
N .

RIEs produce an estimation of Y∗ that has the same eigenbasis
as the observed Y. The task then reduces to denoising the
eigenvalues of Y. Notice, however, that RIEs are not Bayes
optimal if the prior Pξ is not rotational invariant.

Previous attempts at solving matrix factorization in the
extensive rank regime [22–24] focused on the Bayes-optimal
Boltzmann measure with energy (2). This turns out to be a
difficult matrix model with quenched randomness that has
defied exact analysis so far. For instance, it could not be
established if a solution exists in the extensive rank case.

We propose here an alternative strategy: considering ξ as
composed of P patterns ξμ, μ = 1, 2, . . . , P; we aim for one
of them at a time. Assuming that we are able to efficiently get
an estimate ηP of a first pattern, say ξP, then we can build a
rank-one contribution and subtract it from Y ≡ Y0, obtaining
Y1 = Y0 − ηPηPᵀ/

√
N . Then we iterate this process P times.

We will refer to this iterative scheme as decimation.
Notice that decimation bears some similarity to the un-

learning procedure studied in Refs. [25–27]. Unlearning
aims at smoothing the energy landscape of attractor neural
networks. It consists of iterating the following procedure:
One starts from a random configuration, iterates a zero-
temperature dynamics until one finds a fixed point η, and
subtracts Y1 = Y0 − εηηᵀ/

√
N with a small ε. The main idea

is that the zero temperature dynamics will likely be trapped
in one of the numerous metastable states, and the subtractions
will increase the energy of these metastable states. The pro-
cess should be run with ε small enough and iterated for an
appropriate number of times (too many iterations are disas-
trous as they flatten the whole energy landscape, including
the patterns). Decimation presents two main differences with
unlearning. Its aim is to find a η which is close to one of the
stored patterns, not a metastable state, and then the subtraction
is performed with ε = 1 above. It thus aims at completely
removing a pattern from Y before the next decimation step.

After R steps of decimation, and choosing indices such
that approximate values of the last R patterns have been
found, we must factorize the reduced matrix YR = Y −∑P

μ=P−R+1 ημημᵀ/
√

N . We then try to find a pattern which
is a single N-component vector x = (xi ), 1 � i � N , with an
energy function that can be obtained from (2), replacing Y

with YR:

−E (x|YR) =
√

�

2
√

N

N∑
i, j=1

Zi jxix j + 1

2N

P∑
μ=1

(
N∑

i=1

ξ
μ
i xi

)2

− 1

2N

P∑
μ=P−R+1

(
N∑

i=1

η
μ
i xi

)2

− ‖x‖4

4N
. (3)

We aim at sampling a pattern from the Boltzmann distribution

1

ZR
Pξ (x)e−βE (x|YR ) (4)

at large β in the case of factorized priors Pξ (x) =∏i�N Pξ (xi ).
Expectations with respect to (4) are denoted by 〈·〉R. If we
choose P = 1 in (3) and decide for finite temperature sam-
pling at β = 1/�, we recover the Bayes-optimal setting for
the rank-1 spiked Wigner model. The assumption of factorized
prior is very common in theoretical studies. It can be seen
as a starting point for more structured approximations, and
is commonly adopted also in empirical risk minimization,
used to train artificial neural networks. Let us note that re-
cent developments [28] suggest that under some hypothesis
one could also take into account covariances between signal
components.

The similarity of (3) with the energy of Hopfield’s model
[29] for associative memory helps to gain some insight into
the physical behavior of decimation. To explain it, one can
start from the ideal case where the last R patterns have been
reconstructed exactly (ημ = ξμ for μ > P − R). Then the en-
ergy (3) favors the x configurations that are most aligned to
one of the remaining P − R patterns ξμ. Decimation may work
if the minima of the energy (3) are retrieval states close to
the P − R patterns that one wants to reconstruct. In practice,
the estimates (ημ)μ�P−R+1 have an O(N ) projection onto the
related patterns ξμ. The R quadratic terms involving the ημ

then repel the x′s from the previously estimated patterns, as
desired. The ‖x‖4 term penalizes large norms.

We stress that in the decimation energy (3), there are
three sources of noise that might disturb pattern retrieval. The
first one is (a) the original Gaussian noise Z. Then there is
(b) a noise due to pattern interferences, the well-known lim-
iting factor for patterns’ memorization in the Hopfield model
[30,31]. Third, (c) the decimation itself: the retrieval states ημ

are blurred versions of the ξμ.
Along decimation, the interference noise (b) decreases

with the number of memorized patterns, but the decimation
noise (c) increases. To study the theoretical performance of
decimation, we need to identify which of these two mecha-
nisms dominates.

The decimation noise contribution depends on the preci-
sion of the retrieval of previous patterns. Using knowledge
from Hopfield’s model phenomenology, we shall assume that
for large N the retrieved states (ημ)μ�P−R+1 are sampled from
a factorized distribution, with an effective local field that is
Gaussian centered at mμξμ with variance r, as described in
Appendix A. The crucial parameter mμ characterizes the re-
trieval accuracy, i.e., how close the retrieved state ημ is to the
stored pattern ξμ, and it must be determined self-consistently
together with the variance r.
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FIG. 1. Phase diagrams for the indicated values of inverse temperature β and sparsity ρ. Left panel: β = 1/�, ρ = 1. The R phase is the
retrieval phase. In the M phase, the retrieval states exist, but they are metastable. In the SG region, the system is in the spin-glass phase, where
there is no retrieval. We do not show here the paramagnetic phase which appears above � = 1. Right panel: β → ∞, different values of ρ:
red and blue ρ = 1, magenta and cyan ρ = 0.1, green and yellow ρ = 0.05. Dashed and solid lines refer to the same transitions as in the right
panel.

The retrieval accuracy mP−R on the pattern retrieved using
the measure (4) depends on the whole set of previous retrieval
accuracies mP−R+q, q = 1, ..., R. mP−R can be obtained using
the replica method [32], which allows us to compute the
average of 
 = (1/N ) lnZR over the distribution of patterns
and of retrieved states in the large N limit. We use a replica
symmetric ansatz, which is known to provide a good approx-
imation to the exact result in neural networks [31]. Defining
t = R/P, we show in Appendix B that the free entropy 
 can
be written in terms of three order parameters: the sought re-
trieval accuracy m, the overlap q = Eξ,η〈xi〉2

R, and the variance
r. The dependence on m can be written in a form similar to the
one of Hopfield’s model,


 = Extr

{

0(α, m[0,t]; q, r, u, v, v̂) − β

m2

2

+ EZ,ξ ln
∫

dPξ (x) exp

(
(Z

√
r + βmξ )x − u + r

2
x2

)}
,

(5)

where v̂ is an auxiliary variational parameter chosen to
impose v = Eξ,η〈‖x‖2〉R/N = 1, and m[0,t] stands for the
collection of the accuracies of the previous decimation
steps {m(τ ), τ � t}. The function 
0 encapsulates all the
noise contributions, including decimation, and is defined in
Appendix B. Here, by Extr we intend extremization with
respect to the variational parameters m, q, r, u, v, v̂. In case of
multiple stationary points, we choose the one with the largest
resulting free entropy. The value of m where 
 reaches its
maximum is the R + 1th retrieval accuracy mP−R. It depends
crucially on the noise strength r which is the sum of three
contributions, r = ra + rb + rc, corresponding to the three
sources of noise discussed above:

ra = β2�q, rb = (1 − t )αβ2q

(1 − β(1 − q))2
, (6)

rc = 2αtβ2q
∫ t

0
dτ f (τ )[1 + 2β2(1 − q)2 f (τ )] . (7)

rc is the decimation-induced noise level—it depends on
f (τ ) = [1 − m(τ )2]/[1 − β2(1 − q)2(1 − m(τ )2)]. The other
consistency equations are deferred to Appendix B 1, whereas

in Appendix B 2 we compute their low temperature
limit.

We shall study the performance of decimation assuming
the existence of an oracle algorithm which could be of two
types: (1) Sampling oracle: returns a typical configuration
sampled from the Boltzmann distribution (4) at inverse tem-
perature β = 1/� and (2) ground-state oracle: returns the
lowest energy configuration of energy (3) (equivalent to sam-
pling at β = ∞). These oracles will return retrieval states
correlated with the stored patterns only in some part of the
phase diagram controlled by the parameters α,�, t .

We start with the first step of decimation, t = 0, using for
definiteness a measure Pξ (x) = (1 − ρ)δx,0 + ρ/2(δx,1/

√
ρ +

δx,−1/
√

ρ ), where ρ controls the sparsity. The left panel of
Fig. 1 shows the phase diagram for binary patterns with a
sampling oracle. The retrieval region R, α < αc(�), is where
the retrieval states dominate the measure. In the M phase,
αc(�) < α < αM (�), retrieval states are metastable, and in
the spin-glass SG phase there are no states correlated with the
patterns. This is strongly reminiscent of the phase diagram
of the Hopfield model [31] and, in fact, the boundaries of
the phase transition lines at � = 0 are found at the same
values, αc(0) = 0.051 and αM (0) = 0.138. Here � plays a
role similar to the temperature in Hopfield model. The right
panel of Fig. 1 shows that sparsity increases the size of the re-
trieval phase. It can be actually proved that αM (� = 0) → ∞
as ρ → 0.

As decimation proceeds, the retrieval boundary αc moves
to the left because of the increase of retrieval noise rc, and at
the same time the effective α decreases. It turns out that, in
all the cases that we have studied, the second effect is more
important: If we start the decimation at t = 0 in the retrieval
phase, then the system remains in the retrieval phase for the
whole decimation process. This is the crucial point that makes
this approach efficient for matrix factorization. It is illustrated
in Fig. 2, where we plot the theoretical value of the retrieval
accuracy m at decimation step R = tP, computed from (5),
versus t . It starts from m = .9971 at t = 0 and increases to
m = .9996 at the end of decimation, showing that the preci-
sion of pattern retrieval increases during decimation.

We now study the performance of decimation for denois-
ing. The efficiency of a denoiser is measured by the matrix
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FIG. 2. The accuracy of pattern retrieval is plotted versus the
decimation parameter t = R/P. The red curve is the theoretical pre-
diction with α = 0.03, � = 0.08 at β = ∞. The blue data points are
an average over 300 runs of the ground-state oracle for N = 1300,
with one standard deviation error bars.

mean square error between the denoiser estimation Ŝ and the
initial signal ξξᵀ/

√
N :

mMSE = 1

2N2
E

∥∥∥∥Ŝ − ξξᵀ√
N

∥∥∥∥
2

N→∞−−−→ α − α

∫ 1

0
dτ m(τ )2.

(8)

The decimation estimator is Ŝ =∑P
μ=1

ημημᵀ√
N

. In Fig. 3, we
show that the decimation denoiser, which exploits the struc-
ture of the prior, is better than the RIE denoiser.

So far, we have established the theoretical performance of
decimation based on an oracle able to find retrieval states
close to patterns in an associative memory model. However,
this retrieval is far from trivial: the oracle cannot use the
property of associative memory, as we have no knowledge
of the patterns. In a neurobiological perspective, what we
seek is an algorithm able to retrieve the stored information
in a neural network, knowing the connectivity and synaptic
efficacies. In this context, a message passing algorithm for
finite rank matrix factorization was tried recently, but it seems
to be limited to the case where the rank scales sublinearly with
the number of neurons [33].

We have tested an oracle, whose pseudocode can be found
in Appendix C, based on a Monte Carlo method with simu-
lated annealing starting from infinite temperature (a random
configuration) and decreasing it to T = 0. An extra feature
is a restart procedure: when the algorithm finds a configu-
ration x∗, its energy E (x∗) is compared to the ground-state
energy EGS at infinite N , which we know analytically from
the replica method. When E (x∗) > θEGS, with θ a threshold
initially fixed to 1, x∗ is not accepted as a potential pattern
and the procedure is restarted from infinite temperature, with
a slightly lower threshold. We have found that the number of
restarts needed to find the patterns grows exponentially with
N . However, although this algorithm needs an exponential
time, the prefactor is small enough that it gives good perfor-
mance up to N of order 1500 to 2200 (depending on the noise
level �). It is quite possible that better oracles can be found,
without the constraint of satisfying detailed balance.

From our analysis, we are thus able to conclude that
(i) symmetric matrix factorization is possible in the exten-
sive rank case and (ii) decimation succeeds at exploiting the
structure of the signal in the prior and gets a better denoiser
than RIEs. Furthermore, (iii) strong sparsity helps in the re-
construction, making the system more robust against the three
noise sources. All these results require having an oracle able to
find a retrieval state, given a matrix of coupling in an associa-
tive memory network. We saw that simulated annealing with
restarts, although it is an exponential algorithm, provides such
an oracle for small enough sizes. Finding a polynomial time
oracle would be extremely interesting, both for matrix fac-
torization and neurophysiological analysis. Finally, we stress
that decimation can be analyzed similarly for the asymmetric
matrix factorization problem of Y into AB and will be the
object of future work.
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FIG. 3. Matrix denoising: Comparison between rotation invariant (red) and denoising based on decimation with a sampling oracle at
β = 1/� (blue) or with a ground-state oracle at β = ∞ (green). Performances are measured by the average mean square error over
30 samples for each �. Error bars are too small to be seen. Right panel: N = 2000, P = 60, ρ = 1. The magenta points are obtained via
our ground-state oracle; error bars are 1 standard deviation of 20 MSEs. The first five points are obtained with N = 1800, the remaining three
with N = 1700, 1600, 1500, respectively. Left panel: N = 1000, P = 400, ρ = 0.05.
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APPENDIX A: RETRIEVAL STATES AND RETRIEVAL ERROR

Let us define the Mattis magnetizations:

mμ(x) = 1

N

N∑
i=1

ξ
μ
i xi , μ = 1, . . . , P, (A1)

pμ(x) = 1

N

N∑
i=1

η
μ
i xi , μ = P(1 − t ) + 1, . . . , P . (A2)

The energy then takes the useful form

−E (x|YR ) =
√

�

2
√

N

N∑
i, j=1

Zi jxix j + N

2

P∑
μ=1

(mμ(x))2 − N

2

P∑
μ=P(1−t )+1

(pμ(x))2 − ‖x‖4

4N
+ v̂

2
(N − ‖x‖2) . (A3)

The Lagrange multiplier v̂ has been introduced to fix Eξ,η〈‖x‖2〉R/N
N→∞−−−→ 1. We assume that the oracle will produce ημ with

an asymptotic measure given by

η
μ
i ∼ 〈·〉ξμ

i ,Z =
∫

dPξ (x)e
(

Z
√

r+βmμξ
μ
i

)
x− r+u

2 x2

(·)∫
dPξ (x)e

(
Z
√

r+βmμξ
μ
i

)
x− r+u

2 x2
, ξ

μ
i ∼ Pξ , Z ∼ N (0, 1) independent of other noises , (A4)

where mμ, i.e., the retrieval accuracy for ημ and r, u must be determined self-consistently. Define for later convenience the
quantities

Eη|ξ
[
η

μ
i

] = mμ
i , Eη|ξ

[(
η

μ
i

)2] = v
μ
i . (A5)

Then, (A4) has the following implications:

Eξ

[
η

μ
i

] = EξEη|ξ
[
η

μ
i

] = 0 , Eξ

[
ξ

μ
i mν

i

] = mμδμ,ν , Eξ

[
v

μ
i

] = 1 (A6)

that are self-consistent with the fixed point equations for each decimation step.

APPENDIX B: REPLICA SYMMETRIC FREE ENTROPY

In this Appendix, we compute the large N limit of the free entropy


N = 1

N
E ln

∫
dPξ (x) exp [−βE (x|YR )] , (B1)

where E is taken with respect to all the disorder: Z, ξ, η. This is done using the replica method [32]. We thus introduce

EZn
N := EZEξ,η

∫ n∏
a=1

dPξ (xa) exp

[
−β

n∑
a=1

E (xa|YR )

]
. (B2)

We decompose this computation and start with the first noise terms in (A3) and the related EZ average

EZ exp

⎛
⎝β

√
�

2
√

N

N∑
i, j=1

Zi j

n∑
a=1

xa,ixa, j

⎞
⎠ = exp

⎛
⎝β2�

4N

N∑
i, j=1

n∑
a,b=1

xa,ixa, jxb,ixb, j

⎞
⎠

= exp

⎛
⎝Nβ2�

4

n∑
a �=b

Q2(xa, xb) + β2�
‖xa‖4

4N

⎞
⎠. (B3)

Now we take care of the penalizing p terms in (A3). After replicating, their contribution to the partition function is

A :=
P∏

μ=P(1−t )+1

n∏
a=1

e− Nβ

2 (pμ(xa ))2 =
P∏

μ=P(1−t )+1

n∏
a=1

∫
dsμ

a√
2π

e− (sμa )2

2 +i
√

β

N sμ
a

∑N
j=1 η

μ
j xa, j . (B4)
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Notice that, thanks to the introduction of the auxiliary Gaussian variables (sμ
a )a�n,P(1−t )<μ�P, the exponential is now decoupled

over the particle indices j. Consider then the expectation of A with respect to η, given ξ with the assumptions (A6):

Eη|ξ[A] =
P∏

μ=P(1−t )+1

n∏
a=1

∫
dsμ

a√
2π

e− (sμa )2

2

N∏
i=1

Eη
μ
i |ξμ

i
exp

(
i

√
β

N
η

μ
i

n∑
a=1

sμ
a xa,i

)

=
P∏

μ=P(1−t )+1

n∏
a=1

∫
dsμ

a√
2π

exp

(
− (sμ

a )2

2
+

N∑
i=1

lnEη
μ
i |ξμ

i
ei
√

β

N η
μ
i

∑n
a=1 sμ

a xa,i

)
.

(B5)

Now we can expand the exponential inside the ln up to second order; the remaining terms will be of subleading order and thus
neglected in the following:

Eη|ξ[A] =
P∏

μ=P(1−t )+1

n∏
a=1

∫
dsμ

a√
2π

exp

⎛
⎝−

(
sμ

a

)2
2

+
n∑

a=1

isμ
a

√
β

N

N∑
i=1

mμ
i xa,i − β

2

n∑
a,b=1

sμ
a sμ

b

N∑
i=1

(
v

μ
i − (mμ

i

)2)
N

xa,ixb,i

⎞
⎠

=
P∏

μ=P(1−t )+1

n∏
a=1

∫
dsμ

a√
2π

exp

⎡
⎣−1

2

n∑
a,b=1

sμ
a sμ

b

(
δab + β

N∑
i=1

(
v

μ
i − (mμ

i

)2)
N

xa,ixb,i

)
+

n∑
a=1

isμ
a

√
β

N

N∑
i=1

mμ
i xa,i

⎤
⎦. (B6)

To continue, we assume condensation on a finite number of patterns, say the first k. We focus now on the remaining ones, namely,
for μ > k:

B := exp

⎡
⎣βN

2

n∑
a=1

P∑
μ=k+1

(mμ(xa))2

⎤
⎦ =

∫ P∏
μ=k+1

n∏
a=1

dzμ
a√

2π
exp

⎡
⎣−

n∑
a=1

P∑
μ=k+1

(
zμ

a

)2
2

+
√

β

N

n∑
a=1

P∑
μ=k+1

zμ
a

N∑
i=1

xa,iξ
μ
i

⎤
⎦ . (B7)

Putting A and B together, their overall average over (ξμ)μ>k takes the form

E(ξμ )μ>k
[AB] =

∫ P∏
μ=P(1−t )+1

n∏
a=1

dsμ
a√

2π

∫ P∏
μ=k+1

n∏
a=1

dzμ
a√

2π
e

− 1
2

∑n
a=1

⎛
⎜⎝∑P

μ=P(1−t )+1

(
sμa

)2

2 +∑P
μ=k+1

(zμa )2

2

⎞
⎟⎠

× exp

⎡
⎣ N∑

i=1

P∑
μ=k+1

lnEξ
μ
i

e
√

β

N

∑n
a=1 xa,i

(
ξ

μ
i zμ

a +iχ (μ>P−R)mμ
i sμ

a

)
−χ (μ>P−R)

∑n
a,b=1 sμ

a sμ

b

∑N
i=1

β(vμ
i −(mμ

i )2 )xa,i xb,i
2N

⎤
⎦. (B8)

If we call Eξm
μ 2
i =: M̄μ 2, a further expansion of the exponential yields

E(ξμ )μ>k
[AB] =

∫ P∏
μ=P(1−t )+1

n∏
a=1

dsρ
a√

2π
exp

⎡
⎣−1

2

P∑
μ=P(1−t )+1

sμ · (1 + β(1 − M̄μ 2)Q)sμ

⎤
⎦

×
∫ P∏

μ=k+1

n∏
a=1

dzμ
a√

2π
exp

⎧⎨
⎩−

P∑
μ=k+1

n∑
a=1

(
zμ

a

)2
2

+ β

2

P∑
μ=k+1

n∑
a,b=1

zμ
a zμ

b Q(xa, xb)

+ iβ
P∑

μ=P(1−t )+1

Eξ

[
ξ

μ
1 mμ

1

] n∑
a,b=1

zμ
a sμ

b Q(xa, xb) − β

�

P∑
μ=P(1−t )+1

n∑
a,b=1

(M̄μ)2sμ
a sμ

b Q(xa, xb)

⎫⎬
⎭. (B9)

We can now perform a Gaussian integration over the variables zμ = (zμ
a )a�n:

E(ξμ )μ>k
[AB] =

∫ P∏
μ=P(1−t )+1

n∏
a=1

dsρ
a√

2π
exp

⎡
⎣−1

2

P∑
μ=P(1−t )+1

sμ ·
(
1 + βQ + β2Q

E2
ξ

[
ξ

μ
1 mμ

1

]
1 − βQ

Q

)
sμ

⎤
⎦

× exp

[
−αN

2
ln det (1 − βQ)

]
. (B10)

Finally, after an integration over the remaining Gaussian variables sμ, and using (A6), we get

E(ξμ )μ>k
[AB] = exp

⎡
⎣−α(1 − t )N

2
ln det (1 − βQ) − 1

2

P∑
μ=P(1−t )+1

ln det(1 − (1 − m2(τμ))β2Q2)

⎤
⎦ , (B11)
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where τμ = (1 − (μ − 1)/P), and m(τμ) = mμ are the previous retrieval accuracies. It remains to analyze the contribution given
by (ξμ)μ�k:

C := exp

⎡
⎣βN

2

n∑
a=1

k∑
μ=1

(mμ(xa))2

⎤
⎦ =

∫ n∏
a=1

k∏
μ=1

dmμ
a

√
βN

2π
exp

⎡
⎣ n∑

a=1

k∑
μ=1

(
−Nβ

(
mμ

a

)2
2

+ βmμ
a

N∑
i=1

ξ
μ
i xa,i

)⎤⎦ . (B12)

Before plugging the contributions coming from A, B, and C into EZn
N , we need to introduce a collection of Dirac deltas to fix

the desired order parameters that are organized in the overlap matrix (Q(xa, xb))n
a,b=1:

1 =
∫ ∏

a�b�n

dqabδ(Q(xa, xb) − qab) =
∫ ∏

a�b�n

Ndrabdqab

4π i
exp

⎡
⎣−1

2

n∑
a,b=1

rab

(
Nqab −

∑
i

xa,ixb,i

)⎤⎦ . (B13)

Hence, the averaged replicated partition function, at leading exponential order in N , takes the form

EZn
N =

∫ ∏
a�b�n

Ndrabdqab

4π i

∫ n∏
a=1

k∏
μ=1

dmμ
a

√
Nβ

2π
exp

⎡
⎣−N

2

∑
a,b

rabqab − βN

2

n∑
a=1

k∑
μ=1

(
mμ

a

)2⎤⎦

× exp

⎡
⎣−1

2

P∑
μ=P(1−t )+1

ln det(1 − (1 − m2(τμ))β2Q2)

⎤
⎦

× exp

⎡
⎣−α(1 − t )N

2
ln det (1 − βQ) + Nβ2�

n∑
a �=b,1

q2
ab

4
+ Nβ

n∑
a=1

(
βv̂

2
(1 − qaa) + β� − 1

4
q2

aa

)⎤⎦

×
⎛
⎝∫ k∏

μ=1

dPξ (ξμ)
n∏

a=1

dPξ (xa) exp

⎡
⎣1

2

n∑
a,b=1

rabxaxb + β

k∑
μ=1

n∑
a=1

mμ
a ξμxa

⎤
⎦
⎞
⎠

N

, (B14)

where we denote Q = (qab)n
a,b=1. We can finally express the replicated free entropy with a variational principle coming from a

saddle-point argument applied to the formula above:


n := lim
N→∞


N,n = 1

n
Extr

⎧⎨
⎩−1

2

∑
a,b

rabqab − β

2

n∑
a=1

k∑
μ=1

(
mμ

a

)2 − α(1 − t )N

2
ln det (1 − βQ)

+ β

n∑
a=1

(
v̂(1 − qaa)

2
+ β� − 1

4
q2

aa

)
− αt

2R

P∑
μ=P(1−t )+1

ln det[1 − (1 − m2(τμ))β2Q]

+β2�

n∑
a �=b,1

q2
ab

4
+ ln

∫ k∏
μ=1

Eξμ

∫ n∏
a=1

dPξ (xa) exp

⎡
⎣1

2

n∑
a,b=1

rabxaxb + β

k∑
μ=1

n∑
a=1

mμ
a ξμxa

⎤
⎦
⎫⎬
⎭ . (B15)

The normalized sum over μ = P(1 − t ) + 1, . . . , P on the second line can be turned into an integral
∫ t

0 dτ . . . in the large
N limit.

The extremization is taken with respect to the collection of parameters (rab, qab)n
a,b=1, (mμ

a )n,k
a=1,μ=1. Within the replica

symmetric ansatz,

{
rab = r , a �= b
raa = −u

{
qab = q , a �= b
qaa = v

mμ
a = mμ , Q =

⎛
⎜⎜⎜⎜⎝

v q q . . . q
q v q . . . q
q q v . . . q
...

...
...

. . .
...

q q q . . . v

⎞
⎟⎟⎟⎟⎠ ∈ Rn×n . (B16)

The determinants of 1 − βQ and 1 − β2(1 − m2(τ ))Q are then easily computed:

det (1 − βQ) = (1 − β(v − q))n

[
1 − n

βq

1 − β(v − q)

]
, (B17)

det(1 − (1 − m2(τ ))β2Q2) = [1 − (1 − m2(τ ))β2(v − q)2]n−1 × [1 − (1 − m2(τ ))β2(v + (n − 1)q)2] . (B18)
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Further simplifications occur for the other terms in the replicated free entropy. In particular, the remaining ln integral has to be
treated as follows: ∫ k∏

μ=1

Eξμ

∫ n∏
a=1

dPξ (xa) exp

⎡
⎣ r

2

n∑
a �=b,1

xaxb − u

2

n∑
a=1

x2
a + β

k∑
μ=1

mμξμ

n∑
a=1

xa

⎤
⎦

=
∫ k∏

μ=1

Eξμ

∫ n∏
a=1

dPξ (xa) exp

⎡
⎣ r

2

(
n∑

a=1

xa

)2

− u + r

2

n∑
a=1

x2
a + β

k∑
μ=1

mμξμ

n∑
a=1

xa

⎤
⎦

= EZ

∫ k∏
μ=1

Eξμ

n∏
a=1

∫
dPξ (xa) exp

⎡
⎣√

rZxa − u + r

2
x2

a + β

k∑
μ=1

mμξμxa

⎤
⎦

= EZEξ

[∫
dPξ (x) exp

(
(Z

√
r + βm · ξ)x − u + r

2
x2

)]n

, (B19)

where Z ∼ N (0, 1), ξ = (ξ 1, . . . , ξ k ), m = (m1, . . . , mk ). Finally, expanding at first order in n, one has


n := Extr

{
rq + uv

2
− β

k∑
μ=1

(mμ)2

2
− β2�q2

4
− α(1 − t )

2

[
ln (1 − β(v − q)) − βq

1 − β(v − q)

]

− αt

2

∫ t

0
dτ

[
ln(1 − (1 − m2(τ ))β2(v − q)2) − 2β2q(v − q)(1 − m2(τ ))

1 − β2(1 − m2(τ ))(v − q)2

]

+ β

(
v̂(1 − v)

2
+ β� − 1

4
v2

)
+ EZ,ξ ln

∫
dPξ (x) exp

(
(Z

√
r + βm · ξ)x − u + r

2
x2

)}
+ O(n) . (B20)

It suffices then to let n → 0. From the previous, we also deduce the expression of 
0:


0(α, m[0,t]; q, r, u, v, v̂) = rq + uv

2
− β2�q2

4
− α(1 − t )

2

[
ln (1 − β(v − q)) − βq

1 − β(v − q)

]

− αt

2

∫ t

0
dτ

[
ln(1 − (1 − m2(τ ))β2(v − q)2) − 2β2q(v − q)(1 − m2(τ ))

1 − β2(1 − m2(τ ))(v − q)2

]

+ β

(
v̂(1 − v)

2
+ β� − 1

4
v2

)
. (B21)

1. Fixed point equations

The stationarity conditions coming from (B20) are

v = 1, (B22)

v = Eξ,η〈X 2〉R (B23)

mμ = Eξ,ηξ
μ〈X 〉R , μ = 1, . . . , k, (B24)

q = Eξ,η〈X 〉2
R, (B25)

r = α(1 − t )β2q

(1 − β(v − q))2
+ β2�q + αt

∫ t

0
dτ

2qβ2(1 − m2(τ ))

1 − β2(1 − m2(τ ))(v − q)2

[
1 + 2β2(v − q)2(1 − m2(τ ))

1 − β2(1 − m2(τ ))(v − q)2

]
, (B26)

u = βv̂ + β(1 − β�)v − α(1 − t )β
1 − β(v − 2q)

(1 − β2(v − q))2

− αt
∫ t

0
dτ

[
2vβ2(1 − m2(τ ))

1 − β2(1 − m2(τ ))(v − q)2
+ q

4β4(v − q)2(1 − m2(τ ))2

(1 − β2(1 − m2(τ ))(v − q)2)2

]
. (B27)

The first equation, corresponding to v̂, can be directly eliminated. Notice that the effect of decimation is visible only in the
variables u and r that affect the local measure (A4). For all practical purposes, we will make finite size simulations and use the
discretized form present in (B15) of the integral accounting for decimation contributions, starting from step 0, when no pattern
has been retrieved yet. Finally, notice that mixed states solutions are possible, with the estimates aligning to more than 1 pattern,
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i.e., different mμ′s in (B24) are nonvanishing. This is not desirable in inference, since one wants to estimate one pattern at a time
with the best possible performance.

2. The zero temperature limit

Let us express the β → ∞ limit of the free entropy with a prior of the form

Pξ = (1 − ρ)δ0 + ρ

2
[δ−1/

√
ρ + δ1/

√
ρ] , ρ ∈ (0, 1] . (B28)

For future convenience, we introduce the notations

C := β(1 − q) ∈ [0, 1) , r̄ := r/β2 , U := u + r

β
, (B29)

where q is intended as the stationary value of the overlap solving the fixed point equations. Denote m = (mμ)k
μ=1, where k is

the maximum number of condensed patterns. In the low temperature limit, the free entropy, rescaled by β and evaluated at the
stationary values of the parameters involved, has the form

1

β

 = − r̄C

2
+ U

2
+ α(1 − t )

2(1 − C)
− 1

4
− m2

2
+ �C

2
+ ψ + αt

∫ t

0
dτ

C(1 − m2(τ ))

1 − (1 − m2(τ ))C2
, (B30)

where

ψ = 1

β
Eξ,Z ln

[
1 − ρ + ρ cosh

β√
ρ

(Z
√

r̄ + m · ξ) exp

(
−βU

2ρ

)]
. (B31)

When β → ∞, we have to distinguish two cases in the Z average:

ψ = O

(
1

β

)
+ 1

β
Eξ

(∫ ∞

−m·ξ/√r̄+U/2
√

r̄ρ
+
∫ −m·ξ/√r̄−U/2

√
r̄ρ

−∞

)
dz e− z2

2√
2π

ln

[
1 − ρ + ρ cosh

β√
ρ

(z
√

r̄ + m · ξ)e− βU
2ρ

]
. (B32)

The O(β−1) instead comes from integration on the interval [−m · ξ/
√

r̄ − U/2
√

r̄ρ,−m · ξ/
√

r̄ + U/2
√

r̄ρ] of the same
integrand, which can be easily bounded.

Let us now focus on the first integral in (B32). The hyperbolic cosine and the exponential in U dominate on the other terms in
the ln. Taking into account the exponential growth in the selected range of z values, the first integral can be approximated with

Eξ

∫ ∞

−m·ξ/√r̄+U/2
√

r̄ρ

dz√
2π

e− z2

2

(
Z
√

r̄ + m · ξ√
ρ

− U

2ρ

)
=
√

r̄

2πρ
Eξe

− 1
2r̄

(
U

2
√

ρ
−m·ξ

)2

+ Eξ

(
m · ξ√

ρ
− U

2ρ

)∫ ∞

−m·ξ/√r̄+U/2
√

r̄ρ

dz√
2π

e− z2

2 . (B33)

The second integral in (B32) can be treated similarly. Putting all the terms together one gets

1

β

 = − r̄C

2
+ �C

2
+ U

2
+ α(1 − t )

2(1 − C)
− 1

4
− m2

2
+
√

r̄

2πρ
Eξ

[
e
− 1

2r̄

(
U

2
√

ρ
−m·ξ

)2

+ e
− 1

2r̄

(
U

2
√

ρ
+m·ξ

)2]

+ Eξ

m · ξ

2
√

ρ

[
erf

(
m · ξ + U

2
√

ρ√
2r̄

)
+ erf

(
m · ξ − U

2
√

ρ√
2r̄

)]

− U

4ρ
Eξ

[
2 + erf

(
m · ξ − U

2
√

ρ√
2r̄

)
− erf

(
m · ξ + U

2
√

ρ√
2r̄

)]
+ αt

∫ t

0
dτ

C(1 − m2(τ ))

1 − (1 − m2(τ ))C2
. (B34)

Using the fact that all the parameters are evaluated at their stationary values, the previous formula can be further simplified by
looking at the limiting version of the fixed point equations. In particular, we have that

C = 1√
2πρ r̄

Eξ

[
exp

(
−
(

U/2
√

ρ − m · ξ√
2r̄

)2
)

+ exp

(
−
(

U/2
√

ρ + m · ξ√
2r̄

)2
)]

. (B35)

The value of r̄ can be found directly from (B26) by multiplying it by β−2:

r̄ = α(1 − t )

(1 − C)2
+ � + αt

∫ t

0
dτ

2(1 − m2(τ ))

1 − (1 − m2(τ ))C2

[
1 + 2C2(1 − m2(τ ))

1 − (1 − m2(τ ))C2

]
. (B36)
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FIG. 4. Logarithm of the number of restarts in the whole decimation procedure versus number of signal components for � = 0.05,
α = 0.03. Recall that β → ∞. Each data point is the average of 30 runs, the error bars are one standard deviation.

Furthermore, from (B23) with v = 1, one has

Eξ

[
erf

(
U/2

√
ρ − m · ξ√

2r̄

)
+ erf

(
U/2

√
ρ + m · ξ√

2r̄

)]
= 2(1 − ρ) . (B37)

We stress that the left-hand side of the previous equation is monotonic in U , and thus (B27) has a unique solution for fixed
sparsity parameter ρ. Finally, from (B24) and (B31):

m = Eξ〈X 〉Z,ξ = ∂ψ

∂m
= Eξ

ξ

2
√

ρ

[
erf

(
m · ξ − U/2

√
ρ√

2r̄

)
+ erf

(
U/2

√
ρ + m · ξ√

2r̄

)]
. (B38)

If we insert these conditions in (B34), we get




β
= α(1 − t )

2(1 − C)2
+ �C − 1

4
+ m2

2
+ 2αt

∫ t

0
dτ

C(1 − m2(τ ))

[1 − (1 − m2(τ ))C2]2
. (B39)

APPENDIX C: GROUND-STATE ORACLE FOR BINARY SPINS

Here we provide the pseudocode for the ground-state oracle for binary spins, based on an adaptation of simulated annealing.
Algorithm 1 is itself run multiple times, typically five times or more, and we chose the outcome that required the least number
of restarts.

Algorithm 1. Ground-state oracle with Pξ (x) = 1
2 (δx,−1 + δx,1).

Require: N , P (or α), Y, threshold (∈ R+), maxr (∈ N)
restarts ← 0
S ← N × N zeros matrix

while i � P do
s, trials ← SA(N, Y, threshold, maxr, restarts) � See the code of the SA routine below
restarts ← restarts + trials
if (trials >299 or restarts > maxr) then

break and start over
end if
Y ← Y − ssᵀ√

N

Si ← s � Si = ith column vector in S
threshold ← threshold · 0.9975
i ← i + 1

end while

Algorithm 1 implements the decimation procedure, whereas Algorithm 2 is the simulated annealing. Notice that in the latter
we have introduced a restarting criterion based on a moving energy threshold that lowers any time we find a candidate pattern that
is good enough, in terms of energy, or we do not find anything acceptable in 20 trials. The number of restarts needed increases
exponentially with the size of the system, as in Fig. 4, but the algorithm proved to be efficient up to sizes N � 1500 for any noise
level � we have tested, and above N = 2000 when the noise is not too close to its critical value.
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Algorithm 2. Simulated annealing (SA).

Require: N , Y, threshold (∈ R+), maxr (∈ N), restarts (∈ N)
itry ← 0
found=False
while itry <300 do

stop ← 0
β ← 0
s ← random sample from

∏N
i=1 Pξ

itry ← itry +1
if itry + restarts > maxr then

returns, itry
end if
if itry %20 = 0 then

threshold ← threshold · 0.9975
end if
while k < 200 do

k ← k + 1
β ← 1 + k

200 · 99
h ← Y√

N
s

define ssi ← −si with probability 1
1+e−2βhi

∀ i
if s − ss = 0 then

stop ← stop +1 � When the search does not move for five consecutive times.
if stop >5 then

if 1
2 sᵀ Y√

N
s > threshold then

return s, itry
else

break � wrong energy, try again
end if

end if
else

stop ← 0
s ← ss

end if
end while

end while
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