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Fluctuation-dissipation relations in the imbalanced Wilson-Cowan model
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The relation between spontaneous and stimulated brain activity is a fundamental question in neuroscience
which has received wide attention in experimental studies. Recently, it has been suggested that the evoked
response to external stimuli can be predicted from temporal correlations of spontaneous activity. Previous
theoretical results, confirmed by the comparison with magnetoencephalography data for human brains, were
obtained for the Wilson-Cowan model in the condition of balance of excitation and inhibition, a signature of a
healthy brain. Here we extend previous studies to imbalanced conditions by examining a region of parameter
space around the balanced fixed point. Analytical results are compared to numerical simulations of Wilson-
Cowan networks. We evidence that in imbalanced conditions the functional form of the time correlation and
response functions can show several behaviors, exhibiting also an oscillating regime caused by the emergence
of complex eigenvalues. The analytical predictions are fully in agreement with numerical simulations, validating
the role of cross-correlations in the response function. Furthermore, we identify the leading role of inhibitory
neurons in controlling the overall activity of the system, tuning the level of excitability and imbalance.
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I. INTRODUCTION

The brain is a complex system whose properties emerge
from the structured interaction between its fundamental con-
stituents, the neurons. Beyond the stimulated response by
external perturbations, neurons present a background rest
activity, as observed in both in vivo and in vitro experi-
ments [1–4]. A natural question arises therefore about the
relation between such two kinds of activity, spontaneous and
stimulated. In particular, clarifying how the brain’s response
to external stimuli can depend on the ongoing rest activity
could shed light on the main mechanisms ruling the observed
large variability in the dynamics [5]. An even more ambi-
tious goal would be the prediction of the brain response to
an external stimulus from the observation of the unperturbed
rest signal [6,7]. This possibility is suggested by statistical
mechanics and stochastic processes theory, whose framework
allows one to derive the so-called fluctuation-dissipation re-
lations (FDRs) [8]. They express the response function of a
given variable to an external field in terms of unperturbed
correlation functions of appropriate observables. In recent
years, such relations have been extended beyond the realm
of equilibrium systems to a very general class of models
that exhibit nonequilibrium dynamics [9]. The problem of

*lucilla.dearcangelis@unicampania.it

forecasting the behavior of a system, and in particular its
response to perturbations, from the study of the past history is
a very general issue and has been addressed in many different
physical contexts [8]. In biological systems, however, there
are only a few cases where such a kind of approach has
been attempted quantitatively. We can mention the study of
evolution in bacteria reported in [10] and the application to
the heart rate response [11]. More recently, in the context of
brain dynamics, this framework has been applied to experi-
mental magnetoencephalography (MEG) data of human brain
activity [7] and to stochastic models for the dynamics of a
single neuron [12]. In particular, in [7], in order to obtain
an explicit form of the FDR to apply to data, the authors
considered the celebrated Wilson-Cowan model for excitatory
and inhibitory neuron populations [13,14]. In the linearized
version of the model, exact expressions could be derived for
response and correlation functions that were fitted to MEG
data. The main result of this study confirmed that a prediction
on the decay of the response function of brain activity from the
observation of spontaneous fluctuations can be obtained, with
good qualitative agreement between theory and experiments.
Here we extend the analysis to a more general model that also
allows one to consider imbalanced neuron populations and
explore in more detail the different behaviors that can take
place in the parameter space.

The Wilson-Cowan model considers a network of two pop-
ulations of neurons, excitatory (E ) and inhibitory (I), that
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are coupled via four coefficients that represent the synaptic
weights between E and I neurons (wEE , wII , wIE , and wEI ).
A neuron is activated by an input current, which takes into
account the interaction with other neurons and an external
field. The model can be studied at different levels of coarse
graining, from the microscopic dynamics of the N single
neurons, to the large-scale description which reduces to only
two variables, namely, the fractions of active excitatory and
inhibitory populations. In the large system size limit, one can
derive two deterministic equations ruling the fixed points of
the population dynamics and two coupled Langevin equa-
tions describing their fluctuations. In previous papers [15,16],
this model was studied in the particular case of synaptic coef-
ficients that depend on only the presynaptic neuron, namely,
wEI = wII and wIE = wEE , for both fully connected and
sparse networks. The analysis in a 2D geometry is reported
in [17]. For this choice of synaptic weights, the coupling
matrix between excitatory and inhibitory populations takes a
triangular form, implying an activity correlation function with
a (double) exponential decay. Moreover, in [16] it was shown
that a bona fide critical point can be identified for a specific
value of the parameter w0 = wEE − wII , characterized by a
diverging characteristic time in the correlation function and
by a power-law scaling of the activity avalanche distribution.

In this paper we study the fixed points and the corre-
lation and response functions in the Wilson-Cowan model
in the more general case where the above constraint on the
synaptic strengths is released and considering different ratios
of E and I neurons. This allows us to address the relevant
issue related to the presence of an imbalance condition in the
model. The important role played by the relative fraction of
I neurons in the system behavior has been recently discussed
for integrate and fire models in [18,19]. Previous results for
specific values of the parameters (far from the critical point
and in the presence of large external fields) have been re-
ported in [20,21], where noisy limit cycles and quasicycles in
the population dynamics were observed. See also the models
discussed in [22–24]. Here we reconstruct the whole phase
diagram for the total activity � and the imbalance between
excitatory and inhibitory activity � (see below for the ex-
act definition) in a region around the critical point identified
in [16], in the limit of a vanishing external field. Our results
unveil the existence of an abrupt, discontinuous change in the
phase diagram, separating a region of finite activity from a
region of almost zero activity. We then focus on the correlation
and response functions, which show a rich phenomenology
depending on the system parameters, featuring damped os-
cillations over several time regimes. Experimental studies of
these quantities have been conducted, for instance, in neocor-
tical slices, as reported in [25], or in rat somatosensory cortex
cultures [26]. Other results can be found for correlations of
alpha oscillations in [27] or for the activity fluctuations in
cortical areas of the macaque monkey [28].

We then study the relation between correlation and re-
sponse functions via the FDRs. In particular, the unperturbed
state, described by Eq. (8) below, represents the spontaneous
activity, while the stimulation is applied through a small
perturbation to the initial condition, as detailed in Eqs. (15)
and (23). In the case of a comparison with experimental data,
a delicate issue can be represented by the correct modeling of

the applied stimulus, as discussed in [7], for instance, due to
the kind of the specific stimulation. Finally, we compare the
analytical solution of the linearized model to extensive numer-
ical simulations of the microscopic dynamics and study the
convergence towards the analytical predictions as a function
of the system size [29]. Quite surprisingly, we find that, in
some cases, such a convergence is very slow, requiring a huge
number of neurons in the simulations.

The paper is organized as follows. In Sec. II we introduce
the stochastic Wilson-Cowan model. In Sec. II A and II B we
summarize the analytical results for correlation and response
functions and provide details on the numerical simulations of
the model, respectively. In Sec. III we discuss the fixed points
of the dynamical equations, and in Sec. III A we comment
on the eigenvalues that rule the dynamics. Then in Sec. IV
and Sec. V we discuss the different behaviors observed in
the model for correlation and response functions, respectively.
Finally, in Sec. VI some conclusions are drawn. In the Ap-
pendix we provide details on the analytical computations.

II. THE STOCHASTIC WILSON-COWAN MODEL

The stochastic version of the Wilson-Cowan
model [13,15,30] describes the coupled dynamics of a
network of two populations, i.e., NE excitatory and NI

inhibitory neurons, with χE and χI the fractions of excitatory
(NE/N) and inhibitory (NI/N) neurons present in the network.
Each neuron i in the model can be in two states, active
(ai = 1), i.e., a neuron firing an action potential or in its
following refractory period, or quiescent (ai = 0), i.e.,
a neuron at rest. The dynamics evolves according to a
continuous time Markov process. The transition rate from
active to quiescent state (1 → 0) is α for all the neurons,
while the rate from quiescent to active state (0 → 1) depends
on an activation function f (Si ). Here Si is the total synaptic
input of the ith neuron, which is given by

Si =
∑

j

wi ja j + hi, (1)

where wi j are the synaptic strengths and hi is an external small
field equal for all neurons (hi ≡ h = 10−6). In the present
work the activation function is chosen to be

f (S) =
{
β tanh(S), S > 0,

0, S � 0.
(2)

In this study we set α = 0.1 ms−1 and β = 1 ms−1 [16], and
we consider full connectivity. The outgoing synaptic weights
wi j are defined as wEE

NE
for each excitatory to excitatory neu-

ron, −wEI
NI

for inhibitory to excitatory, wIE
NE

for excitatory to
inhibitory, and −wII

NI
for inhibitory to inhibitory connections.

The input of a neuron, Si, depends on only the type of neuron,
namely, if the ith neuron is excitatory, then Si = SE , and if it
is inhibitory, then Si = SI . Thus for our model

SE = wEE

NE
k − wEI

NI
l + h,

SI = wIE

NE
k − wII

NI
l + h, (3)

where k and l are the number of active excitatory and
inhibitory neurons, respectively, evolving according to the
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master equation [13]. In the Gaussian approximation, we can
write

k = NE E + √
NEξE ,

l = NI I + √
NIξI , (4)

where E and I are deterministic terms of the active excitatory
and inhibitory population, which scale with the population
size, and ξE and ξI are the stochastic fluctuation terms, which
scale with the square root of the population size. It is then
possible to expand the master equation as a Taylor series in
(ξE , ξI ) around the deterministic terms (E , I ), and, by retain-
ing the two leading terms in the system size, one obtains the
so-called linear noise approximation which provides two sets
of coupled differential equations for (E , I ) and (ξE , ξI ) [30].
In order to more easily interpret the system behavior, it is
convenient to introduce the variables � = χE E + χI I and
� = χE E − χI I , which represent the total activity of the sys-
tem and the imbalance in the activity between the excitatory
and inhibitory population. The Wilson-Cowan equations for
the deterministic terms (see the Appendix) are given by

d�

dt
= −α� + [χE f (SE ) + χI f (SI )]

− �
[ f (SE ) + f (SI )]

2
− �

[ f (SE ) − f (SI )]

2
,

d�

dt
= −α� + [χE f (SE ) − χI f (SI )]

− �
[ f (SE ) − f (SI )]

2
− �

[ f (SE ) + f (SI )]

2
, (5)

where the input currents are written as

SE = wEE E − wEI I + h,

SI = wIE E − wII I + h, (6)

and the dynamical equations for E and I are

dE

dt
= −αE + (1 − E ) f (SE ),

dI

dt
= −αI + (1 − I ) f (SI ). (7)

Conversely, the linearized Langevin equations for the fluc-
tuating variables can be expressed as [15,16,20,29] (see also
the Appendix)

d

dt

(
ξ�

ξ�

)
= A

(
ξ�

ξ�

)
+ D

(
η�

η�

)
, (8)

where the coefficients of A are calculated using the stationary
solutions of Eq. (5) and D is the amplitude matrix of the
independent white-noise variables η� and η�, which satisfy
〈ηi(t )〉 = 0 and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). A similar two-
variable model also has been introduced in the context of
moderately dense fluids to study the dynamics of a massive
tracer [31,32]. The details of the calculations and the coeffi-
cients of the matrix A and D are given in the Appendix. Notice
that so far no hypothesis is made for the value of the w’s.

A. Correlation and response functions

The correlation matrix for the Eq. (8) in the stationary state
can be written as [31]

Ci j (t ) ≡ 〈ξi(t )ξ j (0)〉 = (eAtσ )i j, (9)

where angular brackets 〈· · · 〉 denote average over noise,
(i, j) = (�,�), σ is the covariance matrix, and t � 0. The
correlation functions are

C�� (t ) = 1√−�
{[(x − λ2)σ11 + yσ21]eλ1t

− [(x − λ1)σ11 + yσ21]eλ2t }, (10)

C��(t ) = 1√−�
{[(x − λ2)σ12 + yσ22]eλ1t

− [(x − λ1)σ12 + yσ22]eλ2t }, (11)

C�� (t ) = 1√−�
{[zσ11 − (x − λ1)σ21]eλ1t

− [zσ11 − (x − λ2)σ21]eλ2t }, (12)

C��(t ) = 1√−�
{[zσ12 − (x − λ1)σ22]eλ1t

− [zσ12 − (x − λ2)σ22]eλ2t }, (13)

where λ1,2 are the eigenvalues of the matrix A, x, y, z, and
w its coefficients, which are functions of the model parame-
ters, and

√−� =
√

(x − w)2 + 4yz (see the Appendix). The
behavior of the correlation functions is a double exponential
decay with characteristic times τ1 = 1/λ1 and τ2 = 1/λ2. In
case of complex eigenvalues, i.e., λ1 = a + ib, λ2 = a − ib,
where a = (x + w)/2 and ib = √−�/2, the correlation func-
tions show oscillatory behavior with frequency b:

C�� (t ) = σ11eat cos(bt ) + (x − a)σ11 + yσ21

b
eat sin(bt ),

C��(t ) = σ12eat cos(bt ) + (x − a)σ12 + yσ22

b
eat sin(bt ),

C�� (t ) = σ21eat cos(bt ) + zσ11 − (x − a)σ21

b
eat sin(bt ),

C��(t ) = σ22eat cos(bt ) + zσ12 − (x − a)σ22

b
eat sin(bt ),

(14)

with a < 0. The linearization around the fixed points is valid
only for values of the parameters for which the matrix A has
stable eigenvalues.

We next evaluate the linear response function of the system
to an instantaneous weak perturbation, defined as

Ri j (t ) ≡ δξi(t )

δξ j (0)
, (15)

where (i, j) = (�,�). Equation (15) represents the average
response of ξi(t ) at time t to the applied pulse perturbation
on the variable ξ j (0) at time t = 0. The symbol (. . .) denotes
the nonstationary average over the trajectories. The response
matrix of the system can be calculated for t > 0 as

R(t ) = eAt . (16)
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From Eqs. (9) and (16) we can obtain the FDRs which connect
the linear response to the spontaneous fluctuations [7] as

R(t ) = C(t )σ−1. (17)

The response functions for the small perturbations expressed
in terms of � and � are therefore

R�� (t ) = (σ−1)11C�� (t ) + (σ−1)21C��(t ),

R��(t ) = (σ−1)12C�� (t ) + (σ−1)22C��(t ), (18)

R�� (t ) = (σ−1)11C�� (t ) + (σ−1)21C��(t ),

R��(t ) = (σ−1)12C�� (t ) + (σ−1)22C��(t ),

where the exact form of the covariance matrix σ is given in
the Appendix. From Eq. (18), we see that both the autocorre-
lations and the cross correlations are required to calculate the
response to a weak instantaneous perturbation.

In Ref. [7] the model was applied to describe MEG data of
human brains of healthy subjects. It was shown that correla-
tion and response functions could be well fitted by the model,
with parameters corresponding to the case of the balance
condition. In particular, correlation functions show double ex-
ponential decay, while response functions are well described
by a single exponential decay.

B. Numerical simulation methods

The continuous time Markov process that describes the
dynamics of the system can be efficiently simulated by the
Gillespie algorithm [33], which we describe here for com-
pleteness. The configuration of the system at a given time t
is completely determined by the number of active excitatory
neurons k and the number of active inhibitory neurons l . Given
k and l at time t , we compute the synaptic inputs SE and SI

from Eq. (3), and then the activation (a) and deactivation (d)
rates for excitatory (e) and inhibitory (i) neurons, which are
given by

rde = αk,

rdi = αl,

rae = (NE − k) f (SE ),

rai = (NI − l ) f (SI ), (19)

and the total rate rtot = rde + rdi + rae + rai. As the process
is Markovian, the time interval to the next event is extracted
from an exponential distribution, P(�t ) = rtot exp(−rtot�t ),
and the event is selected among de, di, ae, and ai with
probability rde

rtot
, rdi

rtot
, rae

rtot
, rai

rtot
, respectively. Then the time is

incremented by �t and the selected event is performed in-
creasing by one, or decreasing by one, the number of active
neurons k or l .

Because in the Gillespie algorithm the time step �t is
proportional to N−1, for a very large number of neurons the
simulation becomes very inefficient. In this case one can sim-
ulate the model using the nonlinear Langevin equations
dk

dt
= −αk + (NE −k) f (SE ) +

√
αk + (NE −k) f (SE ) ηE (t ),

dl

dt
= −αl + (NI − l ) f (SI )

+
√

αl + (NI − l ) f (SI ) ηI (t ), (20)

with a fixed time step. The nonlinear equations are equivalent
to the full master equation (Gillespie algorithm), provided that
the time step of integration is small enough and the number of
neurons is not too small [16]. Here we used a time step of
�t = 10−3 ms. Data for correlation and response functions
are averaged over about 107 realizations.

After an appropriate time interval, the process reaches sta-
tionarity, so that k and l fluctuate around their mean values
k̄ = NE Ē and l̄ = NI Ī , where Ē and Ī are the time average
value of the deterministic components. At stationarity, the
fluctuations can be computed by

ξE (t ) = N−1/2
E (k − k̄),

ξI (t ) = N−1/2
I (l − l̄ ), (21)

and

ξ� (t ) = χEξE (t ) + χIξI (t ),

ξ�(t ) = χEξE (t ) − χIξI (t ). (22)

In this way it is possible to compute the auto-correlations and
cross-correlations C�� (t ), C��(t ), C�� (t ), and C��(t ) from
Eq. (9).

We next evaluate the response function matrix R(t ) using
the following procedure. To compute R�� (t ) and R�� (t ), after
the process has reached stationarity, at a given time t ′, k and l
are perturbed in such a way that

ξ� (t ′) → ξ� (t ′) + ε,

ξ�(t ′) → ξ�(t ′), (23)

where ε is a small quantity. This is performed by increasing k
by

√
NE

2χE
ε, and l by

√
NI

2χI
ε. Then we compute

R�� (t ) = ε−1〈ξ� (t ′ + t )〉,
R�� (t ) = ε−1〈ξ�(t ′ + t )〉, (24)

where the average 〈· · · 〉 is done on the realization of the
noise, and on different starting configurations at time t ′. To
compute R��(t ) and R��(t ) we use a similar procedure, with
the difference that we increase ξ�(t ′) instead of ξ� (t ′). In this
case one has to increase k by

√
NE

2χE
ε and decrease l by

√
NI

2χI
ε.

III. FIXED POINTS

In previous studies, usually synaptic strengths are assumed
to solely depend on the type of presynaptic neuron, namely,
wEI = wII and wIE = wEE . Following this assumption, the
matrix A has an upper triangular form, and the fixed point
for imbalance in activity is �∗ = 0. Therefore the previous
condition on synaptic strengths sets the system in a state
realizing the balance of excitatory and inhibitory activity,
which leads to the presence of a critical point at a specific
value of w0 = wEE − wII = α/β = 0.1, where also � tends
to vanish [16]. In the present study, we focus on the behav-
ior of the system following the removal of such hypothesis,
namely, by slowly driving it out of the balance of excitation
and inhibition. We start by fixing the values of the strengths
wEE = 6.95 and wII = 6.85, setting the system at critical-
ity. We then define wEI = wII + δEI and wIE = wEE + δIE ,
where δEI and δIE are the two control parameters tuning
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FIG. 1. Values of �0 (top) and �0 (bottom), solutions of Eq. (5), as function of the parameters measuring the variation in the synaptic
strengths. The left column refers to χE = χI = 50%, and the right column is for χE = 70% and χI = 30%. The parameter values for all
calculations are wEE = 6.95, wII = 6.85, h = 10−6, α = 0.1, wEI = wII + δEI , and wIE = wEE + δIE . The forbidden regions correspond to
the parameter range where wIE or wEI become negative.

the imbalance condition. Structural inhibition is also tuned
by analyzing systems with different fractions of inhibitory
neurons, i.e., χE = χI = 50% and χE = 70%, χI = 30%. We
numerically solve the deterministic Eqs. (5) using Newton’s
method for fixed point analysis for different values of δEI
and δIE , in a range corresponding to positive synaptic con-
nections, to derive the values of �0 and �0 at the fixed point
(Fig. 1).

The activity �0 for (χE = χI = 50%) and for (χE =
70%, χI = 30%) shows similar behaviors. In the regime
where δEI is negative, if we change δIE from positive to
negative values, the activity �0 initially shows a plateau near
one and then gradually decreases to 50% of its initial value.
On the other hand, if we change δEI keeping δIE fixed, the
activity �0 is almost constant up to certain values of δEI
where the activity drops drastically to a very small value
(∼10−7), as shown in Fig. 1, giving rise to a boomerang-like

transition line from a finite to a very small activity. For a
system with χE = 70% and χI = 30% the activity �0 shows
a similar behavior, with small discrepancies with respect to
the system with χE = χI = 50% for very negative δIE . This
behavior can be understood by considering the different role
of the perturbations in the dynamics: A large variation δIE im-
plies that the synaptic connections from the excitatory to the
inhibitory population are stronger than in the case of balanced
activity, leading to an increased activity of the inhibitory
population. Conversely, large δEIs imply that the inhibitory
population strongly hampers the activity of the excitatory one.
As a consequence, the system activity stems from the interplay
between the relative role of the two populations. The obser-
vation that the excitability of the system strongly increases
below the bisector δIE = −δEI suggests that the imbalance
in excitation is mostly controlled by the inhibitory population,
whose activity cannot compensate the excitatory one either
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because of its weak connections (δEI is too small) or because
they are weakly stimulated by the excitatory population (δIE
is too small). Interestingly, in the first quadrant the δ’s are both
positive, which allows balance to be achieved within a wide
range of parameters.

Conversely, a more clear sensitivity to parameters is ob-
served for the imbalance �0 at the fixed point. For systems
with equal-size populations (χE = χI = 50%), if we progres-
sively decrease δIE , keeping δEI � 0 fixed, the imbalance �0

starts from a very small negative value (∼ − 10−7), vanishes
at the bisector line δIE = −δEI , and gradually increases to
a maximum value of ∼0.5. Conversely, if we change δEI ,
keeping δIE � 0 fixed, �0 appears to be roughly independent
of δEI but abruptly drops to a very small negative value
(∼ − 10−7) for parameter values above the bisector line. Ac-
tivity therefore appears imbalanced in favor of excitation in a
wide region of parameters corresponding to large positive �0.
The only difference with systems with a lower percentage of
inhibitory neurons (χE = 70%, χI = 30%) is that positive �0

are also observed in the fourth quadrant for small values of
δEI . This behavior can be attributed to the different size of
the two populations, since for the same δ values the inhibitory
activity is not sufficient to balance the excitatory one. Data
confirm that for very small δIE the system is always imbal-
anced in favor of excitation (supercritical behavior), whereas
inhibition slightly overcomes excitation (subcritical behavior)
in the first quadrant parameter region. Finally, we observe
that, as the deterministic solutions from Eq. (7) for E0 and
I0 are independent of the population size, the value of �0

for (χE = χI = 50%) always should be smaller than that for
(χE = 70%, χI = 30%).

A. Eigenvalues

Next, we calculate the eigenvalues for different values of
δEI and δIE . We stress that, under the hypothesis that synap-
tic connections solely depend on the presynaptic neuron, the
matrix A always has real eigenvalues, corresponding to the
two inverse characteristic times in the correlation functions.
In the present, more general case the eigenvalues can become
complex. In Fig. 2 (top left) we show in different colors the
parameter regions where eigenvalues are real (cyan region)
and complex (red region). The eigenvalues are independent
of the size of the excitatory or inhibitory populations (see
Sec. II) and have a nonzero imaginary part in two regions
of the parameter space. In the diagonal region along the
δEI = −δIE line the imaginary part of the eigenvalues is very
small, close to zero. Conversely, in the horizontal region the
imaginary part can assume a wide range of values, mainly
depending on δIE (Fig. 2, top right). Figure 2 (bottom) shows
the real part of the eigenvalues λ1 and λ2. The eigenvalues
are all negative, indicating that the system is stable for any
value of the parameters inside this region of the parameter
space: we computed the long-time limit of Eq. (5), which
therefore brings the system to an attractive fixed point. In the
first quadrant, corresponding to �0 
 0 and �0 
 0, the real
part of the eigenvalue λ1 becomes constant and close to zero
whereas λ2 exhibits large negative values. In the rest of the
parameter space, whereas λ1 assumes almost constant values,
λ2 appears to depend solely on the parameter δIE , becoming

more negative for decreasing synaptic strengths. We will now
evaluate the correlation functions and the corresponding re-
sponse functions at different locations of the parameter space
(points A to G).

IV. CORRELATION FUNCTIONS

We analyze next the auto-correlation and cross-correlation
functions at the points reported in the parameter space (Fig. 2)
by analytical calculation of Eqs. (10)–(14). The correlation
functions show (Fig. 3) either a double exponential decay or
oscillations depending on whether the eigenvalues are real or
complex. Indeed, oscillations are observed at points B and C,
with a frequency given by the absolute value of the imaginary
part of the eigenvalue and independent of the population size.
Interestingly, the frequency, evaluated for different δEI , scales
with δIE with an exponent smaller than one (see inset of
Fig. 3), confirming the important role of the activity of the
inhibitory population in the system dynamics. Moreover, we
observe that for systems with equal populations (χE = χI =
50%), there are strong phase differences and large amplitude
differences between the self- and cross-correlation functions,
which for the system with χE = 70%, χI = 30% (values typ-
ical of mammalian brains) is almost absent (see points A and
B). On the other hand, for real eigenvalues, the analytical
solution provides correlation functions which are a double
exponential with characteristic times which do not depend
on the population size. For instance, the fitting procedure
gives τ1 = 0.92 and τ2 = 0.23 at point G. Interestingly, in
the first quadrant the exponential containing the eigenvalue
λ1 has an amplitude close to zero (
 10−8); therefore the
correlation functions all exhibit a sharp single exponential
decay.

Next, we compare our analytical data with the data ob-
tained from simulations of the Wilson-Cowan model using
the Gillespie algorithm, or the nonlinear Langevin equations
when the number of neurons is large. Figure 4 shows the plots
of the auto- and cross-correlation functions obtained from
numerical simulations and analytical predictions for equal
population systems at all the points shown in the parameter
space in Fig. 2. We find that the analytical predictions are
perfectly matching with the simulated data, provided that
the number of neurons used in simulations is large enough.
Namely, simulations must be performed with a total number

of neurons N > �
−2

, where � is the mean value of the activ-
ity. Indeed, fluctuations in the activity are of order N1/2, and
the linear approximation (8) is valid only when fluctuations
are smaller than the mean values. This is particularly relevant
at points in phase space where the mean value � is very low,
for example, at point C of Fig. 2 where the mean value is
� ∼ 10−7. In Fig. 5 we show the autocorrelation C�� (t ) at
point C for different number of neurons N . We see a strong
dependence of the results on N up to N ∼ 1014.

The correlation functions evaluated at all the different
points marked in the parameter space are shown in Fig. 6.
One observes high-frequency oscillations for δEI = −0.5 and
δIE = +4 (point C), for all correlation functions, for both the
considered fractions of exitatory and inhibitory populations.
The other points D, E, and F show a simple exponential decay
for the auto-correlations of � and �, while cross-correlations
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FIG. 2. (Top left) Eigenvalue phase diagram for different imbalance in synaptic strengths. Cyan identifies the region with real eigenvalues,
whereas red indicates the region where eigenvalues are complex. (Top right) The values of the imaginary part of the eigenvalues. Letters identify
the points in the phase diagram for which correlation and response functions have been evaluated. (Bottom left and right) The values of the real
part of the eigenvalues λ1 and λ2, respectively. The forbidden regions correspond to the parameter range where wIE or wEI become negative.
Eigenvalues are independent of the population size. The numerical parameter values for all the calculations are wEE = 6.95, wII = 6.85,
h = 10−6, α = 0.1, wEI = wII + δEI , and wIE = wEE + δIE .

are characterized by nonmonotonic behavior, featuring also a
negative region for C�� in the case of equal fraction popula-
tions. This phenomenon, pronounced in cases D and E, can
be interpreted as a “backscattering” in � activity, namely, a
negative fluctuation of � that follows a positive fluctuation of
� after a certain time.

V. RESPONSE FUNCTIONS

We next calculate the response of the system to small
instantaneous perturbations according to Eq. (18). Figure 7
shows the four different response functions for equal pop-
ulation systems. Under the hypothesis of synaptic strengths

depending solely on the presynaptic neuron type, previous
calculations [7] have shown that, due to the upper triangular
form of the coupling matrix A, the response function exhibits
a simple exponential decay behavior (R�� and R��), a double
exponential decay (R��), or it vanishes (R��). The single
exponential stems from the fact that the cross-correlation term
cancels out one exponential decay. In the imbalanced case,
the response functions show a more complex behavior, with
oscillations at the points in parameter space where eigenvalues
are complex.

To obtain the response function from simulations, and
therefore compare analytical prediction to numerical data, we
apply a weak perturbation to the system in order to remain
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FIG. 3. The correlation functions evaluated at the different points A, B, G in the eigenvalue phase diagram (Fig. 2). The left column
is for χE = χI = 50%, and the right column is for χE = 70% and χI = 30%. The inset shows the oscillation frequency b as function of
δIE for different values of δEI . The parameter values used for the solution of Eqs. (5) are wEE = 6.95, wII = 6.85, h = 10−6, α = 0.1,
wEI = wII + δEI , and wIE = wEE + δIE . Time is measured in ms.

in the linear regime. We take an equilibrium configuration,
namely, a configuration at stationarity: we increase the value
of ξ� or ξ� by a small amount ε and compute ε−1〈ξ� (t )〉 or
ε−1〈ξ�(t )〉, respectively, at subsequent times, as described in
Sec. II B. Figure 7 shows the comparison of the response func-
tions between analytical calculation and simulation data for all
the points shown in the eigenvalue phase diagram Fig. 2. The

symbols represent the simulation data, and the solid lines the
data obtained from the analytical calculations of the response
functions using Eq. (18). As in the case of correlations, numer-
ical data and analytical calculations match well provided the
number of neurons is large enough. Moreover, in this case a
small value of ε has to be chosen: data in Fig. 7 were obtained
with ε = 10−3.
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FIG. 4. The correlation functions for χE = χI = 50% evaluated at different points A, B, C, D, F, and G in the phase diagram (Fig. 2). The
symbols are the results of simulations with N = 1014 neurons, with parameters wEE = 6.95, wII = 6.85, h = 10−6, α = 0.1, wEI = wII + δEI ,
and wIE = wEE + δIE , whereas dashed lines represent analytical results. Details of simulations are reported in Sec. II B.

VI. CONCLUSIONS

Each neuron in the brain can receive thousands of ex-
citatory and inhibitory synaptic inputs. In physiological
conditions, the ratio of excitatory to inhibitory inputs remains
stable at both single-cell and global circuit levels, a prop-
erty called balance of excitation and inhibition (EI) [34,35].

Although the existence of EI balance in the mammalian
cortex has been widely studied and its disruption has been
implicated in many brain diseases affecting higher cognitive
functions, it is not yet clear how this balance is maintained
in healthy brains [36,37]. Experimentally, imbalance arises
hampering excitatory or inhibitory neurotransmission with
selected antagonists [38]. In neuronal networks, imbalance
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FIG. 5. The correlation function C�� (t ) for χE = χI = 50%
evaluated at point C in the phase diagram (Fig. 2), for a differ-
ent number of neurons N = 1010, 1011, 1012, 1014, with parameters
wEE = 6.95, wII = 6.85, h = 10−6, α = 0.1, wEI = wII + δEI , and
wIE = wEE + δIE . Details of simulations are reported in Sec. II B.

is obtained controlling the percentage of inhibitory synapses,
the connectivity network, or the neuron excitability and can
lead to an excess of large bursts, as observed in epileptic
systems. Several experimental and theoretical studies have
confirmed that imbalanced conditions alter spontaneous brain
activity. Imbalance modifies the typical scale-free behavior
of activity in the resting state [38,39] and its temporal fea-
tures [40,41]. Analogously, EI balance and imbalance may
affect the relation between spontaneous and evoked activity,
i.e., the response to external stimuli [5]. Recently, the prob-
lem has been addressed theoretically by means of the FDRs
connecting the spontaneous fluctuations of a system with the
response function to external perturbations [7]. The analytical
derivation, based on the linear noise approximation of the
Wilson-Cowan model, on the main assumption of EI balance
provides a double exponential decay for the correlation func-
tions and a simple exponential for the R�� . In this study we
investigated its extension to imbalanced conditions in a wide
range of parameters tuning such imbalance.

Results indicate that the main parameter controlling activ-
ity in imbalance is δIE , namely, the variation in the synaptic
strength exciting the inhibitory population. Conversely, the
other parameter δEI , expressing the strength of inhibition
received by the excitatory neurons, appears to have a different
role: It controls the transition from a high-activity regime to
a regime (in the first quadrant) where �0 ∼ �0 ∼ 0, as well
as the transition from real to complex eigenvalues. The overall
behavior of the system stems from the interplay between these
two independent effects. The presence of complex eigenvalues
leads to a novel oscillatory behavior for the correlation func-
tions in a narrow range of δEI and, consequently, oscillations
in the response functions, with a frequency depending on
the parameter δIE . The important remark is that analytical
results are fully confirmed by Gillespie simulations of Wilson-
Cowan networks in the limit of very large system size. Indeed,
this limit, implemented to derive the FDRs, results in be-
ing extremely stringent since full agreement with simulation
data is achieved for systems as large as N ∼ 1014 neurons.

Interestingly, the FDRs are fulfilled numerically even for
smaller system sizes, where the agreement with the analytical
solution is not perfect. The present results, obtained for a pop-
ulation model, are also in good agreement with simulations
of integrate and fire networks models [18], where oscillations
in the correlation functions were observed in the supercriti-
cal regime and the frequency depended on the percentage of
inhibitory neurons and their level of connectivity.
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APPENDIX

1. Stochastic Wilson-Cowan model

We present here the derivation of the Wilson-Cowan equa-
tions in the general case where no assumption is made on
the synaptic strengths and the neuronal populations can have
different sizes. The dynamics evolves according to a master
equation for the probability pk,l (t ), where the number of ac-
tive excitatory and active inhibitory neurons is k and l . We set

k = NE E + N1/2
E ξE ,

l = NI I + N1/2
I ξI . (A1)

The input currents are

SE = wEE k

NE
− wEI l

NI
+ hE ,

SI = wIE k

NE
− wII l

NI
+ hI . (A2)

The master equation, describing the evolution of the probabil-
ities pk,l (t ) that the system is in the state (k, l ) at time t , is

d pk,l (t )

dt
= α[(k + 1)pk+1,l (t ) − kpk,l (t )]

+ {(NE − k + 1) f [SE (k − 1, l )]pk−1,l (t )

− (NE − k) f [SE (k, l )]pk,l (t )}
+ α[(l + 1)pk,l+1(t ) − l pk,l (t )]

+ {(NI − l + 1) f [SI (k, l − 1)]pk,l−1(t )

− (NI − l ) f [SI (k, l )]pk,l (t )}. (A3)

Now using e∂k {kpk,l (t )} = (k + 1)pk+1,l (t ), we have

d pk,l (t )

dt
= α(e∂k − 1)kpk,l (t ) + (e−∂k − 1){(NE − k)

× f [SE (k, l )]pk,l (t )} + α(e∂l − 1)l pk,l (t )

+ (e−∂l − 1)[(NI − l ) f [SI (k, l )]pk,l (t ). (A4)
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FIG. 6. The auto- and cross-correlation functions at the different points in the parameter space (Fig. 2). The left column data are for systems
with χE = χI = 50%, whereas the right column is for χE = 70% and χI = 30%. Parameters are wEE = 6.95, wII = 6.85, h = 10−6, α = 0.1,
wEI = wII + δEI , and wIE = wEE + δIE .
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FIG. 7. The response functions for χE = χI = 50% evaluated at different points A, B, C, D, F, and G in the phase diagram (Fig. 2).
The symbols are for numerical data (N = 1014), with parameters wEE = 6.95, wII = 6.85, h = 10−6, α = 0.1, wEI = wII + δEI , and wIE =
wEE + δIE , whereas solid lines represent analytical results. The range of values for R�� is [−30:30] only for point A. Details of simulations
are reported in Sec. II B.

Finally we have

d pk,l (t )

dt
= −∂k

[
NχE AE

(
k

NE
,

l

NI

)
pk,l (t )

]
+ 1

2
∂2

k

[
NχE DE

(
k

NE
,

l

NI

)
pk,l (t )

]
− 1

3!
∂3

k

[
NχE AE

(
k

NE
,

l

NI

)
pk,l (t )

]
+ · · ·

− ∂l

[
NχI AI

(
k

NE
,

l

NI

)
pk,l (t )

]
+ 1

2
∂2

l

[
NχI DI

(
k

NE
,

l

NI

)
pk,l (t )

]
− 1

3!
∂3

l

[
NχI AI

(
k

NE
,

l

NI

)
pk,l (t )

]
+ · · · , (A5)
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where

AE (x, y) = −αx + (1 − x) f (wEE x − wEI y + hE ), (A6)

DE (x, y) = αx + (1 − x) f (wEE x − wEI y + hE ), (A7)

AI (x, y) = −αy + (1 − y) f (wIE x − wII y + hI ), (A8)

DI (x, y) = αy + (1 − y) f (wIE x − wII y + hI ), (A9)

with x = k
NE

, y = l
NI

, χE = NE
N , and χI = NI

N .
Now for pk,l (t ) = π (ξE , ξI , t ), we can write

∂ pk,l (t )

∂t
= ∂

∂t
π (ξE , ξI , t ) + ∂

∂t
ξE

∂

∂ξE
π (ξE , ξI , t )

+ ∂

∂t
ξI

∂

∂ξI
π (ξE , ξI , t ). (A10)

Considering that ∂tξE = −N1/2
E ∂t E and ∂tξI = −N1/2

I ∂t I ,
from Eq. (A10) we can write

∂t pk,l (t ) = ∂tπ (ξE , ξI , t ) − N1/2
E ∂t E∂ξEπ (ξE , ξI , t )

− N1/2
I ∂t I∂ξIπ (ξE , ξI , t ). (A11)

Next, by Taylor’s expanding AE ,I and DE ,I in powers of the
system size, the leading term of the order N1/2 provides the
deterministic equations

−N1/2χ
1/2
E ∂t E∂ξE π = −N1/2χ

1/2
E AE (E , I )∂ξE π

−N1/2χ
1/2
I ∂t I∂ξI π = −N1/2χ

1/2
I AI (E , I )∂ξI π, (A12)

dE

dt
= −αE + (1 − E ) f (SE ),

dI

dt
= −αI + (1 − I ) f (SI ), (A13)

whereas the successive term of the order N0 provides the
Fokker-Planck equations

∂tπ = −[AE ,E (E , I )∂ξE (ξEπ ) +
√

χE/χI AE ,I (E , I ),

× ∂ξE (ξIπ ) +
√

χI/χE AI,E (E , I )∂ξI (ξIπ ) + AI,I (E , I )

× ×∂ξI (ξIπ )] + 1
2 DE (E , I )∂2

ξE
π + 1

2 DI (E , I )∂2
ξI
π.

(A14)

This approximation, which drops all successive terms, is
called “linear noise approximation” and can be rewritten as
two coupled Langevin equations

d

dt

(
ξE

ξI

)
= Ã

(
ξE

ξI

)
+ D̃

(
ηE

ηI

)
, (A15)

where Ã = ( AE ,E (E , I )
√

χE /χI AE ,I (E , I )√
χI /χE AI,E (E , I ) AI,I (E , I ) ) with

AE ,E (E , I ) = −α − f (SE ) + (1 − E )wEE f ′(SE ), (A16)

AE ,I (E , I ) = −(1 − E )wEI f ′(SE ), (A17)

AI,E (E , I ) = (1 − I )wIE f ′(SI ), (A18)

AI,I (E , I ) = −α − f (SI ) − (1 − I )wII f ′(SI ), (A19)

DE (E , I ) =
√

αE + (1 − E ) f (SE ), (A20)

DI (E , I ) =
√

αI + (1 − I ) f (SI ), (A21)

and, D̃ = (DE 0
0 DI

), where at the fixed point, DE = √
2αE0

and DI = √
2αI0.

By introducing the variable change from (E , I ) to (�,�),
it is possible to obtain the set of deterministic equations (5),
and from Eq. (A15) the two coupled Langevin equations for
the fluctuating terms

d

dt

(
ξ�

ξ�

)
= A

(
ξ�

ξ�

)
+ D

(
η�

η�

)
, (A22)

where (
ξ�

ξ�

)
=

(
χE χI

χE −χI

)(
ξE

ξI

)
, (A23)

A =
(

χE χI

χE −χI

)(
AE ,E (E , I )

√
χE/χI AE ,I (E , I )√

χI/χE AI,E (E , I ) AI,I (E , I )

)

× 1

2

(
1

χE

1
χE

1
χI

− 1
χI

)
=

(
x y
z w

)
(A24)

with x = 1
2 [AE ,E (E , I ) + ( χE

χI
)3/2AE ,I (E , I ) + ( χI

χE
)3/2AI,E

(E , I ) + AI,I (E , I )], y = 1
2 [AE ,E (E , I ) − ( χE

χI
)3/2AE ,I (E , I ) +

( χI

χE
)3/2AI,E (E , I ) − AI,I (E , I )], z = 1

2 [AE ,E (E , I ) + ( χE

χI
)3/2

AE ,I (E , I ) − ( χI

χE
)3/2AI,E (E , I ) − AI,I (E , I )], and w = 1

2

[AE ,E (E , I ) − ( χE

χI
)3/2AE ,I (E , I ) − ( χI

χE
)3/2AI,E (E , I ) + AI,I

(E , I )]. Moreover,

D =
(

χE χI

χE −χI

)(
DE 0
0 DI

)
1

2

(
1

χE

1
χE

1
χI

− 1
χI

)

= 1

2

(
DE + DI DE − DI

DE − DI DE + DI

)
. (A25)

The noise amplitude matrix can be written as

M = DDT =
(

G H
H G

)
, (A26)

where at the fixed points G = 1
2 (D2

E + D2
I ) = αE0 + αI0 and

H = 1
2 (D2

E − D2
I ) = αE0 − αI0. Equation (A22) can be writ-

ten in more compact form as

dX
dt

= AX + Dη, , (A27)

where X ≡ (ξ�, ξ�) and η ≡ (η�, η�). Then we can write the
solutions of the above equation as

X(t ) = eAt X(0) + D
∫ t

0
dt ′eA(t−t ′ )η(t ′), (A28)

valid for t � 0.

2. Correlation functions

The correlation matrix for the fluctuating terms is defined
as

Ci j (t ) ≡ 〈ξi(t )ξ j (0)〉 = (eAtσ )i j, (A29)
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where σi j = 〈ξi(0)ξ j (0)〉 are the components of the covariance
matrix which satisfies

M = Aσ + σAT

2
. (A30)

The covariance matrix can be written as

σ =
(

σ11 σ12

σ21 σ22

)
, (A31)

where

σ11 = G − σ12y

x
, (A32)

σ12 = σ21 = −G(zw + xy) − 2Hxw

(x + w)(xw − yz)
, (A33)

σ22 = G − σ12z

w
. (A34)

The eigenvalues of the matrix A are λ± = 1
2 [(x + w) ±√−�], where

√−� =
√

(x − w)2 + 4yz.

To evaluate eAt we need a diagonalizing matrix P, which
can be written as

P =
⎛
⎝ (x−λ1 )

z
√

1+[(x−λ1 )/z]2

(x−λ2 )

z
√

1+[(x−λ2 )/z]2

1√
1+[(x−λ1 )/z]2

1√
1+[(x−λ2 )/z]2

⎞
⎠.

Now let μ =
√

1 + [(x − λ1)/z]2 and ν =√
1 + [(x − λ2)/z]2, and then P becomes

P =
( x−λ1

zμ
x−λ2

zν
1
μ

1
ν

)
,

whose determinant is |P| = −
√−�

zμν
.

The inverse matrix of P is

P−1 = − zμν√−�

(
1
ν

− x−λ2
zν

− 1
μ

x−λ1
zμ

)

= 1√−�

(−zμ (x − λ2)μ

zν −(x − λ1)ν

)
. (A35)

Then we can write the matrix exponential as

eAt = Peλ±t P−1

= 1√−�

⎛
⎝ x−λ1

zμ
x−λ2

zν

1
μ

1
ν

⎞
⎠(

eλ2t 0
0 eλ1t

)(−zμ (x − λ2)μ
zν −(x − λ1)ν

)

= 1√−�

(
[(x − λ2)eλ1t − (x − λ1)eλ2t ] [y(eλ1t − eλ2t )]

[z(eλ1t − eλ2t )] [(x − λ2)eλ2t − (x − λ1)eλ1t ]

)
. (A36)

Now from Eq. (A29), calculating the matrix product, we ob-
tain the four correlation functions reported in the main text.

3. Response functions

The response of the system is defined as Ri j (t ) ≡ δξi (t )
δξ j (0) ,

with (i, j) = (�,�) as the response in ξi once an instan-
taneous perturbation in ξ j is applied at t = 0. According to
Eq. (A28), the response matrix is

R(t ) = eAt . (A37)

From Eq. (A37), we see that the matrix exponential eAt and
the response function R(t ) coincide; therefore from Eq. (A36)
we can write the equations for the response functions as

R�� (t ) = 1√−�
[(x − λ2)eλ1t − (x − λ1)eλ2t ],

R��(t ) = 1√−�
[y(eλ1t − eλ2t )],

R�� (t ) = 1√−�
[z(eλ1t − eλ2t )],

R��(t ) = 1√−�
[(x − λ2)eλ2t − (x − λ1)eλ1t ]. (A38)

In the case of complex eigenvalues λ± = a ± ib, where
a = (x + w)/2 and ib = √−�/2, we can write the response
functions as

R�� (t ) = eat cos(bt ) + (x − a)

b
eat sin(bt ),

R��(t ) = y

b
eat sin(bt ),

R�� (t ) = z

b
eat sin(bt ),

R��(t ) = eat cos(bt ) − (x − a)

b
eat sin(bt ). (A39)
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