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Challenges in identifying simple pattern-forming mechanisms in the development
of settlements using demographic data
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The rapid increase of population and settlement structures in the Global South during recent decades has
motivated the development of suitable models to describe their formation and evolution. Such settlement
formation has been previously suggested to be dynamically driven by simple pattern-forming mechanisms. Here,
we explore the use of a data-driven white-box approach, called SINDy, to discover differential equation models
directly from available spatiotemporal demographic data for three representative regions of the Global South.
We show that the current resolution and observation time of the available data are insufficient to uncover
relevant pattern-forming mechanisms in settlement development. Using synthetic data generated with a generic
pattern-forming model, the Allen-Cahn equation, we characterize what the requirements are for spatial and
temporal resolution, as well as observation time, to successfully identify possible model system equations.
Overall, the study provides a theoretical framework for the analysis of large-scale geographical and/or ecological
systems, and it motivates further improvements in optimization approaches and data collection.
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I. INTRODUCTION

The fraction of the population living in urban or settle-
ment structures has grown exponentially over the last several
decades, especially in the Global South [1,2]. This trend poses
one of the main challenges in our world [3] as the rising
population in such structures is in need of vital infrastructure
[4] while simultaneously affecting (mostly negative) climatic
developments [5,6]. Consequently, there is an urgent need to
understand underlying processes of urbanization and antici-
pate the emergence of these structures.

Urbanization and development of settlement structures
depends on several mechanisms based on repulsion and attrac-
tion [7,8]. Such interactions can lead to three major settlement
distributions (see Fig. 1). Their existence has been confirmed
in recent settlement pattern studies of different regions in the
Global South, in which regular distributions are dominating
[9–13].

The existence of regularly patterned distributions in set-
tlements, and in other spatial systems, can be an indicator
for the existence of instability-driven pattern-forming mech-
anisms [14]. A similar concept of linking spatial distributions
with specific driving mechanisms has been successfully ap-
plied in the field of plant and animal ecology for decades
[15–17]. To understand the emergence of these patterns from
underlying interactions, different modeling approaches have
been developed. For example, urban development can be
modeled by agent- or cellular-automata-based approaches
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[18,19] which include detailed interactions at the level of
individuals. Despite their accuracy in specific cases, such
models have several drawbacks. They lack generalization,
require large and detailed data sets to be fit on, and can
become computationally expensive. Another approach is to
use reaction-diffusion models. Such systems consisting of dif-
ferential equations are simpler and directly interpretable, yet
they can also lead to highly complex patterns and dynamics
[20,21]. In the context of urban structures, Pelz et al. [22] have
developed a theoretical framework describing the formation
of informal settlements (so-called slums) in the Global South.
Furthermore, this framework was extended to describe the
morphogenesis of urban systems in the United States as a
reaction-diffusion system in Ref. [23].

Deriving such models is typically done by suggesting
sets of possible models from experimental measurements of
specific interactions paired with scientific intuition and de-
termining which one provides the best fit to measured data.
However, as data structures of urban systems are complex,
suggesting certain model structures can be difficult. One way
to address this is by using recently developed data-driven
model discovery approaches, such as the system identification
approach called “Sparse Identification of Nonlinear Dynam-
ics” (SINDy) [24]. SINDy has recently gained attention in
many fields, such as engineering [25], physics [26], chemistry
[27], and biology [28]. The method has shown success in
identifying interpretable models in the form of ordinary or
partial (through the extension PDE-FIND [29]) differential
equations from synthetic data of, e.g., pattern-forming mech-
anisms in the form of reaction-diffusion equations [29,30].
However, the literature on model discovery from real
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TABLE I. Investigated regions with their geopolitical location
and attributes.

Region Attributes

Punjab, India Northwest India, border region with
Pakistan, agricultural region called
Granary of India

Nile delta, Egypt North Egypt, densely populated, fast
growing agricultural region

Kano State, Nigeria North Nigeria, border region to Niger,
agricultural region in one of the fastest
growing economies

temporal or spatiotemporal data with SINDy is scarce (e.g.,
on generic benchmark problems in Ref. [31] or Ref. [32]), as
the method struggles with commonly encountered high-noise
and low-data situations.

In this work, we theoretically and practically investigate if
pattern-forming processes can be responsible for settlement
development in the Global South and attempt to identify such
mechanisms using SINDy directly from existing spatiotem-
poral data of population patterns. In Sec. II, we motivate the
potential relevance of pattern-forming equations from data
analysis of satellite images. In Sec. III, we apply the SINDy
algorithm to satellite images and try to identify mathemati-
cal equations in the form of one-component pattern-forming
mechanisms. As model identification from the real data sets
turns out to be challenging, we identify and study two main
challenges, namely, data availability and quality and, deter-
mine their influence on model discovery from spatiotemporal
data in Sec. IV. Lastly, in Sec. V, we discuss our findings
and elaborate on these challenges and what is required to
overcome them.

II. SETTLEMENT DEVELOPMENT AS A
PATTERN-FORMING PROCESS

We start our study by selecting three representative regions
of emerging countries—the Punjab region in India, the Nile
Delta in Egypt, and the Kano State region in Nigeria (see
Table I). The regions are chosen as they lie in countries
which can be considered representative of the Global South:
all countries have had steady population as well as steady
economic growth over the last 20 years [1]. Despite and be-
cause of the great cultural differences, all three societies are in
transition from agricultural countries to industrialized nations.

FIG. 1. Possible settlement arrangements following the phe-
nomenological interpretation as point processes, resulting in clus-
tered (a), random (b), or regular (c) distributions.

Furthermore, the spatial distribution of settlements has
been studied in these regions and their regularity has been
characterized on different spatial scales [10,12,13]. This al-
lows us to select subregions [here called regions of interest
(ROI)] which show a regular distribution. This is illustrated
for the Punjab region in India in Fig. 2(a). For a detailed expla-
nation of how we used satellite data, in combination with the
Global Artificial Impervious Area (GAIA, temporal resolution
�t = 1 year−1, spatial resolution �x = �y ≈ 30 m) [33,34]
data set, to select the ROIs, we refer to Appendix D. For each
ROI, we then track the settlement evolution over a period of
about 15 years using the data set WorldPop [35] depicting
spatial population distributions [see Fig. 2(b)]. The WorldPop
data set is used later for the model identification process as
described in Fig. 2(c) [36].

Previous work has shown that the observed emergence of
rural settlement structures could be caused by simple reaction-
diffusion pattern-forming mechanisms [22]. Following the
example of Pelz et al. [22], we divide the system into a
population living in the rural settlements and a supply po-
tential of agricultural land which is complementary to the
population. In other words, areas that are in agricultural use
are uninhabited, and vice versa. We also assume that there is
a limit to agricultural exploitability and urban densification.
The population density at a spatial point x = (x, y) and time t
is given by u(x, t ) and the corresponding supply potential is
given by v(x, t ).

The change of the concentrations of u and v is defined by
three complementary global contributions: (i) birth or death
of the population or the cultivation or sealing of agricultural
space within a domain of size A, (ii) migration to and from
other cities outside of A leading to a decrease or an increase
in supply potential, and (iii) migration to areas with higher
supply potential over the boundary C of A where a settlement
exists or is created. These mechanisms lead to the formulation
of a typical reaction-diffusion model (for more detail, see
Appendix A and Ref. [22]):

ut = ∇2u + R f (u, v),

vt = D∇2v + Rg(u, v),

with (n · ∇)

(
u
v

)
= 0 on C, (1)

with D and R being the diffusion and reaction coefficients
alongside the respective reaction terms f and g, which are
being evaluated under no-flux boundary conditions.

The linear stability analysis of the homogeneous system
(no diffusion) provides the Jacobian matrix J. It is well known
that specific sign-combinations of components of the Jacobian
allow for an initial homogeneous distribution of population
and supply potential to be stable—either through substrate
inhibition or as an activator-inhibitor system [37]. In the case
of settlement structures, the only physically sensible choice is
substrate inhibition, as the resulting concentration patterns are
out of phase [22,37]:

J =
(

fu|0 fv|0
gu|0 gv|0

)
=

(+ +
− −

)
. (2)
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FIG. 2. Overview of the workflow of this study. (a) Selection of ROIs, starting from the identification of suitable regions of the Global
South, here Punjab, India, selection of an excerpt of the region in the data set GAIA and determination of ROIs from regular settlement patterns
with the average nearest neighbor (ANN, see Appendix D). (b) Data of population density patterns (on logarithmic scale) from the data set
WorldPop from ROI 2 of Punjab, India, for four time points with a spatial resolution of �x, �y ≈ 100 m (enlarged in figure) at the equator and
a temporal resolution of �t = 1 year−1. (c) Workflow to investigate possible pattern-forming mechanisms in the development of settlement
structures. Starting from the time series of population density patterns, we extract spatiotemporal features and apply SINDy to discover models
in the form of one-component partial differential equations. This can help us understand the role of such mechanisms in settlement structures
and estimate future urban scenarios.

fu|0 > 0, people attract other people: The population u
increases due to self-reproduction of u in an environment
of sufficient sustenance.

fv|0 > 0, supply attracts people: The amount of available
agricultural area v attracts people, increasing the popula-
tion u of the settlement.

gu|0 < 0, people inhibit supply: The higher the population
u, the less agricultural area v is available, especially due
to the limitation by the agricultural needs of surrounding
settlements. This is the case until the maximum amount
of agricultural area is used and does not suffice to supply
the population of a settlement, leading to a decrease of
population u.

gv|0 < 0, supply inhibits additional supply: Due to limited
resources, the supply production decreases when agricul-
tural efficiency plateaus.

In the presence of diffusion, the linear stability shows that
an equally dispersed population and supply potential densities
can destabilize to form spatial patterns when the following

condition is met (see Appendix B):

fu|0 > −gv|0
D

. (3)

This is the case when the attraction of people to A dominates
the inhibition of supply potential due to the emergence of
settlements. If the domain size A and the diffusion coefficient
D of the system are sufficiently large, different settlements can
emerge that constantly compete against each other over the
supply potential, eventually leading to a regular distribution
of settlements.

Assuming that the total population density u and the supply
potential v are conserved, u + v = cmax, the system reduces to
a simpler one-component equation [38,39]:

ut (x, y, t ) = Ď∇2u(x, y, t ) + R f̌ [u(x, y, t )],

with Ď = D + 1

2
,

and f̌ = 1
2 { f [u(x, y, t )] + g[u(x, y, t )]}. (4)
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FIG. 3. (a) Example of multiple effects found in spatiotemporal data sets of population densities indicating the existence of suggested
reaction-diffusion equations (population density data from data set WorldPop [35], ROI 2, Punjab, India). The observable behaviors are internal
migration into existing settlements (A), invasion of not occupied agricultural space (B), or local migration triggered by competition over
available agricultural space (C). (b) Calculated characteristic length of settlement patterns resulting from the mean and the median heavy-sided
feature size distribution (shown in inlet, ROI 2, Punjab, India, in 2018). The characteristic lengths obey the power law when growing, with
�(t ) ∼ t1/7 and �(t ) ∼ t1/3, respectively (with R2 scores). (c) Calculated characteristic length of the pattern (an example of a feature size is
shown in the inset) resulting from the Allen-Cahn equation. Here, both the mean and the median characteristic length obey the power law with
�(t ) ∼ t1/2 when growing (with R2 scores).

Based on this proposed reaction-diffusion description con-
sistent with pattern formation [22], we first set out to see
whether the satellite data [Fig. 2(b)] contained any clear sig-
natures of such developing rural settlement patterns. Visual
inspection of the WorldPop data set indicates the possible
presence of three key processes: local migration through at-
traction of bigger settlements [e.g., between 2003 and 2008,
Fig. 3(a)/A], invasion or occupation of available agricultural
space [e.g., between 2008 and 2013, Fig. 3(a)/B], and local
migration induced by competition of settlements over avail-
able space leading to changes in settlement patterns [e.g.,
between 2013 and 2018, Fig. 3(a)/C].

We then analyzed the characteristic lengths �(t ) of settle-
ments [see Fig. 3(b)] using the GAIA data set [33,34]. We
chose the characteristic length to be the size of the respective
features, evaluating the distribution feature sizes and deter-
mining the predominant size following Refs. [40] and [41]
[see the inset in Fig. 3(b); for more details see Appendix E].
This analysis shows that when the characteristic size of settle-
ments is growing, this growth is well described by a power law
ctβ , with an exponent of β = 1/7 for the mean and β = 1/3
median characteristic lengths.

Interestingly, from the literature we know that the time
evolution of characteristic lengths of patterns driven by coars-
ening mechanisms also follow such a power law. For example,
for the Allen-Cahn equation, it was theoretically shown that
the change of �(t ) is described by the power law with β = 1/2
[40–42], while for the Cahn-Hilliard equation [38], β = 1/3
[40,41]. Indeed, we calculated the characteristic length for a
simulated pattern for the Allen-Cahn equation of the form

ut (x, y, t ) = α∇2u + βu + γ u2 − u3, (5)

using the same method as for the settlement patterns, which
revealed that the mean and the median characteristic length
�(t ) follow the power law with β = 1/2 [see Fig. 3(b)]. Even

though the exponent β of the power law for settlement patterns
is not the same as that for the Allen-Cahn or the Cahn-Hilliard
equation, it indicates that settlement patterns could be a prod-
uct of a simple, coarsening pattern-forming mechanism in the
proposed form of Eq. (4).

III. MODEL IDENTIFICATION
FROM SETTLEMENT DATA

A. Model identification using SINDy

The SINDy method to identify differential equation models
from spatiotemporal data sets has been increasingly applied
in many fields, i.e., in fluid mechanics [24]. However, it has,
to our knowledge, never been used for studying large scale,
geo-sociological questions. Therefore, we asked ourselves
whether we could use this method to discover a partial dif-
ferential equation (PDE) that provides a good description of
the measured time evolution of rural settlements in the Global
South. If successful, such a PDE would also provide new in-
sights in potential pattern-forming mechanisms in settlement
development.

The main idea behind the SINDy method is the assump-
tion that dynamic systems can be described through either
ordinary or, in our case, partial differential equations (using
PDE-FIND) [29] with sparse structure in the following form:

ut = N[u(x, t ), ux, uy, . . . , x, ξ]. (6)

The temporal change of u, ut , is a function of the variable
u itself, its spatial derivatives, and a set of coefficients ξ.
Differential equations of this form can be linearly combined:

ut = ξ1 + ξ2u + ξ3u2 + ξ4ux + ξ5uxx + · · · . (7)

This equation can be rewritten as a row vector containing all
combinations and derivatives of the quantity, called the term
library, and a coefficient vector ξ containing all coefficients:

ut = (1 u u2 ux uxx · · ·) · ξ. (8)
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TABLE II. Terms included in the library for the one-component,
two-dimensional equation sorted by combinations of u and its
derivatives.

Terms

Combinations 1, u, u2, u3

Derivatives ux, uy, uxx , uyy, uxy, uxxx , uyyy, uxxy, uyyx ,
uxxxx , uyyyy, uxxyy, uxxxy, uyyyx

The values of each term in the library can be calculated from a
single shot at a given point in time. If this system is extended
to all available time points, a linear system of equations with
the unknown parameter vector ξ and the term library matrix
� is formed:

(ut ) = (1 u u2 ux uxx · · ·) · (ξ) = � · ξ. (9)

We assume that the settlement evolution could be captured
by a PDE similar to Eqs. (4) and (5). Therefore, we use the
term library given in Table II, which includes derivatives up
to the fourth order.

This system poses an overdetermined optimization prob-
lem for values of ξ and can be solved using regression
algorithms (for more detailed information on regression al-
gorithms for SINDy, see Ref. [43]). In contrast to the original
work in which the method PDE-FIND was introduced [29],
we apply a sparsity-promoting algorithm with the SR3 algo-
rithm developed by Zheng et al. [44]. This method includes
the additional variable w, which is forced to be close to the
coefficient parameter and therefore relaxes the optimization
problem:

min
ξ,w

1

2
‖ut − �ξ‖2

2 + λ‖w‖1 + α

2
‖w − ξ‖2

2, with λ = l2

2α
.

(10)

Here, two hyperparameters of the optimization have to be
set: the threshold l and the parameter of the optimization α,
which provides the penalizing parameter λ of the regulariza-
tion.

After model identification, we analyze the discovered mod-
els with the Akaike information criterion (AIC). The AIC is a
measure of parsimony [45]. It compares the goodness of fit of
a given model to other proposed models and weighs it with the
model’s complexity aiming to maximize the information pro-
vided by the simplest-as-possible model. For our analysis, we
apply the corrected formulation for finite sample sizes of the
AIC (AICc) proposed by Ref. [46], resulting from Ref. [47]:

AICc = AIC + 2(k + 1)(k + 2)

m − k − 2
. (11)

The AIC is described by the likelihood function of average
error over time and space ε as follows:

AIC = m ln (ε/m) + 2k,

with ε =
∣∣∑mt

i=1 yi − N (xi, ξ)
∣∣

m

and m = msnROI. (12)

The AIC depends on the number of observations m (size
of region ms = XY and amount of included ROIs nROI = 3,
where we interpret an observation as the time series at every
spatial point) and the number of terms (k) describing the
complexity of an identified model.

Using this approach, we determine the most parsimonious
model among all potential models and study its proper-
ties. In order to compare the identified models, we further
normalize the AIC by the minimal value of the respec-
tive analysis AICmin. Here, following Refs. [46] and [47],
a model that has an AICc − AICmin < 2 has strong support
for being the correct underlying system, while the ones with
AICc − AICmin < 8 have weak support. Hereafter, we always
refer to the corrected AICc when the AIC is mentioned.

B. Application to settlement data

Using the outlined approach, we look for potential models
to describe the available settlement data from the WorldPop
data set in the different regions (India, Egypt, and Nigeria).
We scan sets of thresholds from l = 10−6 to l = 102 and
optimization hyperparameters α = 10−3 to α = 103. The SR3
algorithm was applied with a tolerance of 10−2 and using 200
iterations (for details see Ref. [44]).

From the parameter scan, we determine for which combi-
nations of l and α the identified models provide an AIC < 2.
In order to preselect possible solutions, we only evaluate
equations with this AIC at overlapping parameter pairs of
l and α. The reason for this is that, if the dynamics in the
whole region follow the same rules (or dynamical behavior),
all best identified models should have the same mechanistic
form. Therefore, in Fig. 4(a), we show for which sets of (l, α)
the low-AIC regions of each ROI overlap (in yellow).

Next, we selected unique model equations at their lowest
parameter values for l and α, respectively. The parameter
combinations for unique solutions of each ROIs are shown
in Fig. 4(a). These unique solutions are further compared with
the use of the AIC, where we also depict the error and the
complexity of the found equations in Fig. 4(b). The optimal
selected equations are highlighted by markers with red bor-
ders and the values of coefficients are shown in Fig. 4(c).

For the identified models, we analyze if they indeed re-
produce the same spatiotemporal dynamics and patterns as
present in the original data they were trained on. Figure 5(a)
shows a representative time evolution of the original and sim-
ulated data for ROI 2 in India. One can see that, while the
spatial patterns become more pronounced in the original data,
this is not the case in the simulated model. This is also seen by
explicitly plotting the difference between the original data and
the simulation. These observations are general for all analyzed
ROIs (full analysis is in the shared repository).

To better understand why the identified model equations do
not accurately capture the original data, we look more closely
at the coefficients of each model term, as well as the overall
contribution of each term. We find that the assigned coeffi-
cients vary over multiple orders of magnitude, ranging from
10−3 for some production terms up to 106 for some higher-
order derivatives of the diffusive terms. We calculated the
actual contribution c j of each term as the value of each term
θi j at a set time point t (we arbitrarily chose t = 10) and
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FIG. 4. Parameter sweep of all ROIs and regions for sets of threshold l and optimization parameter α. (a) The analysis of the ROIs shows
different combinations of parameters where the AIC falls beneath 2 for the respective ROI. As we search for a regionally valid solution, we
select only unique solutions at combinations of l and α where the AIC < 2 for all ROIs overlap. The selected unique equations and their
respective optimization parameter sets where they were found first are shown. Red bordered markers depict the best identified models of each
ROI. We see that the AIC provides the best equations with the lowest error and complexity (except for ROI 2, from which we show later through
analysis of contributions that only the production terms are significant). (b) The respective error and complexity of the found equations are
depicted. The red bordered markers show the best model for each ROI in each region following the AIC. (c) The identified coefficients ξ [as
in Eq. (9)] are shown for each equation. All identified models contain most of the derivatives (diffusive terms) with large coefficient values. If
found, the coefficient values of the reaction terms are multiple magnitudes smaller than those of the diffusive terms.
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FIG. 5. (a) The simulation of found models shows that the con-
centration in the whole region increases with time, but no patterns
form. Despite being trained on the data set, the models are not able
to reproduce the training data (here ROI 2, India). (b) Calculated
contributions to the change of u. Even though the magnitude of
coefficients is on the order of 106 for derivatives, their contribution
is negligible and lies between the orders of 10−17 and 10−21.

averaged over all spatial points, and we then multiplied with
the respective coefficient ξ j ,

c j = |ξ j · θ̄ j |, with θ̄ j =
∑X

x=0

∑Y
y=0 θi=10 j (x, y)

XY
. (13)

Figure 5(b) shows that, even though the coefficients of deriva-
tive terms were multiple orders of magnitude larger than those
of the production terms, their contribution is, in fact, negli-
gible compared to production terms. The dominance of the
terms proportional to (1, u, u2, u3) over all terms with spatial
derivatives leads to the observed overall increase in concen-
tration while preserving the initial pattern. In conclusion, the
identified models do not capture any pattern-forming mecha-
nism as the interaction of reaction and diffusion processes is
crucial (see Sec. II).

IV. LOW-DATA LIMITS IN MODEL IDENTIFICATION
OF PATTERN-FORMING PROCESSES

One possible reason is that the SINDy method was unable
to recover a reaction-diffusion model that correctly describes
the settlement data due to a lack of spatiotemporal resolution
and/or insufficient observation time. Indeed, it is known that
model discovery with SINDy is dependent on the amount
of temporal points and the size of the time step �t [44,48].
Therefore, we decided to study the limits of the SINDy
method in recovering a reaction-diffusion model for low spa-
tial and/or temporal resolution, as well as short observation
times. As we found that the observed settlements followed

FIG. 6. Recovery of the AC equation with SINDy: sensitivity to
spatiotemporal resolution. (a) Time simulation of the AC equation,
subsampled with different spatial and temporal resolutions, as indi-
cated in panel (b). (b) Diagram showing for which resolution SINDy
is able to recover the AC equation. Recovery is only successful for
sufficiently high spatial and temporal resolution (214 × 214, Nt > 80
frames) of the simulated data set of t = 100.

coarsening dynamics (see Sec. II), we decided to study the
recovery of the Allen-Cahn (AC) equation (5, [39,49]) using
SINDy in the low-data limit:

ut (x, y, t ) = α∇2u + βu + γ u2 − u3,

with α = 0.1, β = 0.5, γ = −0.01. (14)

With this set of coefficients, the initial condition
uinit (x, y, t = 0) ∼ N (0, 0.01) (which was created once and
used for all simulations), and zero-flux boundary conditions,
Eq. (14) creates coarsening labyrinth patterns as shown in
Fig. 6(a) (Original).

We then first subsampled this data set generated by sim-
ulating the AC equation by imposing a spatial resolution
of �x = �y = 0.39 [Nx = Ny = N = 256 lattice points with
�x = L/(N − 1) and L = 100] and a temporal resolution of
�t = 0.08 (Nt = 1250 frames with Nt = t/�t and t = 100).
This subsampled data set was then used as input to the
SINDy algorithm, which was able to recover the original AC
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FIG. 7. Recovery of the AC equation with SINDy: sensitivity to observation time. (a) Time series of the simulated AC equation with
temporal resolution of �t = 0.16 and observation time t = 100. (b) and (c) Diagrams showing for which resolution SINDy is able to recover
the AC equation with changing observation time and spatial resolution. The observed time window used for model recovery is chosen at the
end (b) or start (c) of the time series in panel (a). (d) For a spatial resolution of N = 256 lattice points, varying the temporal resolution shows
that identification is less sensitive to resolution than to the amount of available data [for case (c), the transition points are plotted with offset
for visualization].

equation (14) in the correct form with a maximum error of 3%
in the coefficients.

Next, we further subsampled the data temporally and spa-
tially in order to identify the limits of the SINDy approach.
We decreased the temporal resolution from �t = 0.08 (Nt =
1250 frames) in 26 steps to �t = 10 (Nt = 10 frames). Sim-
ilarly, the spatial resolution was reduced from �x = �y =
0.39 (N = 256 lattice points) in 18 steps to �x = �y = 7
(N = 14 lattice points). We then compared the identified
model to the original AC model, characterizing if the form
of the model (correct terms) was correct and whether it had
identified the correct coefficients (see Fig. 6). This analy-
sis shows that the SINDy algorithm is sensitive to spatial
and temporal resolution. Only for sufficiently high spatial
(�x = �y < 0.46, N > 214 lattice points) and temporal res-
olution (�t < 1.25, Nt > 80 frames) we correctly recover the
AC equation with the proper coefficients [yellow region in
Fig. 6(b)]. For lower resolution, we are still able to recover
the mechanistic form of the equation (but not the correct
coefficients) in the green region in Fig. 6(b). In Fig. 6(a) we
show how the detected mechanistic forms in this region are
still able to recover the overall dynamics of the system (for
low-spatial and high-temporal resolution and for high-spatial
and low-temporal resolution). However, the reduced resolu-
tion leads to coefficients smaller than those in the original AC
equation, which slows down the dynamics. When decreas-
ing the resolution even further, the optimization algorithm
includes and overestimates higher-order derivatives. Such
models are no longer able to capture the dynamics of a system

accurately [blue region in Fig. 6(b); Fig. 6(a), low-spatial and
low-temporal resolution].

We then wondered how the observation time affects the
possibility to recover the correct model. This question is espe-
cially relevant as we only observe relatively slow changes of
settlement structures over 20 years using the WorldPop data
set. We repeated the study of the recovery of the AC equa-
tion (Fig. 6) for a fixed time resolution (�t = 0.16, Nt = 625
frames) for which we could successfully identify the AC equa-
tion (provided the spatial resolution was sufficiently high).
We then redid this analysis for varying spatial resolution
and observation time. The observation time was progressively
reduced by only considering the first or last fraction of the
original time series as input to the SINDy optimization [see
sketch in Fig. 7(a)]. Note that in this way we are also reducing
the total amount of input data. The results of this analysis are
shown in Figs. 7(b) and 7(c).

As expected, the AC equation can no longer be recovered
when reducing the observation time and/or spatial resolution
below a certain threshold. Interestingly, we find that the sys-
tem is very sensitive to observation time when using the later
stages of the dynamical evolution [Fig. 7(b)], while this is
much less the case when using the initial part of the dynamical
evolution of the AC equation [Fig. 7(c)]. This illustrates that
the observation time required to correctly recover the underly-
ing model equation strongly depends on when one measures
the system dynamics. In particular, our analysis shows that
it is best to capture as much as possible of the dynamical
changes at the relevant timescales. In this case, much of the
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initial patterns form quickly at the start, while later the pat-
terns coarsen only slowly.

Finally, we then also investigated how sensitive these find-
ings related to observation time were with respect to time
resolution. We fixed the spatial resolution at �x = �y = 0.39
or N = 256 lattice points and determined the critical thresh-
olds in terms of observation time for correct model identifi-
cation for varying time resolution �t . Figure 7(d) shows that
successful model recovery is less sensitive to time resolution
(can be varied over 2 orders of magnitude) than to observation
time (both duration and exact timing).

This also shows that there is a limit to the additional in-
formation that can be provided by higher spatial and temporal
resolution if the duration and/or timing of the observed time
window is not well chosen for successful model recovery.
In the case of the settlement data set under study here, this
analysis suggests that it is plausible that the observed changes
in population density in the provided data set are inadequate
for proper model identification due to the too short obser-
vation time compared to the relevant timescales over which
settlements develop.

V. DISCUSSION AND CONCLUSION

The goal of this work was to not only theoretically describe
the possible role of simple pattern-forming mechanisms in the
development of urban structures (in our case settlements) of
the Global South, as has been done before in Refs. [22,23],
but to provide an unbiased approach to identify such models
directly from data.

In order to do this, we selected three representative regions
of the Global South from India, Egypt, and Nigeria and an-
alyzed the occurrence of regularity in settlement structures
in these. Using these data, we selected smaller ROIs in the
spatiotemporal data set WorldPop [35] of population density
distributions.

Following this, we extended the ideas of Ref. [22], moti-
vating and providing an alternative theoretical point of view
on pattern-forming mechanisms in rural, agriculturally dom-
inated settlement structures. We argued that together with
features of regularity (as suggested by Refs. [12,14,17]),
pattern-forming mechanisms could be responsible for the
emergence of settlement structures. This extension can be
a starting point in critically evaluating urban modeling ap-
proaches that strive for more complexity over generalization.
Here, we substantiated this claim as we observed the sug-
gested behavior in actual population density patterns, while
also showing that the characteristic length of patterns resulting
from settlements follows a power law, similarly to coarsening
patterns in, e.g., Allen-Cahn or Cahn-Hilliard models.

We then introduced the SINDy [24,29] method together
with the AIC [45,46], allowing us to derive and investigate
spatiotemporal models for the dynamics of population den-
sity patterns. However, using the SINDy method, we were
not able to identify simple pattern-forming mechanisms di-
rectly from selected ROIs of regions in the Global South. The
found equations were neither sparse nor represented known
pattern-forming mechanisms from literature. The assigned co-
efficients differed in multiple orders of magnitude between
production terms (10−3) and diffusion terms (106).

As a result, it seems necessary to change the target of op-
timization from solely evaluating the coefficients to targeting
the actual contribution of terms, which, e.g., has been recently
suggested by Ref. [50]. Additionally, the configuration of our
SINDy approach does not include any time or space depen-
dency of parameters, as suggested by Ref. [51], which can
prevent us from capturing important dynamical behavior of
settlement systems in the Global South. The found models
show that the models are not able to recreate training data.
An analysis of term contributions has revealed that the model
dynamics are dominated by the production terms and cannot
be understood as pattern-forming mechanisms.

Following this unsuccessful application, we identified and
studied challenges of model identification in spatiotemporal
data sets considering the quality and availability of data. We
suggested that the used data set had too low spatial and
temporal resolution or an insufficient observation time. Sub-
sequently we studied this question with a sensitivity study
of SINDy towards low-data limits. We show that SINDy
(here PDE-FIND) is sensitive to spatial and temporal resolu-
tion while identifying that observation time and the observed
dynamics have a significant influence on the recovery of
underlying dynamics. We see that, when fast dynamics of
pattern formation are captured, lower spatial and temporal
resolution and a shorter observation time are required to
correctly identify the model. When only observing slow dy-
namics (as seen in our settlement data) model identification is
more sensitive towards limited spatial resolution and requires
longer observations times in order to correctly identify the
AC equation. Hence, we need to closely follow the rapid im-
provements in data acquisition with satellite imagery, which
would provide us with sufficiently good data in resolution,
while simultaneously and more importantly providing us with
longer observation times. If such challenges are overcome,
this work provides a ready-to-use framework to discover
pattern-forming mechanisms in settlement development.

Moreover, the structure of the data should be adjusted.
Currently the WorldPop data set does not allow for uninhab-
ited areas with a population density of 0. Here, WorldPop
itself is developing an improved data set, where population
densities and built-up areas are mapped. At the moment of
publication this data set only contains a single time point but,
when extended, it will provide new opportunities to study our
question. Furthermore, the available data sets limit us to only
a single observed variable, introducing a strong assumption
when considering models. Here, the application of methods
coming from Koopman theory, e.g., delay embedding [43,52],
could pose an interesting line of work that could provide
“hidden’ variables, adding information for the optimization
and resulting in models of higher dimensions (as has been
recently attempted for synthetic data from a shallow-water
model [53] or a spatiotemporal Lotka-Volterra model [54]).

In conclusion, we have provided an initial framework
for the evaluation and identification of the role of simple
pattern-forming mechanisms in the development of settlement
structures. So far, the efforts to provide model equations de-
scribing such mechanisms have been unfruitful. However, we
developed a possible theoretical motivation and were able
to identify the major challenges of model identification in
low-data limits in pattern formation.
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FIG. 8. Moving window method for ANN calculation with
changing L, the window side length, and a part of the results for the
Punjab region in India from year 2003. Similar figures for all regions,
years, and ten window sizes between L = 5 km and L = 50 km can
be found in the repository.

All calculations, simulations, and graphs are done in
PYTHON. For SINDy, we use the package PYSINDY [55,56],
and for simulations, we developed a simple forward-Euler
solver. All algorithms are available in our GITLAB repository
[57]. Furthermore, raw data and algorithms are archived via
RDR by KU Leuven under the link provided in Ref. [58].
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APPENDIX A: FORMULATION OF
REACTION-DIFFUSION EQUATIONS

With the definitions from Sec. II we formulate balance
equations for the respective agents u′ and v′:

Ṅ ′
u = ∂

∂t

∫
A

u′dA =
∫

A
ÛR f (u′, v′) −

∮
C

J′
u · n dC,

Ṅ ′
v = ∂

∂t

∫
A
v′dA =

∫
A

V̂ R g(u′, v′) −
∮

C
J′

v · n dC. (A1)

Here N describes the amount of population or agriculturally
used area in the finite area A and accordingly Ṅ describes
the change in the whole area, whereas u′ and v′ describe
local changes. The long-distance effects are a product of the
reaction terms f (u, v) or g(u, v) and the reaction rates ÛR
and V̂ R. Here, u := u′/Û and v := v′/V̂ are dimensionless by
division with reference or maximum densities Û and V̂ .

Similarly to Ref. [22], the short-distance effects are also
driven by a density gradient which can be modeled with Fick’s
first law. By applying Gauss’ theorem, we get the following
two reaction diffusion equations:

ut = ÛR f (u, v) + Du∇2u,

vt = V̂ R g(u, v) + Dv∇2v. (A2)

With the additional dimensionless transformations t := Rt ′,
x = x′√R/Du, and D := Dv/Du, we derive the dimensionless

standard form of reaction-diffusion equations:

ut = ∇2u + R f (u, v),

vt = D∇2v + Rg(u, v). (A3)

APPENDIX B: LINEAR STABILITY ANALYSIS

As done in Ref. [22] and following Ref. [39], we per-
form a linear stability analysis around the linearized state
of Eq. (1) with u = U + δu and u = V + δv with the ho-
mogeneous solutions U and V . With the perturbation ansatz
δu = R[δû exp(σ t + ikx)] or vice versa with v, we derive
an eigenvalue problem with the eigenvalue σ , the Kronecker
delta δ, u = (u, v), the Jacobi J( f , g), and D = 0:

[σδ − J( f , g)]δû = 0, (B1)

→ σ 2 − J( f , g)I σ + det[J( f , g)] = 0. (B2)

Solving the eigenvalue problem results in two conditions
for the Jacobi matrix J( f , g),

J =
(

fu|0 fv|0
gu|0 gv|0

)
, (B3)

which lead to instability,

fu|0 + gv|0 < 0, (B4)

det[J( f , g)] = gv|0 fu|0 − gu|0 fv|0 > 0. (B5)

As described in Ref. [22] the only reasonable formulation of
the Jacobi matrix is

J =
(+ +

− −
)

. (B6)

Other forms where the columnwise signs are the same results
in concentrations spatially in phase, and in the form with
rowwise same signs only the shown can be suitably used as
shown in Sec. II.

As Turing patterns can arise due to diffusion, we as well
study the short-distance effects. We can reformulate diffusion
as a product of the specific energy kBT , with the Boltzmann
constant kB and the temperature T , and the mobility μ. At
constant T , the ratio D = μv/μv results in

B := J( f , g) − Dk, with D =
(

1 0
0 D

)
, (B7)

and allows us to rewrite the eigenvalue problem in Eq. (B1) as

[σδ − B( f , g)]δû = 0. (B8)

This results again in two conditions for the Jacobi:

fu|0 + gv|0 − k2(1 + D) < 0, (B9)

det(B) = ( fu|0 − k2)(gv|0 − k2) − gu|0 fv|0 > 0. (B10)

Turing instability is achieved when the condition Eq. (B10) is
violated, resulting in the necessary condition for the diffusion-
induced instability:

D fu|0 + gv|0 > 0 → fu|0 > −gv|0
D

. (B11)
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TABLE III. Coordinates of the regions of interest.

Region West South East North

India 75.3855 28.8265 77.4804 30.6380
ROI 1 76.0086 29.4155 75.8528 29.5319
ROI 2 76.7096 29.7066 76.5538 29.8230
ROI 3 77.2547 30.2305 77.0990 30.3469

Egypt 29.8650 29.9671 32.1010 31.8803
ROI 1 30.3377 30.7896 30.1804 30.9044
ROI 2 31.1260 30.6174 30.9686 30.7322
ROI 3 31.5200 31.2488 31.3627 31.3636

Nigeria 7.3774 11.1881 9.3336 13.1056
ROI 1 8.2020 11.9172 8.0646 12.0492
ROI 2 8.2708 12.5114 8.1333 12.6434
ROI 3 8.9580 12.1152 8.8205 12.2473

APPENDIX C: REGION INFORMATION

Here we attach the geographical data of the regions used
to demonstrate the workflow of our method (see Table III).
The coordinates are given in decimal degrees in the reference
system WGS84.

APPENDIX D: CALCULATION OF ANN WITH MOVING
WINDOWS OF DIFFERENT SIZES

In order to select suitable excerpt sizes from our selected
WorldPop data sets from Table III, we follow a similar ap-
proach as in Ref. [12]. With varying window sizes, starting
from square windows with side lengths L of 5 km up to
50 km, we scan over the respective data set calculating the
ANN while moving the windows in north-south or east-west

direction by L/2 (see Fig. 8). We calculate the ANN as in
Ref. [59],

ANN =
∑N

i=1 di

N√
S
N

, (D1)

with di being the distance of a settlement to the next-nearest
settlement, and N being the total amount of settlements in a
window area S = L2. The ANN evaluates the regularity of a
point pattern and assigns a value between 0 and 2.14 describ-
ing the distribution of settlements (0, clustered; 1, random;
2.14, regular). With this we generated contour diagrams of
ANN in the selected regions over time allowing us to estimate
a “characteristic” window size where regularity is dominating.
By visual inspection we first selected the suitable window size
to be 15 km and three respective ROIs of this size which have
the most regular distribution over the observation time from
our contour diagrams (see Fig. 8 for a part of the obtained
results).

APPENDIX E: CALCULATION
OF THE CHARACTERISTIC LENGTH �(t)

We calculated the characteristic length following Refs. [40]
and [41] in which it is defined as follows:

�(t ) = 2π∫
qp(q, t )dq

. (E1)

Here, q describes the modes’ or waves’ lengths of a Fourier
analysis of a spatial system with their respective probability
of occurrence p(q, t ), evaluated in all directions or over 2π

at every point. To simplify the analysis, we only scan four
directions: horizontal, vertical, and two diagonal directions for
every point.

[1] UN, World population prospects—Average annual rate of pop-
ulation change (percentage) (2019), https://population.un.org/
wpp/.

[2] UN, Population facts: Policies on spatial distribution and urban-
ization have broad impacts on sustainable development (2020),
https://www.un.org/development/desa/pd/content/policies-
spatial-distribution-and-urbanization-have-broad-impacts-
sustainable-development.

[3] F. Retief, A. Bond, J. Pope, A. Morrison-Saunders, and N. King,
Environ. Impact Assess. Rev. 61, 52 (2016).

[4] E. A. Adams, J. Stoler, and Y. Adams, Am. J. Hum. Biol. 32,
e23368 (2020).

[5] H. Nagendra, X. Bai, E. S. Brondizio, and S. Lwasa, Nat.
Sustainability 1, 341 (2018).

[6] S. Thacker, D. Adshead, M. Fay, S. Hallegatte, M. Harvey, H.
Meller, N. O’Regan, J. Rozenberg, G. Watkins, and J. W. Hall,
Nat. Sustainability 2, 324 (2019).

[7] W. Christaller, Die zentralen Orte in Süddeutschland (German),
Central places in Southern Germany, 3rd ed. (Wissenschaftliche
Buchgesellschaft, Darmstadt, 1980).

[8] J. C. Hudson, Ann. Assoc. Ame. Geogr. 59, 365 (1969).
[9] R. Yang, Q. Xu, and H. Long, J. Rural Stud. 47, 413

(2016).

[10] A. A. AbouKorin, Ain Shams Eng. J. 9, 1819 (2018).
[11] J. Friesen, H. Taubenböck, M. Wurm, and P. F. Pelz, Habitat Int.

73, 79 (2018).
[12] K. Henn, J. Friesen, J. Hartig, and P. F. Pelz, ISPRS Int. J. Geo-

Inf. 9, 541 (2020).
[13] B. Prokop and J. Friesen, Preprints 10.20944/preprints202104.

0752.v1.
[14] R. M. Pringle and C. E. Tarnita, Annu. Rev. Entomol. 62, 359

(2017).
[15] G. Theraulaz, E. Bonabeau, S. C. Nicolis, R. V. Solé, V.

Fourcassié, S. Blanco, R. Fournier, J.-L. Joly, P. Fernández, A.
Grimal, P. Dalle, and J.-L. Deneubourg, Proc. Natl. Acad. Sci.
USA 99, 9645 (2002).

[16] C. Grohmann, J. Oldeland, D. Stoyan, and K. E. Linsenmair,
Insectes Soc. 57, 477 (2010).

[17] C. E. Tarnita, J. A. Bonachela, E. Sheffer, J. A. Guyton, T. C.
Coverdale, R. A. Long, and R. M. Pringle, Nature (London)
541, 398 (2017).

[18] C. Losiri, M. Nagai, S. Ninsawat, and R. Shrestha,
Sustainability 8, 686 (2016).

[19] M. Batty and R. Milton, Urban Stud. 58, 3071 (2021).
[20] R. M. May, Nature (London) 261, 459 (1976).
[21] A. M. Turing, Bull. Math. Biol. 52, 153 (1990).

064305-11

https://population.un.org/wpp/
https://www.un.org/development/desa/pd/content/policies-spatial-distribution-and-urbanization-have-broad-impacts-sustainable-development
https://doi.org/10.1016/j.eiar.2016.07.002
https://doi.org/10.1002/ajhb.23368
https://doi.org/10.1038/s41893-018-0101-5
https://doi.org/10.1038/s41893-019-0256-8
https://doi.org/10.1111/j.1467-8306.1969.tb00676.x
https://doi.org/10.1016/j.jrurstud.2016.05.013
https://doi.org/10.1016/j.asej.2017.01.011
https://doi.org/10.1016/j.habitatint.2018.02.002
https://doi.org/10.3390/ijgi9090541
https://doi.org/10.20944/preprints202104.0752.v1
https://doi.org/10.1146/annurev-ento-031616-035413
https://doi.org/10.1073/pnas.152302199
https://doi.org/10.1007/s00040-010-0107-0
https://doi.org/10.1038/nature20801
https://doi.org/10.3390/su8070686
https://doi.org/10.1177/0042098020982252
https://doi.org/10.1038/261459a0
https://doi.org/10.1007/BF02459572


PROKOP, GELENS, PELZ, AND FRIESEN PHYSICAL REVIEW E 107, 064305 (2023)

[22] P. F. Pelz, J. Friesen, and J. Hartig, Phys. Rev. E 99, 022302
(2019).

[23] J. Friesen, R. Tessmann, and P. F. Pelz, Reaction-diffusion
model describing the morphogenesis of urban systems in the
US, in Proceedings of the 5th International Conference on
Geographical Information Systems Theory, Applications and
Management (SciTePress, Heraklion, Crete, Greece 2022).

[24] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proc. Natl. Acad.
Sci. USA 113, 3932 (2016).

[25] P. A. K. Reinbold, L. M. Kageorge, M. F. Schatz, and R. O.
Grigoriev, Nat. Commun. 12, 3219 (2021).

[26] A. V. Ermolaev, A. Sheveleva, G. Genty, C. Finot, and J. M.
Dudley, Sci. Rep. 12, 12711 (2022).

[27] M. Hoffmann, C. Fröhner, and F. Noé, J. Chem. Phys. 150,
025101 (2019).

[28] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz,
IEEE Transactions on Molecular, Biological and Multi-Scale
Communications 2, 52 (2016).

[29] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Sci.
Adv. 3, e1602614 (2017).

[30] H. Schaeffer, Proc. R. Soc. A 473, 20160446 (2017).
[31] U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. Brunton, Proc. R.

Soc. A: 478, 20210904 (2022).
[32] S. M. Hirsh, D. A. Barajas-Solano, and J. N. Kutz, R. Soc. Open

Sci. 9, 211823 (2022).
[33] P. Gong, X. Li, J. Wang, Y. Bai, B. Chen, T. Hu, X. Liu, B. Xu,

J. Yang, W. Zhang, and Y. Zhou, Remote Sens. Environ. 236,
111510 (2020).

[34] X. Liu, Y. Huang, X. Xu, X. Li, X. Li, P. Ciais, P. Lin, K.
Gong, A. D. Ziegler, A. Chen, P. Gong, J. Chen, G. Hu, Y.
Chen, S. Wang, Q. Wu, K. Huang, L. Estes, and Z. Zeng, Nat.
Sustainability 3, 564 (2020).

[35] Worldpop, Worldpop—Population density (2019), www.
worldpop.org.

[36] The computation of the ANN, the resulting selection of the
ROIs, and the later computation of the feature lengths was done
with GAIA because it provides discrete spatial data (1, built-up
area; 0, no built-up area). As such, and in contrast to WorldPop,
which distributes population quantities across administrative
regions, leading to nonexistent values of 0, the identification
of settlement locations and sizes is straightforward. However,
for model identification WorldPop is used, since most pattern-
forming mechanisms describe concentration distributions of
different (chemical or other) species and do not create discrete
patterns [37,39], similar to WorldPop.

[37] J. D. Murray, Mathematical Biology. II Spatial Models and
Biomedical Applications (Springer, Berlin, 2003), p. 811.

[38] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

[39] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[40] S. Puri, Phase Transitions 77, 407 (2004).
[41] B. König, O. J. Ronsin, and J. Harting, Phys. Chem. Chem.

Phys. 23, 24823 (2021).
[42] H. Christiansen, S. Majumder, M. Henkel, and W. Janke, Phys.

Rev. Lett. 125, 180601 (2020).
[43] K. Champion, P. Zheng, A. Y. Aravkin, S. L. Brunton, and J. N.

Kutz, IEEE Access 8, 169259 (2020).
[44] P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y.

Aravkin, IEEE Access 7, 1404 (2019).
[45] H. Akaike, Information theory and an extension of the

maximum likelihood principle, in Proceedings of the 2nd In-
ternational Symposium on Information Theory, Tsahkadsor,
Armenia, USSR, 2-8 September, 1971, edited by B. N. Petrov
and F. Csaki (Akadémiai Kiadó, Budapest, 1973), p. 267.

[46] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor,
Proc. R. Soc A 473, 20170009 (2017).

[47] K. P. Burnham and D. R. Anderson, Sociological Methods Res.
33, 261 (2004).

[48] S. Thaler, L. Paehler, and N. A. Adams, J. Comput. Phys. 397,
108851 (2019).

[49] S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085
(1979).

[50] G. T. Naozuka, H. L. Rocha, R. S. Silva, and R. C. Almeida,
Nonlinear Dyn. 110, 2589 (2022).

[51] S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, SIAM J. Appl.
Dyn. Syst. 18, 643 (2019).

[52] J. Bakarji, K. Champion, J. N. Kutz, and S. L. Brunton,
arXiv:2201.05136.

[53] S. Ouala, S. L. Brunton, B. Chapron, A. Pascual, F. Collard,
L. Gaultier, and R. Fablet, Phys. D (Amsterdam, Neth.) 446,
133630 (2023).

[54] P. Y. Lu, J. Ariño Bernad, and M. Soljačić, Commun. Phys. 5,
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