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Spatial spread of epidemic with Allee effect
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The spatial spread of an epidemic is investigated in the case of a bistable dynamics, where the effective
transmission rate depends on the fraction of infected and the state of no epidemic is linearly stable. The front
propagation phenomenon is investigated both numerically and theoretically, by an analysis in a four-dimensional
phase plane. A good agreement between numerical and theoretical results has been found both for the front
profiles and for the speed of invasion. We discovered a novel phenomenon of front stoppage: In some regime of
parameters, the front solution ceases to exist, and the propagating pulse of infection decays despite the initial
outbreak.
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I. INTRODUCTION

In the susceptible-infectious-recovered (SIR) model [1],
S denotes the fraction of susceptible individuals, I denotes
the fraction of infected individuals (people who are sick and
can infect others), and R denotes the fraction of recovered
individuals. In the basic model, the initial state of no infection
(S = 1, I = 0) is unstable if the transmission rate is larger
than the recovery rate [1]. Indeed, any small perturbation of
this state (when some individuals become infected) leads to an
outbreak. In the spatial setting, this may result in fronts prop-
agating into an unstable (healthy) state [2]. In simple cases
of reaction-diffusion models that do not consider complex
mobility patterns [3], these fronts are qualitatively similar to
fronts in the Fisher-Kolmogorov equation [4,5].

Health administrations can effectively fight the epidemic in
its initial stages, when the fraction of infected is not large. A
common method is tracing the chains of infections [6] and
possibly quarantining people who were in a close contact
with infected individuals. This method might be quite efficient
leading to a reduction in the effective transmission rate; thus it
might stabilize the state of no infection to small perturbations.
In population dynamics, this phenomenon is called an Allee
effect [7], and it was recently proposed to be an important
factor in the spread of an epidemic [8]. Mathematically, the
effect can be incorporated by introducing the dependence of
the transmission rate on the fraction of infected I , such that
the local outbreak occurs only if the initial value of I is large
enough. As a result, the possible traveling wave of infection is
qualitatively different from the Fisher-Kolmogorov fronts.

Generally, when two stable states are spatially coupled
by diffusion, fronts (for example, density fronts in the in-
sect outbreak model [9]) can propagate in both directions,
so either one of the states can win and occupy the entire
system [10]. The case of an epidemic is different as without
diffusion, S can only decrease. Therefore, a front can poten-
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tially move only in one direction, invading the healthy S = 1
state. Reference [8] analyzed the dynamics of an epidemic in
a single well-mixed system. The present research is devoted
to a novel phenomenon of spatial epidemic propagation in the
SIR model with the Allee effect. Combining numerical and
analytical tools, we determine the speed of front propagation
and discover the threshold phenomenon, beyond which an
initially propagating wave of an epidemic stops.

II. THE MODEL

The spatial SIR model is usually described by the follow-
ing reaction-diffusion equations for the fraction of susceptible
individuals S(x, t ), the fraction of infected individuals I (x, t ),
and the fraction of recovered individuals R(x, t ) [1],

∂S

∂t
= −rSI + D

∂2S

∂x2
,

∂I

∂t
= rSI − αI + D

∂2I

∂x2
,

∂R

∂t
= αI + D

∂2R

∂x2
. (1)

The equations are accompanied by no-flux boundary con-
ditions. We bring a novel element: While the recovery rate α

is constant, the transmission rate r depends on the fraction
of infected, varying from rmin < α for low I (I � Ibar) to
rmax > α for high I (I � Ibar). This can be modeled as

r(I ) = rmin + (rmax − rmin)
I

Ibar + I
. (2)

In this case, both the state of no epidemic S = 1, I = 0 and
the final state after the epidemic, S = Sfinal, I = 0 are stable.
In the next section, we study fronts invading the healthy S = 1
state. It turns out, however, that in some regime of parameters,
despite the initial outbreak, the front stops moving in finite
time, in some sense giving a win to the uninfected S = 1 state.
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FIG. 1. Spatial profiles of the fraction of infected individuals
(the upper panel) and the fraction of susceptible individuals (the
lower panel) at different time instances. The curves were computed
by numerically solving the system of Eqs. (1). After a short tran-
sient, a front propagation is established. In both panels, the profiles
are shown at time instances of t̄ = 0 (red dashed-dotted curves),
t̄ = 200 (black curves), t̄ = 400 (blue curves), and t̄ = 600 (green
curves), where t̄ = αt is the rescaled time. The parameters are
Ibar = 0.02, r̄min = 0.14, r̄max = 2.8, D = 1, where r̄min = rmin/α

and r̄max = rmax/α.

III. FRONT PROPAGATION

To study front propagation, it is sufficient to focus just on
the first two equations in Eqs. (1). A numerical solution of
Eqs. (1) shows that after a short transient, the profiles of S and
I stop changing with time and start moving with a constant
speed c (see Fig. 1). The upper panel of Fig. 1 shows the
profiles of the fraction of infected, I (the propagating pulse
of infection), while the lower panel presents the profiles of
the fraction of susceptible, S. The initial conditions (shown
by the red dashed-dotted lines) were chosen to have a form
of a step function, where I (x, t = 0) = I0 in a certain re-
gion, and I (x, t = 0) = 0 otherwise. We have checked that
the front shape and the speed of propagation do not depend
on the value of I0, once it is above the threshold for local
outbreak. To compute the front speed, we followed the po-
sition of the maximum of infected as a function of time.
Figure 2 shows that the front speed slowly decreases with
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FIG. 2. Front speed computed numerically by solving the system
of Eqs. (1) (the blue dotted line) for Ibar = 0.025 (the rest of the
parameters are the same as in Fig. 1). The plateau value of the front
speed (shown by the red dashed line) is computed theoretically by
finding the desired trajectory in a 4D phase space (see text).

time and reaches a plateau that can be determined theoretically
(see below).

To make theoretical progress, we first nondimensionalize
Eqs. (1), introducing the rescaled dimensionless coordinate
x̄ = √

D/αx and the rescaled dimensionless time t̄ = αt .
Then we substitute the front propagation ansatz, assuming that
I and S do not separately depend on the coordinate x̄ and time
t̄ , but rather on the combination ξ = x̄ − ct̄ . Below are the two
resulting ordinary differential equations for S and I ,

−c
dS

dξ
= −r̄SI + d2S

dξ 2
, −c

dI

dξ
= r̄SI − I + d2I

dξ 2
, (3)

where r̄(I ) = r(I )/α. Equations (3) can be rewritten as a
four-dimensional (4D) dynamical system so that the desired
front profile becomes a trajectory in the four-dimensional
phase space (S, u = dS/dξ , I , v = dI/dξ ). This trajectory
connects the state before the epidemic (S = 1, u = 0, I = 0,
v = 0) with the state after the epidemic (S = Sfinal, u = 0,
I = 0, v = 0). Finding the desired trajectory is challenging
since the values of both Sfinal and c are unknown a priori. To
make progress, we need to theoretically examine the system
dynamics near the two states and then employ a so-called
“shooting” numerical procedure. Linearizing the system of
four first-order differential equations, we obtain

d (δS)

dξ
= u,

du

dξ
= −c u + r̄minS∗I,

dI

dξ
= v,

dv

dξ
= −c v − r̄minS∗I + I, (4)

where δS = S − S∗, and S∗ = Sfinal (when considering the
state left behind the front) or S∗ = 1 (when considering the
state the front propagates to).

First, we analyze the behavior of I and S near the (S =
Sfinal, I = 0) fixed point. Demanding that S approaches Sfinal

and I approaches 0 as ξ tends to minus infinity, we find the
approximate solution in the vicinity of the (S = Sfinal, I = 0)
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state,

S(ξ ) = Sfinal + d̄
r̄minSfinal

(c + λ+)(λ+)2
exp(λ+ξ )

and

I (ξ ) = d̄

λ+
exp(λ+ξ ),

where d̄ is an arbitrary (small) constant and the relevant eigen-
value is

λ+ = −c/2 +
√

c2/4 + 1 − r̄minSfinal.

Next, we study the behavior of I and S near the (S = 1, I =
0) fixed point. Linearizing the equations, we again obtain four
eigenvalues. Demanding that S approaches 1 and I approaches
0 as ξ tends to plus infinity, we find the approximate solution
in the vicinity of the (S = 1, I = 0) state,

S(ξ ) = 1 + ā
r̄min

(c + λ−)(λ−)2
exp(λ−ξ ) + b̄ exp(−cξ )

and

I (ξ ) = ā

λ−
exp λ−ξ,

where ā and b̄ are arbitrary (small) constants and the two
relevant eigenvalues are λ = −c and

λ− = −c/2 −
√

c2/4 + 1 − r̄min.

Since the second term in the expression for S decays ex-
ponentially faster than the last term and can be neglected,
the asymptotic approach of S and I to the fixed point occurs
with different exponents: v/I approaches λ− and u/(1 − S)
approaches c as ξ → ∞. To find the trajectory, we perform
“shooting” in two parameters: c and Sfinal. We choose a certain
interval −l1 < ξ < l2, guess the values of the two parameters,
start at ξ = l1, solve the dynamical system of equations in
MATLAB, and compute v/I and u/(1 − S) at ξ = l2. Perform-
ing iterations, we find the values of c and Sfinal that produce the
desired behavior of v/I , u/(1 − S). We repeat this procedure
for larger and larger intervals (larger l1 and l2) until the values
of c and Sfinal become independent of the chosen interval.

Figure 3 presents an example of such trajectory in two
phase planes: The (I, v = dI/dξ ) phase plane is shown in
the upper panel and the (S, u = dS/dξ ) phase plane in the
lower panel. Let us focus first on the trajectory shown by
solid line (in both panels). Figure 4 shows this semitheoretical
solution of Eqs. (3) and compares it to the numerical solution
of Eqs. (1) at large times. An excellent agreement is achieved
for the fraction of infected profile (the upper panel) and the
fraction of susceptible profile (the lower panel). However,
Fig. 3 also presents another solution of Eqs. (3), a different
trajectory for the same values of parameters, which is shown
by the black dashed lines. We have checked that this trajec-
tory is unstable by choosing the corresponding front profiles
as initial conditions I (x, t = 0) and S(x, t = 0) for the full
system of Eqs. (1). Also, for any other initial conditions, after
a transient, the system reached front profiles corresponding to
the stable trajectory (blue solid lines in Fig. 3).

To explore the space of parameters, we performed the
“shooting” procedure for different values of Ibar and the
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FIG. 3. The trajectory in the phase space of I, v (the upper panel)
and S, u (the lower panel) corresponding to the front profiles I (ξ ) and
S(ξ ). The theoretical analysis of the four-dimensional phase space
shows two different solutions (two different trajectories in the phase
space) for the front propagation problem formulated in Eqs. (3). One
of these trajectories is chosen by the dynamics (blue solid curves),
i.e., realized as a late time solution of Eqs. (1) (see Fig. 4); another
trajectory is unstable and not chosen by the dynamics (black dashed
curves). The parameters are the same as in Fig. 1.

rescaled maximal transmission rate r̄max. Figure 5 presents the
resulting front speed c and the final fraction of susceptible
Sfinal as a function of Ibar for two values of r̄max. For the
same value of Ibar, fronts move faster and the outbreak is
stronger (Sfinal is smaller) for larger r̄max. In addition, one
can see two intriguing details. First, as discussed above, there
are two allowed trajectories for small Ibar. These two trajec-
tories correspond to different sets of (c, Sfinal) but only one
of these trajectories is stable and chosen by the dynamics
as discussed in Fig. 3. More interestingly, the front speed
cannot be found for Ibar larger than some threshold value
Ibarc (the “shooting” procedure is not successful as all the
relevant trajectories end up with S > 1). Figure 5 shows that
the value of Ibarc depends on r̄max (it should also depend
on r̄min).

Since there exists no front propagation solution of Eqs. (3)
for Ibar > Ibarc, we examined the behavior of the system in
this case by numerically solving Eqs. (1). Figure 6 shows a
series of profiles of the fraction of infected at different time
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FIG. 4. Front profiles computed both by solving numerically the
full system of Eqs. (1) and from the theoretical analysis in the phase
space, where the system of Eqs. (3) is solved by using the so-called
“shooting” procedure. The numerical solution of Eqs. (1) at late
times (t̄ = 600, see Fig. 1) shown by the black solid lines agrees
well with the theoretical profiles [solution of Eqs. (3), the red dashed
lines] both for the fraction of infected (the upper panel) and the
fraction of susceptible (the lower panel). The parameters are the same
as in Fig. 1.

instances. First, a large pulse of infected is formed and starts
propagating. However, its peak and its speed slowly decrease
with time. Eventually, the decrease becomes more dramatic
and the pulse completely disappears in final time.

Figure 7 shows the inverse time 1/t f until the final de-
cay of the pulse as a function of Ibar. For Ibar < Ibarc, the
pulse does not decay, so t f is infinite and 1/t f equals zero.
This remains true at the threshold value of Ibar, Ibarc =
0.025 080 4 (computed using the “shooting” procedure). This
implies that the threshold value of Ibar does not depend
on initial conditions, and the same conclusion comes from
the numerical solution of Eqs. (1) (we varied I0 from 0.03
to 0.70 and checked that our results do not depend on I0).
Interestingly, numerical data points for Ibar > Ibarc (circles
in Fig. 7) can be fitted by 1/t f ∝ (Ibar − Ibarc)1/2. Finally,
the observed threshold phenomenon does not depend on the
diffusion coefficient. For larger D, the pulse of infection
moves a larger distance, but the decay time t f remains the
same.

0 0.01 0.02 0.03
Ibar

0.5

1

1.5

c

(a)

0 0.01 0.02 0.03
Ibar

0.2

0.4

0.6

S f
in
al

(b)

FIG. 5. Front speed (the upper panel) and Sfinal (the lower panel)
computed theoretically as a function of Ibar. The left curves cor-
respond to r̄max = 2.0, while the curves on the right correspond
to r̄max = 2.8. Each curve consists of two branches. The blue
dashed-dotted lines correspond to the stable branches chosen by the
dynamics, while the black dotted lines correspond to the unrealized
(unstable) branches (see Fig. 3). There is no front propagation be-
yond a certain value of Ibar (the threshold I = Ibarc is shown by the
red dashed line). The other parameters are the same as in Fig. 1.

IV. SUMMARY AND DISCUSSION

In this paper, we considered the spatial spread of an epi-
demic in the case of a strong Allee effect, when the “healthy”
state S = 1, I = 0 is linearly stable. To model this effect, the
transmission rate was assumed to depend on the fraction of in-
fected [8]. We investigated the front propagation phenomenon
and computed the speed of the infection wave both numer-
ically and theoretically. We have also discovered a threshold
phenomenon of front stoppage: In some regime of parameters,
after an initial outbreak, a pulse of infection stops spreading
and decays in finite time. Notice that without the Allee effect
(in the limit of zero Ibar), the wave of infection is qualitatively
similar to fronts in the Fisher-Kolmogorov equation, invading
the unstable state. Such waves will always propagate, which
emphasizes the importance of public health measures (such
as tracing the chains of infections) that result in the Allee
effect. In other words, even if these health measures do not
significantly affect the local epidemiological situation, they
might lead (for large enough Ibar) to a dramatic global change
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FIG. 6. Fraction of infected profiles at times t̄ = 0 (red dashed-
dotted curve), t̄ = 50, t̄ = 100, t̄ = 150, and t̄ = 164 (black solid
curves) for Ibar > Ibarc as computed numerically by solving the full
system of Eqs. (1). Ibar = 0.0252, and the rest of the parameters are
the same as in Fig. 1.

resulting in an eventual stoppage of the propagating pulse of
infection.

Interestingly, the observed front propagation is qualita-
tively different from the well-known phenomenon of a front
invading a stable state. In the latter case of a competition
between two stable states, a front can move in both directions,
and the sign of front speed is determined by the so-called
area rule [10]. In our system, the front can move only in
one direction, but in some regime of parameters, it gradually
stops propagating and the pulse of infection decays. A similar
feature for the two systems is that both the area rule and the
threshold front stoppage phenomenon are solely determined
by the local dynamics and do not depend on the diffusion
coefficient.

This paper focuses on front propagation into a metastable
state in the deterministic system, but fluctuations might play
an important role [11] leading to front wandering and a correc-
tion to the front velocity. In our case, fluctuations might affect
the critical value of Ibar. As the result, in the vicinity of the
threshold the front might still propagate in the deterministic
system, but will not move in the stochastic system or vice
versa, somewhat similar to the effect examined in Ref. [9].
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FIG. 7. Inverse pulse decay time as a function of Ibar for Ibar >

Ibarc as computed numerically by solving the full system of Eqs. (1)
(the blue circles). At the threshold (the red square), the front still
propagates, making t f infinite, so the inverse decay time is zero. The
fit shown by the black dotted line corresponds to 1/t f = 0.52 (Ibar −
Ibarc )1/2. The rest of the parameters are the same as in Fig. 1.

Investigating this phenomenon is an interesting next step in
research. In general, however, the effect of fluctuations should
tend to zero as the size of the single-site population increases,
therefore, we expect the obtained results to be robust with
respect to noise.

Finally, when describing the spread of an epidemic, net-
works of social contacts represent a more adequate and
realistic framework [12] when compared to the continuum
well-mixed models, where each person has the same chance of
getting infected. We have recently analyzed the front propaga-
tion phenomenon in a spatial system of networks interacting
by migration [13], considering the standard SIR dynamics. In
that case, the front propagates into an unstable state, therefore,
the front speed is determined by the linearized dynamics,
which greatly simplifies the analysis. Considering a similar
setting with a nonlinear bistable SIR dynamics presents a
substantial challenge and provides an interesting avenue of
future research. We expect the front stoppage phenomenon to
be found in that system as well, but the threshold Ibarc will
likely depend on the properties of the node degree distribution.
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