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Bimodular continuous attractor neural networks with static and moving stimuli
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We investigated the dynamical behaviors of bimodular continuous attractor neural networks, each processing
a modality of sensory input and interacting with each other. We found that when bumps coexist in both modules,
the position of each bump is shifted towards the other input when the intermodular couplings are excitatory and
is shifted away when inhibitory. When one intermodular coupling is excitatory while another is moderately
inhibitory, temporally modulated population spikes can be generated. On further increase of the inhibitory
coupling, momentary spikes will emerge. In the regime of bump coexistence, bump heights are primarily
strengthened by excitatory intermodular couplings, but there is a lesser weakening effect due to a bump being
displaced from the direct input. When bimodular networks serve as decoders of multisensory integration, we
extend the Bayesian framework to show that excitatory and inhibitory couplings encode attractive and repulsive
priors, respectively. At low disparity, the bump positions decode the posterior means in the Bayesian framework,
whereas at high disparity, multiple steady states exist. In the regime of multiple steady states, the less stable
state can be accessed if the input causing the more stable state arrives after a sufficiently long delay. When one
input is moving, the bump in the corresponding module is pinned when the moving stimulus is weak, unpinned
at intermediate stimulus strength, and tracks the input at strong stimulus strength, and the stimulus strengths for
these transitions increase with the velocity of the moving stimulus. These results are important to understanding
multisensory integration of static and dynamic stimuli.
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I. INTRODUCTION

The human brain is sophisticated and advanced, and it
performs computations efficiently [1–3]. The brain receives
inputs from the surrounding environment all the time via
different sensory modalities, e.g., visual, auditory, olfactory,
vestibular, and so on. Experiments showed that different corti-
cal regions in the brain are not completely isolated from each
other, and there exist interactions between different sensory
modalities. When the brain is processing information, it is
able to combine cues coming from different sensory modal-
ities, producing responses with higher accuracy or speed. In
addition, this kind of multisensory integration can also give
rise to some interesting behaviors, such as sensory illusion and
response enhancement.

Various models have been built to elucidate the infor-
mation processing mechanism of the brain [4–9]. In this
paper, we study the bimodular version of a model that has
gained widespread attention, known as the continuous attrac-
tor neural network (CANN) [10–16]. Due to their property of
translational invariance of neuronal activities, these networks
are endowed with the ability to hold a continuous family of
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stationary states [9–12]. This feature enables the network to
track a moving stimulus continuously, providing a convinc-
ing model of processing continuous information in the brain
[17–20].

CANNs have been studied extensively [13–16,20–26]. The
ability to hold a continuous family of stationary states endows
these networks with the capacity to simulate and study differ-
ent functions in the brain. For example, working memory is
crucial during information transmission and processing, and
single-module CANNs can be used to illustrate the dynamics
and decay of working memory in the brain since the network
can retain the memory over a longer period compared with
those in single-network constituents [25–27]. In addition to
the study of working memory, the CANN is also exploited
in investigations of path integration [8,20]. Scientists suc-
cessfully generated grid-cell-like responses similar to those
observed experimentally in a rat’s brain, and they suggested
the CANN as the underlying mechanism responsible for the
emergence of grid cells and for path integration. Another
widespread application of the CANN is in the explorations
of the “head direction” [21,23]. By inserting different neuron
modules (populations), scientists realized the approximations
of the head-velocity independent tuning curves observed in
the postsubiculum (POS) and anticipatory responses observed
in the anterior dorsal thalamus (ADT) [21]. In addition, the
directional representation encoded by the attractor network
can be rapidly updated by external cues, which is consistent
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with experimental measurements in thalamic head direction
cells [23].

In terms of network architecture, researchers modified the
architecture of the CANN according to experiments, including
the properties of couplings and the number of modules or neu-
ron populations. By building neural networks that are more
biologically plausible, experiments and biological mecha-
nisms can be explained convincingly. In one-dimensional
CANNs, scientists introduced more than one dynamical vari-
able to simulate synaptic plasticity (short-term facilitation and
short-term depression). These variables are able to illustrate
memory retention and mobility improvement, which gives
rise to anticipative responses [16,24,26]. When generalizing
the CANN to a two-dimensional structure, it is endowed
with more abundant dynamical patterns [28], which means it
has the potential to simulate and explain more complicated
mechanisms, such as illustrating the responses of grid cells
in implementing accurate path integration tasks [20]. In addi-
tion, multidimensional attractor networks are also shown to
perform reliable and optimal computations [22] with noisy
population codes, explaining that the brain can still perform
optimal computations even when the reliability of the cues
varies.

One outstanding advantage of the CANN is the ability
to perform optimal computations especially when dealing
with noisy input signals. Scientists have found that the mul-
tidimensional CANN can still compute reliably (reaching
the Cramér-Rao bound) for cues with varying reliability in the
framework of probabilistic population codes, as long as the
noise is small enough [22]. In addition, the authors of [25] also
explored how noisy neural spiking drives the instantaneous
attractor state to drift, which modeled how the stored memory
in CANNs of probabilistically spiking neurons degrades over
time by diffusion. In accurate path integration tasks [20], it
was shown that the CANN can “accurately integrate veloc-
ity inputs over a maximum of ∼10–100 meters and ∼1–10
minutes” under proper condition settings. Another interesting
application is in studying the still eye effect [27]. It has been
found that the eye slowly drifts to the center of the oculomo-
tor range, so overcoming these perturbations and keeping its
position is a complex task. The author modeled the problem
using a point attractor and a line attractor (corresponding to
the properties of two neuron populations, respectively: One is
to store the memory of the eye position, and the other is to
read it out), and found the conditions for either attractors to
be stable and robust against perturbations.

In CANNs, different coupling profiles can give rise to
different stabilization mechanisms. Neurons in multiple mod-
ules may have various kinds of couplings, which determine
the dynamical behaviors of the whole network [6,29–35]. In
the early work by Amari, the network response is stabilized
by rectangularly distributed couplings with a negative resting
potential [6]. A more common approach uses Mexican hat
couplings [20], i.e., each neuron receives excitatory couplings
from its surrounding neurons and inhibitory ones from those
further away, so that the whole neural network is stabilized.
Another commonly adopted coupling form is Gaussian cou-
pling [15,24,26,28]. In addition, there are also other nonlinear
coupling forms such as exponential coupling [25], cosine
function coupling [21], and linear couplings shown in [36],

which can lead to different responses by controlling their
properties and strengths. Different coupling ranges directly
determine the influence range. Different from the Mexican
hat, Gaussian couplings from a neuron are always excita-
tory or inhibitory and therefore cannot stabilize the response
bump alone. Here the network requires a global inhibition
mechanism, in which the neuron’s responses are stabilized via
subtracting or dividing the summation of the responses of all
neurons. As for the exponential couplings [25], they enable
the single neuron to have a long inhibitory range coupling with
all other neurons, and the strength of coupling depends on
the distance between neurons, which depends only on varying
inhibitions within the neural network to stabilize the response
dynamics. Incidentally, continuous attractors are also studied
broadly in the field of machine learning [37]. In addition, the
performance of CANNs is explored without recurrent excita-
tion [23], and the results are consistent with the experimental
observations in thalamic head direction cells. Despite the vari-
ation in details, the common stabilization mechanism of the
bump profiles involves short-range excitation and long-range
or global inhibition.

Based on the interaction between different modules, the
brain is able to integrate its collected information to get a
comprehensive picture of the surroundings [38,39]. Multisen-
sory information processing was investigated extensively in
areas such as visual-auditory [40], visual-vestibular [41], or
other kinds of combinations [42]. Thus, the purpose of this
paper is to give a comprehensive picture of the dynamical
and static properties of bimodular CANNs in a broad range
of parameters such as reciprocal couplings, input strengths,
and disparities, which have not been done systematically be-
fore. In this paper, we focus on the study of the bimodular
CANN structure, simulating the dynamics of the network and
exploring their behaviors in multisensory information pro-
cessing due to the interactions between two neural modules.
Compared with single-module CANNs, bimodular networks
are able to process information coming from different sen-
sory modalities separately or simultaneously. As shown in
this paper, by applying distinct inputs, the responses of the
bimodular CANNs are very diverse. Furthermore, the cou-
plings between the two neural modules play vital roles during
information processing, either responding to two static stimuli
or tracking a moving stimulus in one modality and a static
stimulus in the other [24,43,44].

The rest of the paper is organized as follows. After de-
scribing the network architecture in Sec. II, we discuss in
Sec. III the network response when the inputs are static, and
in Sec. IV when one input is static and the other moving.
Section V consists of a comparison of network behaviors in
the presence and absence of recurrent couplings. The paper is
concluded in Sec. VI. The Appendix contains calculations of
bump positions and heights providing supporting results for
the main text.

II. NETWORK ARCHITECTURE

A. Single-layer CANNs

We first describe single-module CANNs, which process a
one-dimensional stimulus that can be regarded as the position
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or moving direction of an object, or head direction, or other
continuous variables. Each neuron in the network has its own
preferred stimulus (direction), and the preferred stimuli of all
neurons in the network cover the whole range of stimulus.
Therefore, the population of neurons in the network can en-
code all possible values of the stimulus. We denote U (x, t )
as the synaptic input received by the neuron whose preferred
stimulus is x at time t , and x ∈ [0, 2π ). The dynamics of the
U (x, t ) is [13–15]

τ
∂U (x, t )

∂t
= − U (x, t ) + ρ

∫ ∞

−∞
J (x, x′)r(x′, t )dx′

+ Iext(x, t ), (1)

where τ is the time constant of the synaptic input, controlling
the rate at which the synaptic input converges, typically at the
order of 10 ms [3]. Iext(x, t ) denotes the external input to the
neuron preferring stimulus x at time t , and ρ is the density of
neurons covering the stimulus range. The couplings between
the neurons preferring x and x′ are represented by Gaussian
functions J (x, x′):

J (x, x′) = J0√
2πa

exp

[
− (x − x′)2

2a2

]
, (2)

where a defines the interaction range among the neurons. It
can be seen from Eq. (2) that the coupling depends on the
displacement x − x′ (modulo 2π for angular variables) and
hence is translationally invariant. This endows the network
with the ability to support a continuous family of attractors.
The function r(x, t ) denotes the firing rate at time t and posi-
tion x:

r(x, t ) = [U (x, t )]2
+

1 + kρ
∫ ∞
−∞[U (x′, t )]2+dx′ , (3)

in which [U ]+ ≡ max(U, 0), and k is the global inhibition,
which controls the extent to which the firing rate saturates
[45]. For 0 < k < kc ≡ J2

0 ρ/(8
√

2πa) and for a � 2π , the
CANNs can support a continuous family of stationary states
[14]. To model neurons in the sensory cortex, in this study
k = 1.1kc, which means there is no sustained activity without
external inputs, as shown in Fig. 1, where the responses decay
to zero after switching off external inputs.

To simplify, we rescale the parameters: Ũ = ρJ0U , Ĩext =
ρJ0Iext, r̃ = (ρJ0)2r, k̃ = 8

√
2πak

ρJ2
0

. Then Eqs. (1) and (3) can be
rewritten as

τ
∂Ũ (x, t )

∂t
= −Ũ (x, t ) +

∫ ∞

−∞

J (x, x′)
J0

r̃(x′, t )dx′ + Ĩext(x, t ),

(4)

r̃(x, t ) = [Ũ (x, t )]2
+

1 + k̃
8
√

2πa

∫ ∞
−∞ dx′[Ũ (x′, t )]2+

. (5)

B. Bimodular CANNs

A single CANN only models a hypercolumn of neurons
in a brain area, whereas the cortex is composed of many
hypercolumns, which are coupled with each other. These
coupled hypercolumns can be located within the same brain
area, or even from different areas which process different

FIG. 1. The responses of a unimodular CANN when the external
input is only applied during 0 to 2τs. The responses gradually fade
after the input is removed. Light blue lines indicate the input posi-
tions (π ).

sensory modalities [46–52]. Therefore, we generalize the
single-module CANN to a bimodular structure through adding
couplings between the two modules in the bimodular CANNs,
consistent with previous network models (e.g., [41,53–55]).
The network architecture is shown in Fig. 2. For simplicity, we
consider the case in which the neurons are evenly distributed
in the two modules. Each neuron has its own preferred stimu-
lus, indicated by the arrows in the neurons. Generalized from
Eq. (4), the dynamical equations of the bimodular CANNs
model are [for convenience, we use U , r, k, I , J (x, x′) to
denote the rescaled variables Ũ , r̃, k̃, Ĩ , J (x, x′)/J0 in the rest
of the paper]

τ
∂U1(x, t )

∂t
= − U1(x, t ) + ω11

∫ ∞

−∞
J11(x, x′)r1(x′, t )dx′

+ ω12

∫ ∞

−∞
J12(x, x′)r2(x′, t )dx′ + I1ext(x, t ),

τ
∂U2(x, t )

∂t
= − U2(x, t ) + ω22

∫ ∞

−∞
J22(x, x′)r2(x′, t )dx′

+ ω21

∫ ∞

−∞
J21(x, x′)r1(x′, t )dx′ + I2ext(x, t ).

(6)

FIG. 2. The bimodular CANNs architecture.
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The recurrent coupling strength within module 1 (module
2) is denoted as ω11 (ω22), and their strengths are fixed at 1.0 in
this paper. The coupling from module 1 (module 2) to module
2 (module 1) is denoted as ω21 (ω12). As for the coupling func-
tions between two modules, we continue to adopt Gaussian
functions similar to that in Eq. (2):

Ji j (x, x′) = 1√
2πa

exp

[
− (x − x′)2

2a2

]
, i, j ∈ {1, 2, i 	= j}.

(7)

The firing rates (responses) in each module of bimodular
CANNs are given by

r1(x, t ) = [U1(x, t )]2
+

1 + k
8
√

2πa

∫ ∞
−∞ dx′[U1(x′, t )]2+

,

r2(x, t ) = [U2(x, t )]2
+

1 + k
8
√

2πa

∫ ∞
−∞ dx′[U2(x′, t )]2+

. (8)

There are also two external inputs I1ext and I2ext to the
two modules, respectively. In this paper, both of the external
stimuli are in Gaussian forms:

I1ext = I01 exp

[
− (x − z1)2

4a2

]
,

I2ext = I02 exp

[
− (x − z2)2

4a2

]
. (9)

I01 and I02 denote the magnitudes of external inputs, re-
spectively, and x denotes the positions of neurons. The central
positions of inputs are denoted as z1 and z2, respectively,
which are either static or moving.

III. STATIC INPUTS

A. Dependence on intermodular couplings

Different intermodular couplings can give rise to various
behaviors of the neural network, as shown in Fig. 3. We
divide this spectrum of behaviors into three major types,
which are summarized below. Mechanistically, in bimodular
networks the bump in the module, which receives excitatory
intermodular couplings, is attracted towards the bump in the
efferent module, whereas those receiving inhibitory couplings
are repelled.

(i) Coexistence of persistent bumps: This can be found in
regimes where the intermodular couplings are both excitatory
[Fig. 3(a)] or both inhibitory [Fig. 3(d)], or one is excitatory
and another is weakly inhibitory [Figs. 3(e) and 3(g)]. The
positions of the bumps are shifted relative to the external input
due to the intermodular interactions, and the amount of shift
increases with the strength of the intermodular couplings, as
evident in Fig. 3(a), where the bump in module 2 is shifted
more than that in module 1 due to ω21 > ω12.

Similarly, in Fig. 3(d), the bumps in both modules are
shifted away from the external inputs due to the repulsion
effect of the intermodular couplings.

Figures 3(e) and 3(g) illustrate the case in which one inter-
modular coupling is excitatory while the reciprocal is weakly
inhibitory. The bump in module 1 is attracted towards input 2
due to the excitatory ω12, and the bump in module 2 is pushed

away from its own input due to the inhibitory ω21. The two
cases differ in their behaviors of bump heights, which will be
analyzed in further detail in the next subsection.

(ii) Population spikes [Figs. 3(b) and 3(f)]: Population
spikes refer to the periodic on-and-off population responses,
which occur when one intermodular coupling is excitatory and
another is moderately inhibitory. For example, in Fig. 3(b),
after the bumps have been built up in both modules, the bump
in module 1 is pushed away from its input position, meanwhile
the bump in module 2 is attracted by module 1. As module 2′s
bump moves toward the bump in module 1, it sends stronger
inhibition to module 1 (due to reduced disparity of the two
bumps) and eventually silences module 1′s responses. Once
module 1 is silent, the attraction experienced by the bump
in module 2 vanishes accordingly, causing it to return to the
input position. In turn, the inhibition on the bump in module
1 weakens, allowing it to build up again.

As these population spikes are temporal modulations of the
population neural activity, they are also known as ensemble
synchronizations, representing extensively coordinated rises
and falls in the discharge of many neurons [56,57]. In the
past, the proposed mechanism of population spikes was the
presence of short-term synaptic depression (STD), referring to
the reduction of synaptic efficacy of a neuron after firing due
to the depletion of neurotransmitters [3,58,59]. In this paper,
we have proposed an alternative mechanism for the formation
of population spikes based on an excitatory-inhibitory feed-
back loop. In fact, it has been shown that STD and inhibitory
feedback loops play many similar roles in the dynamical be-
haviors of neural networks, such as anticipative tracking [44],
and the generation of population spikes adds to the list of these
similarities.

Localized population spikes, such as those illustrated in
Figs. 3(b) and 3(g), have the ability to encode spatial and
temporal information. It was a proposed mechanism to explain
resolution enhancement as observed in transparent motion
experiments in the middle temporal (MT) area of the nervous
system [60]. In these experiments, the neural system was
found to be able to resolve motion disparities narrower than
the tuning width of the neurons. The proposed mechanism
based on population spikes is that two sequences of population
spikes are generated in response to two external inputs with
narrow angular separation [16].

(iii) Momentary spikes [Fig. 3(c)]: This occurs when one
intermodular coupling is excitatory and the reciprocal one
is strongly inhibitory. As shown in Fig. 3(c), the responses
in module 1 are inhibited severely soon after the initiation
of the input. It has a minor effect of attracting the bump in
module 2 towards input 1, but the bump in module 2 quickly
stabilizes and remains effectively unaffected by module 1 due
to the responses in module 1 being inhibited too quickly. The
momentary behavior in module 1 is useful in coding transient
information of sensory inputs.

B. Excitatory and displacement effects on bump heights

Since the bump heights can encode the statistical weight
of the carried information [7], it is important to study how
they are determined in the coupled network module. The
bump heights are dependent on two effects. The first one
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FIG. 3. The firing rates (responses) of bimodular CANNs when various intermodular couplings are imposed. In each inset, the top (bottom)
plot shows the population responses of first (second) network module. External inputs I01 = I02 = 0.7. Other parameters are ω11 = ω22 =
1, a = 0.5, k = 1.1. I1ext is fixed at position 3π/2, and I2ext is fixed at position π . Light blue lines indicate trajectories of inputs.

is the excitatory effect. In general, the bump in the module
receiving excitatory inputs from another module is higher than
its counterpart that receives inhibitory inputs. This is shown in
Fig. 3(g), in which the bump in module 1 is higher than that
in module 2.

On the other hand, the second effect becomes operative and
may produce an opposite effect on the bump height. This sec-
ond effect is the displacement effect due to the intermodular
coupling, which is more significant for weak inputs. Due to
the intermodular couplings, the peak positions of the bumps
in both modules are either attracted or repelled from the re-
spective stimulus positions. When the disparity is within the
range of the intermodular couplings, the tendency to displace
the bumps increases with the disparity [14]. This displacement
weakens the efficacy of the input stimuli and results in a
reduction of the amplitude. As shown in Fig. 3(e), the bump

in module 1 receiving excitatory intermodular coupling has
weaker responses compared with that in module 2 receiving
inhibitory intermodular coupling. The displacement effect in
Fig. 3(e) is magnified in Fig. 4 when the input strengths are
further reduced to 0.5. This is contrary to the prediction of the
excitatory effect, and the displacement of the bump position
away from its external input needs to be considered.

The remaining issue is why the bump in module 1 receiving
excitatory intermodular coupling is displaced more than that
in module 2 receiving inhibitory intermodular coupling. To
see this, we consider the displacement of the bump center x1

in module 1 with respect to the input z1. As derived in the
Appendix in the limit of weak intermodular couplings,

x1 − z1 = H12(I02 − H21)(z2 − z1)

I01I02 − H12H21
, (10)
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FIG. 4. The displacement effect on bump height. The bumps
in both modules are displaced by intermodular interaction. The
intermodular couplings: ω12 = 0.1, ω21 = −0.1. Other parameters:
ω11 = ω22 = 1, a = 0.5, k = 1.1. R1 denotes responses of module 1,
and R2 denotes responses of module 2. The magnitudes of I01 and I02

are 0.5. Inputs 1 and 2 are applied at 1.5π and π , respectively. The
displacement between input position (blue lines) and peak position
of response (red lines) of each module is denoted and marked by
�1 (�2).

where Hi j = ωi jR0 j/
√

2 is the intermodular contribution from
module j to module i at the peak position [corresponding to
the third term on the right-hand side of Eq. (6)], and R0i is
the maximum firing rate of the bump in module i. Not sur-
prisingly, the displacement is proportional to disparity z2 − z1.
Furthermore, the displacement is proportional to the first term
H12. In the expression I02 − H21, the first term shows that
the bump displacement increases with the external input in
module 2. The second term is a higher-order effect in the
limit of weak intermodular coupling. It originates from the
competition between input 2 and the intermodular input from
module 1 to 2. When the intermodular input is excitatory
(ω21 > 0), the competition weakens the effective strength of
input 2, since the intermodular input tends to divert the bump
in module 2 from input 2 to input 1 when the external inputs
have disparity. On the other hand, when the intermodular input
is inhibitory, the effective strength of input 2 increases.

Hence, while the bumps in both modules are displaced by
intermodular interaction, the one in module 1 has a larger
displacement since it receives an intermodular input from
module 2 reinforced by ω21 being inhibitory. In contrast, the
bump in module 2 has a smaller displacement since it receives
an intermodular input from module 1 weakened by ω12 being
excitatory. This explains the lower bump height in module 1.
However, as also shown in Fig. 4, the displacement effect is
of a higher order of the intermodular coupling strength and is
much weaker than the excitatory effect.

C. Bimodular networks as decoders of multisensory integration

Understanding the behaviors of the bimodular network is
highly relevant to the process of information integration in
modularized neural systems [41]. It is known that human neu-
ral systems are able to integrate sensory inputs from multiple
channels in Bayes-optimal ways [42,61,62]. In probabilistic
population coding, the mean and reliability (e.g., the inverse

of the variance for Gaussian distributions) of the posterior
distribution of the stimuli after receiving the cues are inferred
by the center-of-mass position and the height of the bumps,
respectively [63–67]. For bimodular networks, the bump in
each module represents the marginal posterior distribution
of its corresponding stimulus. In the literature, the Bayes-
optimal performance of the bimodular networks has been
illustrated by Gaussian distributions of the priors and likeli-
hoods [41,42,68,69].

Here, we extend the Bayesian analysis to include both
excitatory and inhibitory reciprocal couplings of bimodular
networks, and we study how they encode multisensory infor-
mation. For both cases, we consider the prior given by

p(s1, s2) ∝ exp

[
− (s1 − s2)2

2σ 2
s

]
. (11)

For correlated priors, σ 2
s is positive. For anticorrelated pri-

ors, σ 2
s is negative and will lead to divergence of the total prior

probability. Hence, we will restrict our consideration to the
case in which s1 and s2 are bounded. Nevertheless, as we shall
see, when the likelihood distributions are sharp enough, the
posterior probabilities remain well defined in the region well
within the bounds of s1 and s2. With the likelihoods given by

p(zi|si) ∝ exp

[
− (zi − si )2

2σ 2
i

]
, i = 1, 2, (12)

we arrive at the marginal posterior distribution

p(s1|z1, z2) = pmax(s1|z1, z2) exp

[
− (s1 − 〈s1|z1, z2〉)2

2V (s1|z1, z2)

]
,

(13)

where

〈s1|z1, z2〉 = σ−2
1 z1 + σ−2

2s z2

σ−2
1 + σ−2

2s

; σ 2
2s ≡ σ 2

2 + σ 2
s , (14)

V (s1|z1, z2) = [
σ−2

1 + σ−2
2s

]−1
, (15)

pmax(s1|z1, z2) = 1√
2πV (s1|z1, z2)

. (16)

A similar equation for the posterior mean 〈s2|z1, z2〉 can be
obtained by permuting the network labels 1 and 2. To relate
the inference of a module to its direct input and the inference
of the other module, we have

〈s1|z1, z2〉 = σ−2
1

σ−2
1 + σ−2

s

z1 + σ−2
s

σ−2
1 + σ−2

s

〈s2|z1, z2〉. (17)

On the other hand, the position of the bump in module 1 as
derived in the Appendix is given by

x1 = I01e
−(x1−z1 )2

8a2

I01e
−(x1−z1 )2

8a2 + H12e
−(x1−x2 )2

8a2

z1

+ H12e
−(x1−x2 )2

8a2

I01e
−(x1−z1 )2

8a2 + H12e
−(x1−x2 )2

8a2

x2. (18)

As will be presented below, the simplified version of this
result is more compatible with the Gaussian nature of the pri-
ors and likelihoods in the Bayesian framework. Nevertheless,
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as described in the Appendix, this result becomes compatible
with likelihoods in which the variance of the Gaussian likeli-
hood is a slowly broadening function. We will not pursue this
modification further in this paper.

Provided that the disparity between the two cues is not
excessively large compared with the synaptic range a of
the networks, this result can be approximated by the linear
relation

x1 = I01

I01 + H12
z1 + H12

I01 + H12
x2. (19)

Comparing Eqs. (19) and (17), we note that the center-of-
mass positions of the bumps in the two modules can be used
to decode the posterior means of the stimuli in the Bayesian
framework with Gaussian priors and likelihoods.

Furthermore, if the network has direct access to the input
z1, say, through a direct independent circuit, then in principle
the network has sufficient information to decode the weight
of the reliability σ−2

1 of input 1 relative to the reliability σ−2
s

of the prior from the ratio of the shifts x2 − x1 to x1 − z1.
We note that if σ 2

s is positive, then the corresponding
network will have positive values of ω12 and ω21. This cor-
responds to the case in which ω12 and ω21 encode correlated
(attractive) priors. If σ 2

s is negative, we only consider the case
in which the likelihood distributions are sharp enough such
that σ 2

1 , σ 2
2 < −σ 2

s , and thus the posterior distributions have
well-defined maxima. In this case, when σ 2

1 + σ 2
2 > −σ 2

s ,
there is no real solution for the variance in Eq. (15). When
the likelihood distributions are further sharpened to satisfy
σ 2

1 + σ 2
2 � −σ 2

s , the corresponding network will have nega-
tive values of ω12 and ω21, encoding anticorrelated (repulsive)
priors.

The case of ω12 and ω21 taking up opposite signs can
also be interpreted in the Bayesian framework with correlated
likelihoods. To see this, we consider a generic prior described
by Eq. (13), but the likelihood is given by

p(z1, z2|s1, s2) ∝ exp

⎡
⎣−1

2

2∑
i, j=1

(zi − si )(C
−1)i j (z j − s j )

⎤
⎦,

(20)

where Ci j = 〈(zi − si )(z j − s j )〉. Using Bayes’ rule, the
marginal posterior probability is given by a Gaussian distri-
bution with mean and variance given by

〈s1|z1, z2〉 =
(
C22 − C12 + σ 2

s

)
z1 + (C11 − C12)z2

C11 + C22 − 2C12 + σ 2
s

, (21)

V (s1|z1, z2) = C11C22 − C2
12 + C11σ

2
s

C11 + C22 − 2C12 + σ 2
s

. (22)

In the context of bimodular networks, we have

〈s1|z1, z2〉 = σ 2
s

σ 2
s + C11 − C12

z1 + C11 − C12

σ 2
s + C11 − C12

〈s2|z1, z2〉.
(23)

〈s2|z1, z2〉 = σ 2
s

σ 2
s + C22 − C12

z2 + C22 − C12

σ 2
s + C22 − C12

〈s1|z1, z2〉.
(24)

There exist likelihood functions in which C11 − C12 and
C22 − C12 have opposite signs. For example, consider the like-

lihood being the covariance matrix(
C11 C12

C21 C22

)
=

(
3/4 1
1 3/2

)
. (25)

This corresponds to the case of a rather strong correlation
between the two likelihoods, with stimulus 2 being dominated
by stimulus 1 (i.e., C22 > C11). In this case, response 2 is
attracted by response 1 due to the higher accuracy of the latter.

On the other hand, response 1 is repelled by response 2 due
to its exceedingly strong reliance on input 1, and the repulsion
by response 2 is merely the compensation [noting that the sum
of the two prefactors in Eq. (21) should be equal to 1]. With
σ 2

s = 1/2, this results in

〈s1|z1, z2〉 = 2z1 − 〈s2|z1, z2〉,
〈s2|z1, z2〉 = 1

2 z2 + 1
2 〈s1|z1, z2〉.

The corresponding network structure would have negative
and positive values for ω12 and ω21, respectively.

D. Decoding behavior of bimodular networks

We further study how the center-of-mass of the bump de-
pends on the disparity when the network stays at the all-quiet
state initially (Fig. 5). We vary the position and the amplitude
of I1ext, but we fix the amplitude and position of I2ext to a suffi-
ciently strong value to make the network exhibit competition
effects (thus the horizontal axis is the disparity of the two
inputs).

(i) Model averaging versus model selection: It is worth-
while to summarize our observations from the point of view of
model averaging versus model selection. These concepts are
frequently encountered in the studies of causal inference [70],
but they are also relevant to the present work on multisensory
integration, which is often considered as the precursor to
causal inference in downstream neural modules [71]. Causal
inference refers to the process of inferring whether or not
an event A is caused by another event B. When the neural
system receives two different signal cues, it needs to de-
termine whether they come from a common source. If they
are from one source, the two cues will be integrated during
processing, otherwise they will be dealt with separately. So,
inferring whether two input cues have a common source is
a crucial step for information processing. “Model selection”
and “model averaging” are two possible strategies in inferring
the underlying causal structures (e.g., in hierarchical causal
inference models [70,72]). In causal inference, there are two
hypotheses proposed—a common cause hypothesis and a
separate causes hypothesis—and each is weighted by their
probabilities. “Model averaging” means that the estimate of
the stimuli is the weighted average of the estimates derived
from the two different hypothesized causal structures. As for
“model selection,” it means that the network chooses the
most probable one as the final decision, instead of performing
weighted averaging [70,72]. In normative models of causal
inference for two channels using a model averaging strategy,
cues from these channels are integrated at low disparity, re-
sulting in an averaged prediction as described in the previous
section. However, when the disparity is high, the stimuli of
the individual channels are inferred to be independent, and the
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FIG. 5. The center-of-mass position of the responses in module 1 vs the input position of module 1 at different weak intermodular
couplings. Different colors indicate different I01 of Input 1. Input 2 is fixed at position 0 and I02 = 0.7. ω11 = ω22 = 1, a = 0.5, k = 1.1. Solid
lines: Steady states reached from the all-quiet initial condition. Dashed lines: Steady states reached from other initial conditions. Values of I01

are indicated in the legend. (a) Intermodular couplings ω21 = ω12 = 0.1. (b) Intermodular couplings ω21 = 0.1, ω12 = −0.1. (c) Intermodular
couplings ω21 = −0.1, ω12 = 0.1. (d) Intermodular couplings ω21 = −0.1, ω12 = −0.1.

channel with the highest posterior probability will be inferred,
that is, a model selection strategy is adopted.

(ii) Module 1 fed by excitatory intermodular couplings
(ω12 > 0) [Figs. 5(a) and 5(c)]: The “butterflies” in Fig. 5
show similar behaviors to those in causal inference. It is worth
noting that the network behaviors at low and high disparity are
dramatically different. When the disparity is not large [around
<0.5π in Fig. 5(a) and <0.4π in Fig. 5(c)], the bump position
is a linearly interpolated function of z1 and z2 as predicted by
Eq. (14). The slope is effectively constant, indicating that a
model averaging strategy is adopted. The bump position in
module 1 is closer to input 1 as the amplitude of input 1
increases.

In contrast, when the disparity is large, the output position
of module 1 either drifts towards z1 when I1ext is strong, or
towards z2 when I1ext is weak. This is the regime in which the
network operates in the model selection mode.

(iii) Module 1 fed by inhibitory intermodular couplings
(ω12 < 0) [Figs. 5(b) and 5(d)]: In this case, the behavior
depends on the strength of input 1. When the input strength
is weak (I01 � 0.3), the output is repelled to distant positions
due to the inhibitory couplings. This corresponds to the case in
which the denominators on the right-hand side of Eq. (19) are
negative, and it models the situation in Bayesian analysis that
the likelihoods are not sufficient to overcome the repulsive
prior. Due to the inhibitory effects from module 2, the firing
rate of these diverged bumps is very low.

When the strength of input 1 is sufficiently strong, the
bump in module 1 becomes strong enough to resist the repul-
sion from module 2 and maintains its position around input 1.
We also find a linear regime at low disparity (output position
<0.2π ). The slope of the linear regime is greater than 1,
and it decreases with the strength of input 1 as the repulsive
effect from module 2 is less significant. This agrees with the
Bayesian analysis in Eq. (14) for repulsive priors, resembling
the model averaging strategy. At higher disparity, output 1
effectively tracks input 1, consistent with the model selection
strategy.

(iv) Multiple steady states: We also observe the existence
of multiple steady states, and the eventual steady state depends
on the initial condition. When the network is initialized to
an all-quiet condition, the bump positions typically reach a

steady position, which is in between z1 and z2 when ω21 > 0.
The firing rate profile of these steady states shows that two
states coexist in the network, with one near I1ext or I2ext and
the other staying between [see I01 = 0.4 and 0.3 in the high-
disparity regime of Figs. 5(a) and 5(c)]. Other steady states
exist at high disparity, but they need to be reached from initial
conditions other than the all-quiet state.

When ω21 < 0, we note that two steady states exist at
intermediate strengths of I1ext [see I01 = 0.5 in Figs. 5(b) and
5(d)]. At low disparity, the final steady state accessed from
the all-quiet initial condition has a low firing rate. When the
disparity increases, the repulsion effect of input 2 weakens
and the firing rate undergoes a discontinuous transition. The
bump position in module 1 also undergoes a discontinuous
transition, but the discontinuity is not large.

When module 1 repels module 2 (ω21 < 0), an extra steady
state also exists at low disparity and very strong I01 [see I01 =
0.7 in Fig. 5(c) and I01 = 0.8 in Fig. 5(d)]. In this state, the
response in module 1 is dominated by its own input, and the
output position is effectively the same as cue 1. At the input
strengths indicated in Figs. 5(c) and 5(d), these states cannot
be accessed from the all-quiet initial condition, but at higher
values of I01 they are so dominant that they can be reached
from the all-quiet initial state.

In summary, the bimodular networks are able to decode the
information described by the Gaussian prior and likelihood
in the Bayesian framework. However, it should be cautioned
that the Bayesian decoding performance may be hindered by
the existence of multiple steady states, limiting the range of
validity in the space of input disparity and input strengths.

(v) Bias: An alternative view of the decoding process is
to consider the bias, which quantifies the extent of influ-
ence of input 2 on output 1. In the present context, it is the
change of output position 2 from the corresponding real input
position divided by the disparity of the two inputs, namely
(x1 − z1)/(z2 − z1). The bias is positive when input 1 is at-
tractive, and negative when repulsive, and it is expected to be
independent of the disparity in the model averaging regime.
We will focus on states accessible from all-quiet initial condi-
tions at low disparity.

As shown in Figs. 6(a) and 6(c), in which module 1 is
fed by excitatory intermodular couplings, the bias is positive,
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FIG. 6. Module 1 Perception Bias as a function of disparity. Different colors indicate different I01 of Input 1. Input 2 is fixed at position 0 and
I02 = 0.7. ω11 = ω22 = 1, a = 0.5, k = 1.1. Solid lines: Steady states reached from the all-quiet initial condition. Dashed lines: Steady states
reached from other initial conditions. Values of I01 are indicated in the legend. (a) Intermodular couplings ω21 = ω12 = 0.1. (b) Intermodular
couplings ω21 = 0.1, ω12 = −0.1. (c) Intermodular couplings ω21 = −0.1, ω12 = 0.1. (d) Intermodular couplings ω21 = −0.1, ω12 = −0.1.

indicating that the decoded position of input 1 is attracted by
input 2. The values of the biases are effectively constant in
the range of low disparity, as expected in the model averaging
regime. The biases decay at higher disparity, which is not
shown in the panels. Comparing Figs. 6(a) and 6(c), we ob-
serve that the bias in the latter is higher for the corresponding
inputs. This is due to the position of output 2 being repelled
further away from module 1, thus allowing output 1 to be
attracted further towards input 2.

As for Figs. 6(b) and 6(d), in which module 1 is fed by
inhibitory intermodular couplings, the bias is negative and is
effectively constant in the range of low disparity, provided
that input 1 is not too weak. When input 1 is weak, the bias
diverges to large negative values. These results agree with the
predictions of Bayesian analysis. We observe that the biases
in Fig. 6(d) are not as negative as those in Fig. 6(b) for the
corresponding inputs, due to mutual intermodular repulsion.

The effectively constant and positive biases in Fig. 6(a)
are consistent with those reported in previous literature. For
example, Cuppini et al. considered a network structure with a
visual module and an auditory module reciprocally connected,
and their outputs are projected to a common causal infer-
ence area, and biases with a gradual decrease with disparity
are reported [71]. On the other hand, when the statistics of
the biases were separately evaluated when the causal inference
system identified a common cause or different causes, the
biases were reported to be positive for a common cause, and
negative for different causes [73]. In contrast, we have not
included a downstream circuitry for causal inference in our
study, and we will leave this issue for future studies.

E. Time-delay effects

Due to the existence of multiple steady states in the high-
disparity regime, the final state reached by the network is
dependent on the initial condition. Particularly relevant to
modular neural networks is the processing times in different
modules. In Fig. 7 we model situations in the regime where the
network has two steady states but a stimulus onset asynchrony
(SOA) is present. As indicated in the high-disparity regime in
Fig. 5(a), the steady state with the low value of x1 in module 1
is more stable under the intermodular influence from module

2, and hence module 1 converges to the low value of x1 when
both inputs are switched on at the same time. However, when
the onset of input 2 is delayed, the bump in module 1 has
sufficient time to build up around input 1, and the state with
higher x1 is established. Figure 7 illustrates how the compe-
tition between the two attractors evolves with increasing time
delay. These time-delay effects are relevant to the processing
of visual and auditory signals, in which visual signals are
delayed by an order of 102 ms [25], so that the inference in
the auditory channel is not required to be excessively strong
for it to remain independent of the visual channel in the regime
of high disparity.

IV. MOVING INPUTS

A. Dynamical behaviors

The brain receives temporally dynamical inputs, and hence
it is imperative to study the processing of moving stimuli in

FIG. 7. The time evolution of the center-of-mass position of
module 1 in a bimodular network with ω21 = ω12 = 0.1, I01 = 0.4,
I02 = 0.7, ω11 = ω22 = 1, a = 0.5, k = 1.1, z1 = 0.9π , and z2 = 0,
lying in the regime with two steady states in Fig. 5(a), and x1 =
0.734π and 0.893π . Input 1 is switched on at t = 0, and input 2
is switched on at t = 10, 15, 20, and 25 ms, as indicated by different
colors.
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FIG. 8. Behavior of bimodular CANNs under different weak intermodular couplings and stimuli, one static and one moving. I1ext is static
and located at position π . I2ext is a moving stimulus, moving velocity v2 = 0.01 rad/ms. Light blue lines indicate the inputs’ trajectories.
k = 1.1 and I01 = I02 = 0.7 except I01 = 1.4 in (c). In each of (a), (b), and (c), the top panel shows the sketches of the network structure, with
M1 and M2 denoting modules 1 and 2, respectively. The middle panel shows the firing rates (responses) of module 1, and the bottom panel
shows the firing rates (responses) of module 2.

bimodular CANNs. In unimodular networks, a rich spectrum
of behaviors has already been observed [4]. Following the
previous section, we consider external inputs of moderate
strengths. As an example, we consider the case that the net-
work receives a static input 1 but a moving input 2 with
constant speed (Fig. 8). Both inputs are applied to the network
simultaneously from time t � 0 (input positions are indicated
by light blue lines in Fig. 8).

As Figs. 8(a) and 8(b) show, the responses in module 1 are
oscillating around the input 1 position due to the excitatory
intermodular couplings ω12 from module 2 to module 1. In
Fig. 8(a), the responses of module 2 at position around π are
enhanced, resulting from the positive couplings ω21, whereas
in Fig. 8(b), the ω21 is inhibitory, thus the responses of module
2 are inhibited around the position π .

Figures 8(a) and 8(b) show that the static and moving
stimuli can interact with each other via the couplings between
two modules. However, the competition between the external
inputs 1 and 2 is not obvious in module 1 since input 1 is direct
and input 2 works via intermodular couplings. To explore the
competition, we present a relatively extreme situation, shown
in Fig. 8(c).

Figure 8(c) shows the dynamics of the bimodular CANNs
under a stronger excitatory intermodular coupling (ω12) ac-
companied by a weaker inhibitory coupling (ω21). The input
magnitude of the static input is much stronger than that of
the moving input. Now, the dynamics of the network is totally
different from that in Fig. 8(b). In Fig. 8(c), on account of the
strong inhibitory couplings from module 1, the responses in
module 2 around the position π are almost fully suppressed.
Only after input 2 has moved away or before it arrives at

the position π can stable and strong responses be built in
module 2. However, influenced by the strong attraction from
module 2, the responses in module 1 can only sustain its static
state when the responses in module 2 are inhibited. When
the responses in module 2 are rebuilt, they again attract the
responses in module 1, inducing module 1 to track the moving
I2ext instead of its own static input I1ext.

B. Phase diagrams

To obtain a more comprehensive picture, we introduce the
tracking mean-square deviations with respect to the static and
moving inputs as references. A comparison of their magni-
tudes reveals whether the responses are tracking the static or
moving inputs. Below, we denote the modules receiving static
and moving inputs as modules s and m, respectively. Since
module m receives a moving stimulus, we particularly focus
on the mean-square deviations in module m,

σ 2
s = 〈[xm(t ) − vst]2〉t − 〈xm(t ) − vst〉2

t ,
(26)

σ 2
m = 〈[xm(t ) − vmt]2〉t − 〈xm(t ) − vmt〉2

t ,

where xm(t ) denotes the center of mass of the responses in
module m, and vm and vs indicate the moving velocities of
two external inputs with vs = 0. 〈· · · 〉t represents the average
over time. σ 2

m and σ 2
s denote the mean-square deviations of the

responses in module m with respect to the two external input
positions of the network, respectively. When σ 2

s is less than
σ 2

m, it means the module m is tracking the static input more
than its own moving input. Otherwise, it tracks the moving
input more.
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FIG. 9. The phase diagrams of the dynamical behaviors in module m with moving stimulus [(a), (d), and (h)] and network behaviors at
selected locations. The static input I1ext is fixed at the amplitude of 0.7, applied at position π , and the amplitudes of all couplings are fixed at
0.1. The trajectories of input 2 are indicated by light blue lines. (b),(c) The firing rates (responses) of the bimodular CANN in (a) when I2ext

moves at a speed of 0.3 rad/ms, and the magnitude of I2ext is 1 and 3, respectively. (e), (f), and (g) The firing rates (responses) of the bimodular
CANN in (d) when I2ext moves at a speed of 0.3 rad/ms, and the magnitude of I2ext is 0.4, 2, and 6, respectively. (i) and (j) The firing rates
(responses) of the bimodular CANN in (h) when I2ext moves at a speed of 0.3 rad/ms, and the magnitude of I2ext is 1 and 6, respectively.

Figure 9 shows the phase diagrams of tracking behaviors.
Three kinds of couplings are listed at the upper left corners,
respectively. We also pick some points with the same moving
velocities but various moving input strengths as examples of

the responses in module m shown in Fig. 9. The bump in mod-
ule s is effectively pinned to the static input in this parameter
range and will not be shown. This does not contradict the
moving bump in module 1 in Fig. 8(c) where the intermodular
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coupling is much stronger. The corresponding data points are
marked in Figs. 9(a), 9(d), and 9(h), respectively, by black
stars.

As shown in Figs. 9(b) and 9(i), the module m cannot
track its own moving stimulus when the stimulus is relatively
weak, or the input moves too fast. The response is pinned
by the static input. This is referred to as the pinned phase.
As the moving velocity increases, stronger moving stimulus
is needed to overcome the static interactions from the other
module. When the moving input strength is sufficiently strong,
module m is able to catch up with the moving input. This is
the tracking phase with σ 2

m < σ 2
s [see Figs. 9(c) and 9(j)]. In

Figs. 9(a) and 9(h), in which module s excites module m, the
phase boundaries are similar, with the pinned phase at low
strength of the moving input [see Figs. 9(b) and 9(i)] and the
tracking phase at high strength [see Figs. 9(c) and 9(j)].

On the other hand, when module s inhibits module m, the
phase boundaries in Fig. 9(d) are different from the other two
cases, and an unpinned phase exists at intermediate strength
of the moving input. In Fig. 9(d), module m cannot build
up stable and strong responses when the moving stimulus is
very weak. This is referred to as the weak response phase.
Furthermore, due to the inhibitory intermodular couplings ωms

and the weak moving input, the responses are suppressed
temporarily when the moving bump passes by the inhibitory
static input [see Fig. 9(e)]. This region of temporary suppres-
sion even extends slightly beyond the boundary of the weak
response phase.

As the strength of the moving stimulus increases, module
m is able to build strong and stable responses. Due to the re-
pulsion by the static input, the bump is repelled from the static
input and drift with a low velocity, resulting in the unpinned
phase. The drift velocity has the same direction as that of
the moving input, with the bump attracted forward towards
the moving input when the latter is ahead, or attracted back-
ward towards the moving input when the latter is behind [see
Fig. 9(f), where the green curve indicates the drifting motion
of the center of mass]. The bump motion is heavily affected
by the presence of the static input, which forms a barrier to
the bump motion, causing the drift of the bump to slow down
and reverse from forward attraction to backward attraction.

As the moving input strength continues to increase, the
bump trajectory follows the moving input closer. When
the input is strong enough, the bump is able to catch up with
the moving input, and the network enters the tracking phase
[see Fig. 9(g)] with σ 2

m < σ 2
s .

V. COMPARISON WITH MODELS WITHOUT
RECURRENT INTERACTIONS

An important ingredient in the ability of bimodular
CANNs to track external inputs is the presence of recur-
rent couplings, which have been studied extensively in both
experiments and neural models [74–77]. In comparison, mul-
tisensory integration has been traditionally analyzed using
models with no recurrent connections between excitatory neu-
rons [63,78]. Although the family of models without recurrent
couplings can simulate some neural responses well and are
simple to analyze, the recurrent couplings and nonlinearities

in the CANNs give rise to a rich spectrum of population
activities [24] and generate more accurate predictions [79].

We compare the dynamics of bimodular CANNs with mod-
els without recurrent couplings within each network module.
To make a fair comparison, we only remove the recurrent
couplings within the CANNs and keep other parameters un-
changed. We will use Figs. 8 and 10 as examples and apply
the same stimuli to the classical neural network. The following
four effects can be observed.

(i) Bump height and displacement: Removing the recur-
rent couplings weakens the influences on bump height and
displacement from the other module (compare Fig. 8 with
Fig. 10). For example, as shown in Figs. 10(a) and 10(b),
in which module 1 receives excitatory couplings (ω12) from
module 2, only slight intermodular influences in the height
and displacement of the bump can be seen from the responses
in module 1 when both stimuli are located at the central posi-
tion π , where the responses in module 1 are barely enhanced.

On the other hand, as shown in Figs. 10(a) and 10(b),
module 2 receives either excitatory or inhibitory couplings
from module 1 (ω21), but due to the lack of recurrent cou-
plings, the intermodular influences cannot spread out to other
neurons, let alone the whole neural network. Therefore, the
height and displacement of the bump in module 2 are almost
not influenced by the intermodular couplings.

As for Fig. 10(c), since the intermodular couplings are
strong, the effects are most evident when the two stimuli are
located at π , while the impacts are still slight compared with
the dynamics in Fig. 8(c).

(ii) Unimodal/multimodal responses: Removing recurrent
connections within each network module causes the firing rate
profile to split into two bumps [Fig. 10(c)], which completely
changes the firing rate profile. In contrast, the bump remains
single and intact in Fig. 8(c) due to the self-sustaining interac-
tions of the recurrent couplings.

(iii) Response time: Comparing Figs. 11(a)–11(c) with
their corresponding figures in Fig. 9, we can see that the
bumps are built up faster. This is because their bumps are
lower and thus it takes a shorter time to build.

(iv) Mobility: Comparing Figs. 11(a)–11(c) with their cor-
responding figures in Fig. 9, we also see that the bumps have
a higher tendency to move.

In summary, we can see that network modules with and
without recurrent couplings have different responses to exter-
nal stimuli. Recurrent couplings have the effect of reducing
the mobility of the responses and maintaining the unimodal
nature of the direct input during its integration process with
other indirect inputs, but the process of bump formation
may require a longer duration. It is plausible that recurrent
couplings are more important in later stages of information
processing, whereas they play a lesser role in the earlier infor-
mation pathway.

VI. CONCLUSION

We have generalized the study of unimodular CANNs to
bimodular CANNs, endowing the network with the capac-
ity to incorporate two sensory modalities. The intermodular
couplings in bimodular CANNs play important roles in de-
termining the statics and dynamics of the network. Excitatory
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FIG. 10. The firing rates (responses) of the traditional model under different weak intermodular couplings and stimuli, one static and one
moving, which are indicated by light blue lines. (a) The same parameter settings as Fig. 8(a). (b) The same parameter settings as Fig. 8(d).
(c) The same parameter settings as Fig. 8(g).

intermodular couplings result in enhancing and attracting the
responses of the efferent module, while inhibitory intermodu-
lar couplings lead to suppressing and repelling effects for both
static and moving inputs. The network behavior is determined
by the interplay of the input strengths, their disparity, speed
(for moving inputs), and the intermodular couplings.

The most interesting case is the bimodular CANN with a
reciprocal pair of excitatory and inhibitory intermodular cou-
plings. For static inputs, the inhibitory intermodular feedback
may produce population spikes which have been shown to
enhance the resolution of inputs with narrow separation [16].
It also exhibits the anomalous behavior with the inhibited
module having stronger-than-expected output than the excited
module, due to the uneven displacement of the bumps in
the respective modules. For static and moving inputs to the
excited and inhibited modules, respectively, a series of drifting
responses with continuous and discontinuous evolution occur
when the moving input strength increases and finally arrives
at the tracking phase.

We have shown that bimodular networks can serve as
decoders of posterior probabilities in the Bayesian frame-
work for multisensory integration. They provide a neural
substrate preconditioned for causal inference, as they yield
integrated outputs at low disparity and segregated outputs
at high disparity. Bimodular networks with a pair of ex-
citatory inter-modular couplings encode attractive priors,
whereas those with an inhibitory pair encode repulsive priors.

Bimodular networks with excitatory intermodular couplings
and inhibitory reciprocal ones can also be used to model
causal inference in which one channel is subordinate to the
other (that is, both channels are subject to correlated noises,
but the dominating one has a weaker noise amplitude). When
the disparity of the two inputs lies within the synaptic range,
the bump position is a linear combination of the direct input
position and the decoded indirect input position, fully con-
sistent with the Bayesian prediction with Gaussian priors and
likelihoods. However, when the disparity is high, the bump
positions become independent, modeling the adoption of a
model selection strategy. This behavior justifies the modular
structure as a preconditioning circuit for causal inference.

On the other hand, we found that multiple steady states
exist when the disparity of the inputs lies outside the synaptic
range, with one state nearer the direct stimulus and the other
nearer the indirect stimulus. Starting from an initial quiet state,
the final state attained by the network depends on the relative
strengths of the inputs. The existence of multiple states is
relevant to how the decoded network state depends on the
arrival time delays of the direct and indirect inputs, and it is
expected to be observable in experiments.

There are other applications of bimodular networks that
have not been discussed in this paper. Bimodular net-
works with inhibitory couplings are important components
in models of competitive decision-making [80–82]. In ad-
dition, using bimodular networks with dynamical inputs,

FIG. 11. The firing rates (responses) of the traditional model under different weak intermodular couplings and stimuli, one static and one
moving, indicated by light blue lines. The figures with the same parameter settings are indicated in the title of each panel.
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we can model multisensory psychophysics experiments such
as the motion-bounce illusion experiment in which vi-
sual perception of moving inputs is influenced by auditory
inputs [83–86].

Multisensory interactions have been an important issue that
has been studied extensively. Figuring out how the brain pro-
cesses multisensory signals is an important topic not only in
modeling the functions of the brain, but also in technological
applications of neural computation. It has been commonly
recognized that excitatory couplings between modules are im-
portant when the brain deals with different channels of signals
that are correlated [47], and the inhibitory couplings are im-
portant when the brain processes signals that are uncorrelated
or anticorrelated [41,87]. There have been experiments find-
ing “congruent” and “opposite” cells [48], whose responses
to signals with different disparities can be rather diverse
in experiments integrating visual and vestibular signals in
a monkey’s brain. In a recently proposed model explaining
the functions of the congruent and opposite cells in Bayes-
optimal inference [68], the intermodular couplings play an
important role. Recent work also showed that the network
structure to achieve Bayes-optimal performance incorporating
both excitatory and inhibitory couplings depends on the prior
distribution of the signals [88]. While most of the studies
focus on the steady-state behaviors of the neural system, our
work shows that dynamical and temporal behaviors are also
important, and the transient behaviors of the neural system
may also be useful in conveying information between the sen-
sory modalities. Experiments based on temporal integration,
such as the moving-bounce illusion experiment, can also be
designed to further study the multisensory information pro-
cessing.
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APPENDIX: CALCULATION OF THE BUMP POSITION
AT LOW DISPARITY AND WEAK INTERMODULAR

COUPLING

The steady-state equation of the bump in module 1 is
given by

U1(x) = ω11

∫ ∞

−∞

dx′
√

2πa2
e− (x−x′ )2

4a2
U1(x′)2

B1

+ ω12

∫ ∞

−∞

dx′
√

2πa2
e− (x−x′ )2

4a2
U2(x′)2

B2
+ I01e− (x−z1 )2

4a2 ,

(A1)

where Bi = 1 + k
∫ ∞
−∞ dxUi(x)2/8

√
2πa2 for i = 1, 2. The

equation for module 2 can be obtained by permuting the
module indices. The approximate solution to the steady-state
equation proposed in [14] is based on the perturbation expan-
sion with the lowest-order term of the form

Ui(x) = U0ie
− (x−xi )2

4a2 for i = 1, 2. (A2)

U0i is the maximum synaptic input of the bumps. Evaluat-
ing the integrals in Eq. (A1), we get

U01e− (x−x1 )2

4a2 ≈ ω11U 2
01√

2B1

e− (x−x1 )2

4a2

+ ω12U 2
02√

2B2

e− (x−x2 )2

4a2 + I01e− (x−z1 )2

4a2 . (A3)

The solution of U0i is obtained by projecting the equation to
the height mode (that is, multiplying both sides of the equa-
tion by e−(x−x1 )2/4a2

and integrating x),

U01 = ω11R01√
2

+ ω12R02√
2

e− (x1−x2 )2

8a2 + I01e− (x1−z1 )2

8a2 , (A4)

where R0i is the maximum firing rate of the bump in module
i, and is given by

R0i = U 2
0i

Bi
, Bi = 1 + kU 2

0i

8
. (A5)

The solution of xi is obtained by projecting the equation to
the height mode [that is, multiplying both sides of the equa-
tion by (x − x1)e−(x−x1 )2/4a2

and integrating x],

0 = ω12R02√
2

(x1 − x2)e− (x1−x2 )2

8a2 + I01e− (x1−z1 )2

8a2 . (A6)

This results in the bump position given by

x1 = I01e− (x1−z1 )2

8a2

I01e− (x1−z1 )2

8a2 + H12e− (x1−x2 )2

8a2

z1

+ H12e− (x1−x2 )2

8a2

I01e− (x1−z1 )2

8a2 + H12e− (x1−x2 )2

8a2

x2. (A7)

However, due to the exponential terms in the expression,
this result is not compatible with the Gaussian nature of the
priors and likelihoods in the Bayesian framework. Rather, it
corresponds to an approximately Gaussian likelihood with a
slowly broadening function of x1 − s1, namely

p(x1|s1) ∝ e
− (x1−s1 )2

2σ (s1 ,x1 )2

where σ (s1, x1)2 = σ 2
0 e− (x1−s1 )2

8a2 . (A8)

This correspondence between the Bayesian framework and
the network function is valid in the limit of large a. We will
not pursue this modification further in this paper.

In Sec. III C we consider the regime that the disparity
between the two cues is not excessively large compared with
the synaptic range a of the networks, wherein the exponen-
tial factors in Eq. (A6) can be neglected, yielding the linear
relation Eq. (19) in the main text,

x1 = I01

I01 + H12
z1 + H12

I01 + H12
x2, (A9)

where Hi j = ωi jR0 j/
√

2 is the intermodular contribution from
module 2 to module 1 at the maximum position [correspond-
ing to the third term on the right-hand side of Eq. (6)].

In Sec. III B we consider the limit of low disparity and
weak intermodular couplings between modules 1 and 2. Using
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an isolated module 1 as the reference, we consider the shift of
bump position in module 1 when the intermodular couplings
are added.

From Eq. (A3), the steady-state equation of the bump in an
isolated module 1 is given by

U01 = H11 + I01, (A10)

and the center-of-mass of the bump is located at z1.
In the presence of a weak intermodular coupling from

module 2 to 1, we project the steady-state equation (A3) to
the displacement mode of the isolated module 1, leading to

U01(x1 − z1) = H11(x1 − z1) + H12(x2 − z1). (A11)

Noting that the deviation of U01 from the solution of
Eq. (A10) belongs to a higher order, we combine Eq. (A9)
with the corresponding equation for module 2, and we arrive
at [

I01 −H12

−H21 I02

][
x1

x2

]
=

[
(I01 − H12)z1

(I02 − H21)z2

]
. (A12)

Therefore, as displayed in Eq. (10) in the main text, the
displacement of the bump relative to the external input is

x1 − z1 = H12(I02 − H21)(z2 − z1)

I01I02 − H12H21
. (A13)

To calculate the change in bump height due to the inter-
modular coupling, we project the steady-state equation to the
height mode (that is, multiplying both sides of the equation by
e[−(x−z1 )2/4a2] and integrating x). The result is

U01e− (x1−z1 )2

8a2 = H11e− (x1−z1 )2

8a2

+ H12e− (x2−z1 )2

8a2 + I01. (A14)

Comparing with the uncoupled steady-state solution in
Eq. (A3), the change in bump height is given by

δU01 − (x1 − z1)2

8a2
U01 = 2H11

B1U01
δU01 − (x1 − z1)2

8a2
H11

+ H12e− (x2−z1 )2

8a2 . (A15)

Simplifying the equation, we obtain

δU01 =
(

1 − 2H11

B1U01

)−1[
H12e

(x2−z1 )2

8a2 + (x1 − z1)2

8a2
I01

]
.

(A16)

The first term contributes to the excitation effect, whereas
the displacement effect appears in (x1 − z1)2 of the second
term and belongs to a higher order.

[1] D. J. Amit and D. J. Amit, Modeling Brain Function: The World
of Attractor Neural Networks (Cambridge University Press,
Cambridge, 1992).

[2] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
Dynamics: From Single Neurons to Networks and Models of
Cognition (Cambridge University Press, Cambridge, 2014).

[3] P. Dayan and L. F. Abbott, Theoretical neuroscience: Com-
putational and mathematical modeling of neural systems,
J. Cognit. Neurosci. 15, 154 (2003).

[4] R. Ben-Yishai, D. Hansel, and H. Sompolinsky, Traveling
waves and the processing of weakly tuned inputs in a cortical
network module, J. Comput. Neurosci. 4, 57 (1997).

[5] H. R. Wilson and J. D. Cowan, Excitatory and inhibitory inter-
actions in localized populations of model neurons, Biophys. J.
12, 1 (1972).

[6] S.-I. Amari, Dynamics of pattern formation in lateral-inhibition
type neural fields, Biol. Cybern. 27, 77 (1977).

[7] S. Deneve, P. E. Latham, and A. Pouget, Reading popula-
tion codes: A neural implementation of ideal observers, Nat.
Neurosci. 2, 740 (1999).

[8] A. Samsonovich and B. L. McNaughton, Path integration and
cognitive mapping in a continuous attractor neural network
model, J. Neurosci. 17, 5900 (1997).

[9] M. Camperi and X.-J. Wang, A model of visuospatial working
memory in prefrontal cortex: Recurrent network and cellular
bistability, J. Comput. Neurosci. 5, 383 (1998).

[10] S. Wu, S.-I. Amari, and H. Nakahara, Population coding and de-
coding in a neural field: A computational study, Neural Comput.
14, 999 (2002).

[11] S. Wu and S.-I. Amari, Computing with continuous attractors:
Stability and online aspects, Neural Comput. 17, 2215 (2005).

[12] S. Wu, K. Hamaguchi, and S.-I. Amari, Dynamics and compu-
tation of continuous attractors, Neural Comput. 20, 994 (2008).

[13] C. C. A. Fung, K. Y. M. Wong, and S. Wu, Dynamics of neural
networks with continuous attractors, Europhys. Lett. 84, 18002
(2008).

[14] C. C. A. Fung, K. Y. M. Wong, and S. Wu, A moving bump
in a continuous manifold: A comprehensive study of the track-
ing dynamics of continuous attractor neural networks, Neural
Comput. 22, 752 (2010).

[15] C. C. A. Fung, K. Y. M. Wong, H. Wang, and S. Wu, Dynamical
synapses enhance neural information processing: Gracefulness,
accuracy, and mobility, Neural Comput. 24, 1147 (2012).

[16] C. C. Fung, H. Wang, K. Lam, K. Y. M. Wong, and S. Wu,
Resolution enhancement in neural networks with dynamical
synapses, Front. Comput. Neurosci. 7, 73 (2013).

[17] K. Wimmer, D. Q. Nykamp, C. Constantinidis, and A. Compte,
Bump attractor dynamics in prefrontal cortex explains behav-
ioral precision in spatial working memory, Nat. Neurosci. 17,
431 (2014).

[18] R. S. Kim, A. R. Seitz, and L. Shams, Benefits of stimulus con-
gruency for multisensory facilitation of visual learning, PLoS
ONE 3, e1532 (2008).

[19] J. Green, A. Adachi, K. K. Shah, J. D. Hirokawa, P. S. Magani,
and G. Maimon, A neural circuit architecture for angular inte-
gration in drosophila, Nature (London) 546, 101 (2017).

[20] Y. Burak and I. R. Fiete, Accurate path integration in continuous
attractor network models of grid cells, PLoS Comput. Biol. 5,
e1000291 (2009).

[21] X. Xie, R. H. R. Hahnloser, and H. S. Seung, Double-ring
network model of the head-direction system, Phys. Rev. E 66,
041902 (2002).

064302-15

https://doi.org/10.1162/089892903321107891
https://doi.org/10.1023/A:1008816611284
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1007/BF00337259
https://doi.org/10.1038/11205
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1023/A:1008837311948
https://doi.org/10.1162/089976602753633367
https://doi.org/10.1162/0899766054615626
https://doi.org/10.1162/neco.2008.10-06-378
https://doi.org/10.1209/0295-5075/84/18002
https://doi.org/10.1162/neco.2009.07-08-824
https://doi.org/10.1162/NECOa00269
https://doi.org/10.3389/fncom.2013.00073
https://doi.org/10.1038/nn.3645
https://doi.org/10.1371/journal.pone.0001532
https://doi.org/10.1038/nature22343
https://doi.org/10.1371/journal.pcbi.1000291
https://doi.org/10.1103/PhysRevE.66.041902


YAN, ZHANG, WANG, AND WONG PHYSICAL REVIEW E 107, 064302 (2023)

[22] P. E. Latham, S. Deneve, and A. Pouget, Optimal computation
with attractor networks, J. Physiol.-Paris 97, 683 (2003).

[23] C. Boucheny, N. Brunel, and A. Arleo, A continuous attrac-
tor network model without recurrent excitation: Maintenance
and integration in the head direction cell system, J. Comput.
Neurosci. 18, 205 (2005).

[24] H. Wang, K. Lam, C. C. A. Fung, K. Y. M. Wong, and S. Wu,
Rich spectrum of neural field dynamics in the presence of short-
term synaptic depression, Phys. Rev. E 92, 032908 (2015).

[25] Y. Burak and I. R. Fiete, Fundamental limits on persistent ac-
tivity in networks of noisy neurons, Proc. Natl. Acad. Sci. USA
109, 17645 (2012).

[26] A. Seeholzer, M. Deger, and W. Gerstner, Stability of working
memory in continuous attractor networks under the control of
short-term plasticity, PLoS Comput. Biol. 15, e1006928 (2019).

[27] H. S. Seung, How the brain keeps the eyes still, Proc. Natl.
Acad. Sci. (USA) 93, 13339 (1996).

[28] C. C. A. Fung and S-i Amari, Spontaneous motion on two-
dimensional continuous attractors, Neural Comput. 27, 507
(2015).

[29] S. M. Stringer, E. T. Rolls, T. P. Trappenberg, and I. E. T.
de Araújo, Self-organizing continuous attractor networks and
motor function, Neural Netw. 16, 161 (2003).

[30] S. M. Stringer, T. P. Trappenberg, E. T. Rolls, and I. Araujo,
Self-organizing continuous attractor networks and path integra-
tion: One-dimensional models of head direction cells, Netw.,
Comput. Neural Syst. 13, 217 (2002).

[31] S. M. Stringer, E. T. Rolls, and T. P. Trappenberg, Self-
organising continuous attractor networks with multiple activity
packets, and the representation of space, Neural Netw. 17, 5
(2004).

[32] S. M. Stringer, E. T. Rolls, and T. P. Trappenberg, Self-
organizing continuous attractor network models of hippocampal
spatial view cells, Neurobiol. Learn. Mem. 83, 79 (2005).

[33] C. K. Machens and C. D. Brody, Design of continuous attractor
networks with monotonic tuning using a symmetry principle,
Neural Comput. 20, 452 (2008).

[34] D. Bush and N. Burgess, A hybrid oscillatory interfer-
ence/continuous attractor network model of grid cell firing, J.
Neurosci. 34, 5065 (2014).

[35] L. Kang and V. Balasubramanian, A geometric attractor mech-
anism for self-organization of entorhinal grid modules, Elife 8,
e46687 (2019).

[36] W. W. Pettine, K. Louie, J. D. Murray, and X.-J. Wang,
Excitatory-inhibitory tone shapes decision strategies in a hier-
archical neural network model of multi-attribute choice, PLoS
Comput. Biol. 17, e1008791 (2021).

[37] W. Xiang, J. Yu, Z. Yi, C. Wang, Q. Gao, and Y. Liao, Coex-
istence of continuous attractors with different dimensions for
neural networks, Neurocomputing 429, 25 (2021).

[38] C. R. Fetsch, G. C. DeAngelis, and D. E. Angelaki, Bridging
the gap between theories of sensory cue integration and the
physiology of multisensory neurons, Nat. Rev. Neurosci. 14,
429 (2013).

[39] T. R. Stanford, S. Quessy, and B. E. Stein, Evaluating the op-
erations underlying multisensory integration in the cat superior
colliculus, J. Neurosci. 25, 6499 (2005).

[40] P. M. Jaekl and L. R. Harris, Auditory–visual temporal in-
tegration measured by shifts in perceived temporal location,
Neurosci. Lett. 417, 219 (2007).

[41] W.-H. Zhang, A. Chen, M. J. Rasch, and S. Wu, Decentral-
ized multisensory information integration in neural systems, J.
Neurosci. 36, 532 (2016).

[42] M. O. Ernst and M. S. Banks, Humans integrate visual and
haptic information in a statistically optimal fashion, Nature
(London) 415, 429 (2002).

[43] C. C. A. Fung, K. Y. M. Wong, and S. Wu, Tracking dynam-
ics of two-dimensional continuous attractor neural networks, J.
Phys.: Conf. Ser. 197, 012017 (2009).

[44] C. C. Alan Fung, K. Y. Michael Wong, H. Mao, S. Wu
et al., Fluctuation-response relation unifies dynamical behaviors
in neural fields, Phys. Rev. E 92, 022801 (2015).

[45] M. Carandini and D. J. Heeger, Normalization as a canonical
neural computation, Nat. Rev. Neurosci. 13, 51 (2012).

[46] D. J. Felleman and D. C. V. Essen, Distributed hierarchical
processing in the primate cerebral cortex, Cereb. Cortex 1, 1
(1991).

[47] L. Shams and A. R. Seitz, Benefits of multisensory learning,
Trends Cognit. Sci. 12, 411 (2008).

[48] Y. Gu, D. E. Angelaki, and G. C. DeAngelis, Neural corre-
lates of multisensory cue integration in macaque mstd, Nat.
Neurosci. 11, 1201 (2008).

[49] K. Dokka, G. C. DeAngelis, and D. E. Angelaki, Multisensory
integration of visual and vestibular signals improves heading
discrimination in the presence of a moving object, J. Neurosci.
35, 13599 (2015).

[50] S. Molholm, W. Ritter, D. C. Javitt, and J. J. Foxe, Multisensory
visual–auditory object recognition in humans: A high-density
electrical mapping study, Cereb. Cortex 14, 452 (2004).

[51] C. R. Fetsch, A. Pouget, G. C. DeAngelis, and D. E. Angelaki,
Neural correlates of reliability-based cue weighting during mul-
tisensory integration, Nat. Neurosci. 15, 146 (2012).

[52] M. T. Wallace, R. Ramachandran, and B. E. Stein, A revised
view of sensory cortical parcellation, Proc. Natl. Acad. Sci.
USA 101, 2167 (2004).

[53] W. Zhang and S. Wu, Neural information processing with feed-
back modulations, Neural Comput. 24, 1695 (2012).

[54] V. Piëch, W. Li, G. N. Reeke, and C. D. Gilbert, Network model
of top-down influences on local gain and contextual interactions
in visual cortex, Proc. Natl. Acad. Sci. USA 110, E4108 (2013).

[55] Z. Li, A neural model of contour integration in the primary
visual cortex, Neural Comput. 10, 903 (1998).

[56] A. Loebel and M. Tsodyks, Computation by ensemble syn-
chronization in recurrent networks with synaptic depression, J.
Comput. Neurosci. 13, 111 (2002).

[57] D. Holcman and M. Tsodyks, The emergence of up and down
states in cortical networks, PLoS Comput. Biol. 2, e23 (2006).

[58] C. F. Stevens and Y. Wang, Facilitation and depression at single
central synapses, Neuron 14, 795 (1995).

[59] H. Markram and M. Tsodyks, Redistribution of synaptic effi-
cacy between neocortical pyramidal neurons, Nature (London)
382, 807 (1996).

[60] S. Treue, K. Hol, and H.-J. Rauber, Seeing multiple directions
of motion–physiology and psychophysics, Nat. Neurosci. 3, 270
(2000).

[61] D. C. Knill and A. Pouget, The bayesian brain: The role of
uncertainty in neural coding and computation, Trends Neurosci.
27, 712 (2004).

[62] A. Pouget, J. M. Beck, W. J. Ma, and P. E. Latham, Probabilistic
brains: Knowns and unknowns, Nat. Neurosci. 16, 1170 (2013).

064302-16

https://doi.org/10.1016/j.jphysparis.2004.01.022
https://doi.org/10.1007/s10827-005-6559-y
https://doi.org/10.1103/PhysRevE.92.032908
https://doi.org/10.1073/pnas.1117386109
https://doi.org/10.1371/journal.pcbi.1006928
https://doi.org/10.1073/pnas.93.23.13339
https://doi.org/10.1162/NECOa00711
https://doi.org/10.1016/S0893-6080(02)00237-X
https://doi.org/10.1080/net.13.2.217.242
https://doi.org/10.1016/S0893-6080(03)00210-7
https://doi.org/10.1016/j.nlm.2004.08.003
https://doi.org/10.1162/neco.2007.07-06-297
https://doi.org/10.1523/JNEUROSCI.4017-13.2014
https://doi.org/10.7554/eLife.46687
https://doi.org/10.1371/journal.pcbi.1008791
https://doi.org/10.1016/j.neucom.2020.11.047
https://doi.org/10.1038/nrn3503
https://doi.org/10.1523/JNEUROSCI.5095-04.2005
https://doi.org/10.1016/j.neulet.2007.02.029
https://doi.org/10.1523/JNEUROSCI.0578-15.2016
https://doi.org/10.1038/415429a
https://doi.org/10.1088/1742-6596/197/1/012017
https://doi.org/10.1103/PhysRevE.92.022801
https://doi.org/10.1038/nrn3136
https://doi.org/10.1093/cercor/1.1.1-a
https://doi.org/10.1016/j.tics.2008.07.006
https://doi.org/10.1038/nn.2191
https://doi.org/10.1523/JNEUROSCI.2267-15.2015
https://doi.org/10.1093/cercor/bhh007
https://doi.org/10.1038/nn.2983
https://doi.org/10.1073/pnas.0305697101
https://doi.org/10.1162/NECOa00296
https://doi.org/10.1073/pnas.1317019110
https://doi.org/10.1162/089976698300017557
https://doi.org/10.1023/A:1020110223441
https://doi.org/10.1371/journal.pcbi.0020023
https://doi.org/10.1016/0896-6273(95)90223-6
https://doi.org/10.1038/382807a0
https://doi.org/10.1038/72985
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1038/nn.3495


BIMODULAR CONTINUOUS ATTRACTOR NEURAL … PHYSICAL REVIEW E 107, 064302 (2023)

[63] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, Bayesian
inference with probabilistic population codes, Nat. Neurosci. 9,
1432 (2006).

[64] J. M. Beck, W. J. Ma, R. Kiani, T. Hanks, A. K. Churchland, J.
Roitman, M. N. Shadlen, P. E. Latham, and A. Pouget, Proba-
bilistic population codes for bayesian decision making, Neuron
60, 1142 (2008).

[65] A. Pouget, K. Zhang, S. Deneve, and P. E. Latham, Statistically
efficient estimation using population coding, Neural Comput.
10, 373 (1998).

[66] S. Wu, H. Nakahara, and S.-I. Amari, Population coding with
correlation and an unfaithful model, Neural Comput. 13, 775
(2001).

[67] R. V. Raju and Z. Pitkow, Inference by reparameterization in
neural population codes, Adv. Neural Inf. Process. Syst. 29,
2029 (2016).

[68] W.-H. Zhang, H. Wang, A. Chen, Y. Gu, T. S. Lee, K. Y. M.
Wong, and S. Wu, Complementary congruent and opposite
neurons achieve concurrent multisensory integration and seg-
regation, eLife 8, e43753 (2019).

[69] Y. Sato, T. Toyoizumi, and K. Aihara, Bayesian inference
explains perception of unity and ventriloquism aftereffect: Iden-
tification of common sources of audiovisual stimuli, Neural
Comput. 19, 3335 (2007).

[70] L. Shams and U. R. Beierholm, Causal inference in perception,
Trends Cognit. Sci. 14, 425 (2010).

[71] C. Cuppini, L. Shams, E. Magosso, and M. Ursino, A biolog-
ically inspired neurocomputational model for audiovisual inte-
gration and causal inference, Eur. J. Neurosci. 46, 2481 (2017).

[72] D. R. Wozny, U. R. Beierholm, and L. Shams, Probability
matching as a computational strategy used in perception, PLoS
Comput. Biol. 6, e1000871 (2010).

[73] K. P. Körding, U. Beierholm, W. J. Ma, S. Quartz, J. B.
Tenenbaum, and L. Shams, Causal inference in multisensory
perception, PLoS ONE 2, e943 (2007).

[74] N. Voges and L. U. Perrinet, Complex dynamics in recurrent
cortical networks based on spatially realistic connectivities,
Front. Comput. Neurosci. 6, 41 (2012).

[75] M. Okun, N. A. Steinmetz, L. Cossell, M. F. Iacaruso, H. Ko, P.
Barthó, T. Moore, S. B. Hofer, T. D. Mrsic-Flogel, M. Carandini

et al., Diverse coupling of neurons to populations in sensory
cortex, Nature (London) 521, 511 (2015).

[76] S. Peron, R. Pancholi, B. Voelcker, J. D. Wittenbach, H.
F. Ólafsdóttir, J. Freeman, and K. Svoboda, Recurrent inter-
actions in local cortical circuits, Nature (London) 579, 256
(2020).

[77] Y. Sweeney and C. Clopath, Population coupling predicts the
plasticity of stimulus responses in cortical circuits, eLife 9,
e56053(2020).

[78] T. Ohshiro, D. E. Angelaki, and G. C. DeAngelis, A normaliza-
tion model of multisensory integration, Nat. Neurosci. 14, 775
(2011).

[79] U. Güçlü and M. A. J. van Gerven, Modeling the dynamics
of human brain activity with recurrent neural networks, Front.
Comput. Neurosci. 11, 7 (2017).

[80] X.-J. Wang, Probabilistic decision making by slow reverbera-
tion in cortical circuits, Neuron 36, 955 (2002).

[81] X.-J. Wang, Decision making in recurrent neuronal circuits,
Neuron 60, 215 (2008).

[82] C.-T. Wang, C.-T. Lee, X.-J. Wang, and C.-C. Lo, Top-down
modulation on perceptual decision with balanced inhibition
through feedforward and feedback inhibitory neurons, PLoS
ONE 8, e62379 (2013).

[83] L. Shams, Y. Kamitani, and S. Shimojo, What you see is what
you hear, Nature (London) 408, 788 (2000).

[84] L. Shams, Y. Kamitani, and S. Shimojo, Visual illusion induced
by sound, Cognitive Brain Res. 14, 147 (2002).

[85] S. Shimojo and L. Shams, Sensory modalities are not separate
modalities: Plasticity and interactions, Curr. Opin. Neurobiol.
11, 505 (2001).

[86] S. Watkins, L. Shams, S. Tanaka, J.-D. Haynes, and G. Rees,
Sound alters activity in human v1 in association with illusory
visual perception, NeuroImage 31, 1247 (2006).

[87] W.-H. Zhang, H. Wang, K. Y. Wong, and S. Wu, “Congruent”
and “opposite” neurons: Sisters for multisensory integration and
segregation, Adv. Neural Inf. Process. Syst. 29, 3180 (2016).

[88] H. Wang, W.-H. Zhang, K. Y. M. Wong, and S. Wu, How the
prior information shapes neural networks for optimal multisen-
sory integration, International Symposium on Neural Networks
(Springer, Cham, 2017), pp. 128–136.

064302-17

https://doi.org/10.1038/nn1790
https://doi.org/10.1016/j.neuron.2008.09.021
https://doi.org/10.1162/089976698300017809
https://doi.org/10.1162/089976601300014349
https://proceedings.neurips.cc/paper/2016/hash/a26398dca6f47b49876cbaffbc9954f9-Abstract.html
https://doi.org/10.7554/eLife.43753
https://doi.org/10.1162/neco.2007.19.12.3335
https://doi.org/10.1016/j.tics.2010.07.001
https://doi.org/10.1111/ejn.13725
https://doi.org/10.1371/journal.pcbi.1000871
https://doi.org/10.1371/journal.pone.0000943
https://doi.org/10.3389/fncom.2012.00041
https://doi.org/10.1038/nature14273
https://doi.org/10.1038/s41586-020-2062-x
https://doi.org/10.7554/eLife.56053
https://doi.org/10.1038/nn.2815
https://doi.org/10.3389/fncom.2017.00007
https://doi.org/10.1016/S0896-6273(02)01092-9
https://doi.org/10.1016/j.neuron.2008.09.034
https://doi.org/10.1371/journal.pone.0062379
https://doi.org/10.1038/35048669
https://doi.org/10.1016/S0926-6410(02)00069-1
https://doi.org/10.1016/S0959-4388(00)00241-5
https://doi.org/10.1016/j.neuroimage.2006.01.016
https://proceedings.neurips.cc/paper/2016/hash/88a199611ac2b85bd3f76e8ee7e55650-Abstract.html

