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Social contagion induced by uncertain information
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Information and individual activities often spread globally through the network of social ties. While social
contagion phenomena have been extensively studied within the framework of threshold models, it is common to
make an assumption that may be violated in reality: each individual can observe the neighbors’ states without
error. Here, we analyze the dynamics of global cascades under uncertainty in an otherwise standard threshold
model. Each individual uses statistical inference to estimate the probability distribution of the number of active
neighbors when deciding whether to be active, which gives a probabilistic threshold rule. Unlike the deterministic
threshold model, the spreading process is generally nonmonotonic, as the inferred distribution of neighbors’
states may be updated as a new signal arrives. We find that social contagion may occur as a self-fulfilling event
in that misperception may trigger a cascade in regions where cascades would never occur under certainty.
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I. INTRODUCTION

The spreading of information, opinions, and other social
activities through social ties is collectively called social con-
tagion [1–4]. The dynamical processes of social contagion on
networks have been extensively studied over the past decades,
and a wide variety of cascade models has been developed
to describe various cascading behaviors in different social
and economic contexts, from cultural fads to financial crises
[5–21].

A workhorse framework is the class of threshold models in
which individual behavior is influenced by local neighbors if
the fraction of “active” neighbors exceeds a certain threshold
[6,22]. In the threshold models, it is presumed that individuals
can observe the neighbors’ states and decide whether to be
active without error according to a deterministic threshold
rule. However, the observability of the states of others is not
necessarily perfect in many real-world contexts [17]. For ex-
ample, it would be difficult to accurately observe the number
of friends who believe a certain rumor. One might like to
subscribe to a YouTube channel if most friends are already
subscribed, but the status of subscription may be unavailable.

In environments where the neighbors’ states are uncer-
tain, individuals need to infer the number of active neighbors
before making decisions. This could change the fundamen-
tal mechanics of social contagion since individual decisions
would be based on statistical inference rather than direct ob-
servation. Here, we develop a threshold model of cascades in
the presence of observation uncertainty. Instead of assuming
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that the true number of active neighbors is known, each indi-
vidual is assumed to observe a noisy signal from which the
probability distribution of the neighbors’ states is inferred.
Then, each individual decides whether or not to be active
based on a probabilistic threshold rule. In this uncertain envi-
ronment, an individual’s misperception could trigger a global
cascade, even in regions where cascades would never occur
without uncertainty.

II. NOISY INFORMATION AND STATISTICAL
INFERENCE

A. Deterministic threshold rule

Before we get into the model with uncertain information,
let us briefly describe the standard binary-state model of social
contagion, where inactive individuals decide whether to be
active in a deterministic manner. Our model follows from
the Watts model of global cascades [6], in which individuals
having k neighbors become active if

m

k
> θ, (1)

where m denotes the number of active neighbors and θ ∈
(0, 1) is an activation threshold. The individuals remain in-
active if m/k � θ .

The condition (1) represents a deterministic threshold rule
as it is implicitly assumed that the true number of active neigh-
bors m can be observed without error. All the individuals that
satisfy the deterministic threshold condition surely become
active. If the threshold θ is smaller than a certain critical
value, a small number of “seed nodes” may trigger a global
contagion in which a large fraction of nodes in the network
becomes active. It is known that such a binary-state contagion
process is monotonic in that active nodes cannot revert to the
inactive state [27,29]. The steady state and dynamical path of
the total fraction of active nodes are often calculated using a
message-passing method, which is analytically tractable and
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highly accurate for the class of deterministic threshold models
[12,27–29].

B. Probabilistic threshold rule

Now consider a situation in which the true number of active
neighbors m is unobservable. The state of each node is still
either active or inactive, but the node states are unknown
to their neighbors, while each node knows the number of
neighbors (i.e., degree) k. Each node observes a noisy signal
of m, denoted by m̃. m̃ is distributed in [0, k], following a
binomial distribution with mean m: m̃ ∼ B(k, q̄), where the
unobservable probability q̄ := m/k is the true fraction of ac-
tive neighbors. That is, a signal m̃ is interpreted as the number
of “successes” in k trials with a success probability of q̄. For a
given true fraction q̄, a signal m̃ is drawn independently of the
history of node states, while q̄ generally changes over time
once a cascade occurs. Thus, the distribution of m̃ shifts as
q̄ changes. When deciding whether to be active, each node
infers the distribution of the true fraction q̄ based on the
observed signal m̃. The posterior distribution for q̄, denoted
by f (q|m̃), is obtained from the following Bayes’ rule:

f (q|m̃) = f (m̃|q) f (q)∫ 1
0 f (m̃|q) f (q)dq

, (2)

where f (m̃|q) = (k
m̃

)
qm̃(1 − q)k−m̃ and f (q) is a prior distri-

bution. We specify that a node is activated if and only if the
following probabilistic threshold condition is satisfied:

Prob(q > θ |m̃) > 1 − λ, (3)

where λ ∈ (0, 1) represents an accommodation threshold. A
node is activated if the probability of the fraction of active
neighbors exceeding the threshold θ is larger than 1 − λ.
The higher the accommodation threshold λ, the more likely
the node will be activated. Using the posterior distribution
f (q|m̃), the probabilistic threshold condition (3) is rewritten
as ∫ θ

0
f (q|m̃)dq := F (θ |m̃) < λ, (4)

where F is the cumulative density of the posterior distribution.
A schematic of an individual’s decision making based on
statistical inference is presented in Fig. 1.

To facilitate the analysis, we assume that the prior f (q)
is given by a beta distribution, Beta(α, β ). Because the beta
distribution is a conjugate for the binomial distribution, the
posterior distribution f (q|m̃) in Eq. (2) leads to Beta(α +
m̃, β + k − m̃).

C. Degree of uncertainty

We specify the prior distribution f (q) in such a way that
the degree of uncertainty in the number of active neighbors is
properly measured by the variance of q. For this purpose, f (q)
must be an “unbiased” distribution with the mean equal to the
true value q̄ because otherwise, node states would be affected
by biased estimation as well as the effect of uncertainty. If
we use a “biased” prior such that E(q) �= q̄, then a global
cascade could occur due to the biased belief even if no node
in the network is actually active [e.g., if we use the uniform

FIG. 1. Schematic of Bayesian inference and node activation. An
individual does not have complete information about the true number
of active neighbors m and the fraction of active neighbors q̄. The
individual receives a signal m̃ that follows a binomial distribution
B(k, q̄). Conditional on the realized signal, the distribution of the true
fraction of active neighbors [denoted by f (q|m̃)] is inferred. The in-
dividual is activated if F (θ |m̃) < λ, where F (θ |m̃) = ∫ θ

0 f (q|m̃)dq.

prior Beta(1, 1), we would have E(q) = ∫ 1
0 qdq = 1/2 and

E(q|m̃ = 0) = 1/(2 + k)]. To avoid this, we will make sure
that E(q) = q̄ and E(q|m̃ = 0) = 0. Since an unbiased beta
prior must have mean α/(α + β ) = q̄, α is set at α = q̄

1−q̄ β

for q̄ ∈ (0, 1) and β > 0. Then, the mean and variance of the
prior distribution lead to

E(q) = q̄, (5)

Var(q) = q̄(1 − q̄)2

1 − q̄ + β
, (6)

which implies that the degree of uncertainty decreases mono-
tonically with β, suggesting that β can be used as a proxy
for the observability of q̄ [Fig. 2(a)]. Note that as q̄ → 0
or 1, var(q) will vanish and individuals can observe q̄ accu-
rately. Therefore, regardless of β, uncertainty will disappear
in the special cases where no neighbor or all neighbors are
active. For this reason, nodes having no active (no inactive)
neighbors always become inactive (active). This allows us to
eliminate the possibility of a cascade occurring without active
nodes.

Because the prior mean is unbiased, the model is equivalent
to the classic threshold model of Watts [6] in the limit of
large β, in which m/k is revealed without error. This results
in equivalence between the prior and posterior means and
variances,

lim
β→∞

E(q|m̃) = lim
β→∞

m̃ + q̄β

1−q̄
q̄β

1−q̄ + β + k
= q̄, (7)

lim
β→∞

Var(q|m̃) = lim
β→∞

( q̄β

1−q̄ + m̃
)
(β + k − m̃)(

β

1−q̄ + k
)2( β

1−q̄ + k + 1
) = 0. (8)
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FIG. 2. Prior and posterior distributions. (a) Prior (dotted) and
posterior (black solid) distributions are more concentrated around
the true fraction of active nodes q̄ (vertical dotted line) when β is
larger. (b) Complementary cumulative distribution function (CCDF)
of the posterior distribution, F (q|m̃). θ1 (θ2) denotes the threshold of
θ below which the node is activated for a given accommodation level
λ1 (λ2). We have θ1 ≈ θ2 when β is sufficiently large. We set k = 10,
q̄ = 0.4, and m̃ = 4.

When there is no uncertainty [i.e., Var(q|m̃) = 0], we have
F (q|m̃) = 0 for q < q̄, and F (q|m̃) = 1 for q � q̄. Then, the
threshold condition (4) is satisfied if and only if θ < q̄ = m/k
for any λ ∈ (0, 1), which recovers the threshold rule à la Watts
[6]. Figure 2(b) illustrates the correspondence between λ

and the range of θ within which the node is activated. For
a given accommodation level λ, there is a unique value θ

such that λ = F (θ |m̃), or θ = F−1(λ|m̃). That is, θ is the
threshold of θ below which the node is activated. While θ is
generally positively correlated with λ, the correlation weakens
as β increases (i.e., as uncertainty decreases). θ is virtually
independent of λ for a sufficiently large β [Fig. 2(b), right). In
the following analysis, we consider a situation in which each
node uses an unbiased prior Beta[α(q̄), β] when updating its
state, where α(q̄) = q̄β/(1 − q̄). The prior parameter α thus
evolves with q̄, while β is constant and treated as a tuning
parameter that controls the degree of uncertainty. In Sec. IV,
we also consider an alternative Bayesian updating scheme in
which prior distribution is updated sequentially based on past
observations.

III. ANALYSIS

A. Spreading dynamics

We describe the spreading process using the approxi-
mate master equation (AME) method [23–25]. Although the
message-passing method has been extensively used in analyz-
ing threshold models with certainty, it would not be suitable
here as the spreading process is not necessarily monotonic.

TABLE I. Notations in the approximate master equation (9).

Notation Description

k Degree of a node
m Number of active neighbors of a node
m̃ Signal of m
ρs

k,m Fraction of nodes in state s belonging to the (k, m)
class

Rk,m(s′) The rate at which nodes in the (k, m) class change
their states to s′

φ(s → s′) The rate at which a neighbor of an active node
changes its state from s to s′

pk Probability of a node having degree k

Throughout the paper, we consider networks that are locally
treelike and have only a negligible number of local cycles. In
the AME approximation, it is assumed that the state transition
rate of a neighbor of a node is independent of the states of the
other neighbors of the node [25].

Let s ∈ {0, 1} (= {inactive, active}) be the state of a node,
and ρs

k,m be the fraction of k-degree nodes in state s having
m active neighbors (or, equivalently, having k − m inactive
neighbors), where

∑k
m=0 ρs

k,m = ρs
k is the fraction of k-degree

nodes in state s, and the expected total fraction of nodes in
state s is given by ρs = ∑

k pk
∑k

m=0 ρs
k,m.

Using the AME formalism [23–25], we express the evo-
lution of ρs

k,m as follows (the notations are summarized in
Table I):

ρ̇1
k,m = −

Active (k, m) nodes
become inactive︷ ︸︸ ︷
Rk,m(0)ρ1

k,m −

Active neighbors of an active
(k, m) node become inactive︷ ︸︸ ︷

mφ(1 → 0)ρ1
k,m

+ Rk,m(1)ρ0
k,m︸ ︷︷ ︸

Inactive (k, m) nodes
become active

− (k − m)φ(0 → 1)ρ1
k,m︸ ︷︷ ︸

Inactive neighbors of an active
(k, m) node become active

+ (k − m + 1)φ(0 → 1)ρ1
k,m−1︸ ︷︷ ︸

Neighbors of an active (k, m−1)
node become active

+ (m + 1)φ(1 → 0)ρ1
k,m+1︸ ︷︷ ︸

Neighbors of an active (k, m+1)
node become inactive

, (9)

ρ̇0
k,m = −ρ̇1

k,m, (10)

where φ(s → s′) denotes the probability that a neighbor of an
active node changes its state from s to s′,

φ(s → s′) =

Expected no. of edges changing
from (1)-(s) to (1)-(s′ )︷ ︸︸ ︷∑

k

pk

k∑
m=1

mρs
k,mRk,m(s′)

∑
k

pk

k∑
m=1

mρs
k,m︸ ︷︷ ︸

Expected no. of (1)-(s) edges

. (11)

Here, pk denotes the degree distribution, and the stochas-
tic response function Rk,m(s′) describes the rate at which
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individuals in the (k, m) class change their state to s′,

Rk,m(s′)

=
{

Prob[F (θ |m̃) < λ | (k, m)] if s′ = 1
1 − Prob[F (θ |m̃) < λ | (k, m)] if s′ = 0,

(12)

where

Prob[F (θ |m̃) < λ
∣∣ (k, m)]

=
k∑

m̃=0

(
k

m̃

)
q̄m̃(1 − q̄)k−m̃ 1F (θ |m̃)<λ. (13)

1A is the indicator function that takes 1 if condition A is
satisfied and 0 otherwise. It should be noted that while the
response of each individual is deterministic for a given m̃
[Eq. (4)], it is stochastic ex ante since m̃ is a random variable
following a binomial distribution B(k, q̄). Equation (12) also
suggests that the probability that a node’s state becomes s′
is independent of the current state of the node. Therefore,
the next state of a node is determined only by the signal and
threshold values, so the state of a node can change from active
to inactive. This possibility of state reversal is absent in the
standard threshold model without uncertainty. In Sec. III D,
we will examine the extent to which nodes revert their states
during a cascade process.

In Eq. (9), there are four factors that will change ρ1
k,m. Ac-

tive nodes with degree k will leave the (k, m) class if (i) their
state changes from 1 to 0 (the first term) or (ii) the number
of active neighbors changes from m to m′( �= m) (the second
and fourth terms). On the other hand, nodes with degree k
will enter the (k, m) class if (iii) inactive nodes having m
active neighbors newly become active (the third term) or (iv)
the number of active neighbors of active nodes shifts from
m′( �= m) to m (the fifth and sixth terms).

The denominator of Eq. (11) represents the expected num-
ber of edges between active nodes (i.e., nodes in state 1)
and nodes in state s ∈ {0, 1}. We call such edges (1)–(s)
edges. Since the expected number of (1)–(s) edges that
change to (1)–(s′) in an infinitesimal interval dt is given
as

∑
k pk

∑k
m=1 mρs

k,mRk,m(s′)dt , the probability of a (1)–(s)
edge shifting to a (1)–(s′) edge, denoted by φ(s → s′)dt , is
obtained as the ratio of the two, leading to Eq. (11). The AME
solution is calculated using the MATLAB codes provided in
[26].

B. Cascade conditions

The AME method accurately predicts the cascade size ρ1,
but the calculation can be computationally expensive when
there is a large number of differential equations. Note that in
the AMEs, we have equations for ρ0

k,m and ρ1
k,m for each of the

combinations of {(k, m)}. An alternative, though less accurate,
method is the mean-field (MF) approximation, for which it is
assumed that the state, as opposed to the transition rate, of a
neighbor is independent of the states of the other neighbors.
The MF equation is given by

ρ̇1 = − ρ1
∑

k

pk

k∑
m=0

(
k

m

)
(ρ1)m(1 − ρ1)k−m

× Prob[F (θ |m̃) � λ | (k, m)]

FIG. 3. Phase diagram and cascade region. (a) Phase diagram
based on the MF equation (15) with λ = 0.1 and λ = 0.7. Red
circle indicates ρ1 = ρ0 = 0.01. θ = 0.18, β = 20, and 〈k〉 = 8.
(b) Cascade region obtained by simulation (color) and the cascade
conditions (lines). The areas surrounded by red solid, red dashed,
and black solid lines denote the cascade regions indicated by the
AMEs [i.e., ρ1(T ) > 0.1], the sign condition (16), and the first-order
cascade condition (17), respectively. We set N = 105 and β = 20.

+ (1 − ρ1)
∑

k

pk

k∑
m=0

(
k

m

)
(ρ1)m(1 − ρ1)k−m

× Prob[F (θ |m̃) < λ | (k, m)] (14)

= − ρ1 +
∑

k

pk

k∑
m=0

(
k

m

)
(ρ1)m(1 − ρ1)k−m

× Prob[F (θ |m̃) < λ | (k, m)], (15)

where the first (second) term in Eq. (14) represents the
fraction of nodes that changes the state from s = 1 to 0
(from s = 0 to 1).

Phase diagrams for the case of Erdős-Rényi networks are
drawn in Fig. 3(a) using the MF equation (15). The accom-
modation threshold λ considerably affects the shape of ρ̇1

and the possibility of a global cascade. For a small ρ1, ρ̇1 is
likely to take a negative value when λ is small, in which ρ1

converges to 0. In contrast, ρ̇1 is likely to take a positive value
when λ is large, in which ρ1 diverges from 0, indicating the
onset of a global cascade. Therefore, a sign condition for a
global cascade to occur at ρ1 = ρ0 := ρ1|t=0 > 0 is given by
ρ̇1|ρ1=ρ0

> 0, or

∑
k

pk

k∑
m=0

(
k

m

)
(ρ0)m(1 − ρ0)k−m

× Prob[F (θ |m̃) < λ | (k, m)] > ρ0. (16)
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In the limit of ρ1 → 0, we have ρ̇1 → 0 from Eq. (15),
in which case the sign condition (16) would not be useful.
Instead, we could use another cascade condition, called the
first-order cascade condition: ∂ρ̇1/∂ρ1|ρ1=0 > 0, or

∑
k

pkk
k∑

m̃=0

(
k

m̃

)(
1

k

)m̃(
1 − 1

k

)k−m̃

1F (θ |m̃)<λ > 1, (17)

where the parameter α for the posterior distribution F (i.e.,
beta distribution) is given by α = β/(k − 1) since the terms
associated with m �= 1 are all zero. The first-order condition
(17) can also be expressed as

Ek{k · Prob[F (θ |m̃) < λ | (k, 1)]} > 1. (18)

The left-hand side of Eq. (18) represents a reproduction num-
ber: the expected number of nodes affected by an active
neighbor. Thus, the condition indicates that global cascades
can occur if, on average, more than one node will become
active when there is initially only one active neighbor. Equa-
tions (17) and (18) can be viewed as the stochastic counterpart
of the standard cascade condition under certainty [6,27–29].

A comparison between the simulated and analytical
cascade regions is shown in Fig. 3(b). The cascade re-
gion generally expands as the accommodation threshold λ

increases, which is well captured by the analytical cascade
conditions (16) and (17) as well as the solution of the AMEs.

C. Role of misperception

Because the true number of active neighbors is generally
unobservable, individuals’ decisions may be misguided by
noisy signals. The dynamical process of contagion would be
purely deterministic if there were no observation errors (for a
given network and a given set of seed nodes), but noisy signals
may sometimes lead individuals to make “wrong” decisions;
some nodes may become false active if they overestimate q̄, or
false inactive if they underestimate q̄. The possibility of mis-
perception at the individual level could affect the macroscopic
outcome and result in a self-fulfilling social contagion.

1. Uncertainty effect

Let C(ρ0) denote the cascade region that specifies the range
of parameters within which the sign condition (16) is satisfied
for a given seed fraction ρ0 > 0,

C(ρ0) =
{

(θ, λ, 〈k〉, β ) :
∑

k

pk

k∑
m=0

Bk
m(ρ0)

× Prob[F (θ |m̃) < λ | (k, m)] > ρ0

}
, (19)

where Bk
m(ρ0) = (k

m

)
(ρ0)m(1 − ρ0)k−m. The cascade region

under certainty, in which there are no false-active or false-
inactive nodes, is given as a limiting case of β → ∞. Let
C̃(ρ0) := C(ρ0)|β→∞ denote the cascade region under cer-
tainty. If C \ C̃ �= ∅, then there exists a nonempty cascade
region in which global cascades are caused by false-active
nodes. If C̃ \ C �= ∅, by contrast, there exists a region in which
global cascades are suppressed due to the prevalence of false-
inactive nodes.

FIG. 4. Shrinkage and expansion of cascade region induced by
misperception. The heat maps represent the simulated fraction of
active nodes for (a) λ = 0.1 and (b) λ = 0.8. Area surrounded by the
blue dotted (red solid) line represents the difference from the cascade
region under certainty, C̃ \ C (C \ C̃), indicated by the sign condition
(16). N = 105, θ = 0.18, and ρ0 = 0.01. Simulation results show the
average over 100 runs.

When λ is small, the cascade region with uncertain infor-
mation is smaller than that without uncertainty [Fig. 4(a)].
This suggests that false-inactive nodes (i.e., nodes that un-
derestimate the fraction of active neighbors) contribute to
inhibiting a cascade from spreading widely, compared to the
standard model with complete information. In this regime,
therefore, the cascade region expands as the degree of un-
certainty decreases (i.e., as β increases). In contrast, when λ

is large, the cascade region becomes larger than that under
certainty [Fig. 4(b)]. This is a situation in which false-active
nodes (i.e., nodes that overestimate the fraction of active
neighbors) enhance global cascades.

Therefore, the effect of uncertainty varies depending on the
individuals’ accommodation level λ. Figure 5(a) illustrates the
minimum seed fraction, denoted by ρ1, needed to trigger a
global cascade for a given λ. Here, we obtain ρ1 as the largest
unstable solution of Eq. (15). As λ increases, ρ1 decreases
toward 0 [blue line in Fig. 5(a)] since more accommodative
individuals can cause a cascade with a relatively smaller seed
fraction. In the case of Fig. 5(a), we find that ρ1 is approxi-
mately 0.01 in the model without uncertainty (i.e., black line),
and there is a point at which the effect of uncertainty is offset
(indicated by λn). λn is regarded as the neutral level of accom-
modation. The (λ, ρ0) space in Fig. 5(a) is divided into four
regions (i)–(iv) according to the possibility of social contagion
due to uncertainty. These are characterized as follows: (i)
cascades occur regardless of uncertainty, (ii) cascades occur
only if there is no uncertainty, (iii) cascades will never occur,
and (iv) cascades cannot occur without uncertainty. The re-
gions (ii) and (iv) exhibit the two aforementioned contrastive
uncertainty effects: in region (ii), uncertainty inhibits cascades
because individuals are conservative in the sense that λ < λn.
In contrast, uncertainty enhances cascades in region (iv) since
individuals are accommodative enough to follow seemingly
active neighbors.

2. Self-fulfilling contagion

In the absence of uncertainty, where there are no false-
active nodes other than seed nodes, nodes become active if
and only if a sufficiently large fraction of their neighbors is
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FIG. 5. Effects of varying the accommodation threshold λ.
(a) The largest unstable solution of Eq. (15) (i.e., the threshold of
ρ0 above which a global cascade occurs). Blue and black lines,
respectively, denote the values of ρ1 obtained by the models with and
without uncertainty. λn denotes the neutral level of accommodation
at which the effect of uncertainty is offset. (b) Theoretical (black
line) and simulated (black circle) fraction of active nodes. Red cross
denotes the normalized cumulative fraction of false-active nodes, 	̄

(right axis), which takes the maximum at λ̃. Blue triangle shows the
simulated fraction of active nodes that would be attained without
false-active nodes. We set N = 105, 〈k〉 = 8, θ = 0.18, β = 100, and
ρ0 = 0.01. Simulation results show the average over 100 runs.

truly active. On the other hand, when the true number of
active neighbors is unobservable, the decision to be active
depends on the inferred distribution of the number of active
neighbors, which raises the possibility that there may be many
false-active nodes. The presence of false-active nodes will not
be related to the likelihood of a global cascade as long as λ is
smaller than the neutral level. However, when λ is greater than
the neutral level, where individuals are highly accommoda-
tive, false-active nodes can trigger a global cascade. In the
latter case, the cascade region will be larger than it would be
without uncertainty. In the model with uncertainty, therefore,
it is important to quantify to what extent the presence of
uncertainty increases or decreases the likelihood of cascades.
In this section, we quantify the importance of false-active
nodes in the onset of a global cascade by conducting coun-

terfactual simulations in which false-active nodes are forcibly
eliminated. We will then compare the simulated results with
and without false-active nodes. The procedure of simulations
without false-active nodes is as follows:

(1) For given 〈k〉 and N , generate an Erdős-Rényi network
with a common connecting probability 〈k〉/(N − 1). Select
seed nodes at random so that there are �ρ0N
 active nodes.
The other nodes are inactive at t = 0.

(2) Let v(t + 
t ) denote the set of a fraction 
t ∈ (0, 1)
of nodes selected uniformly at random at time t + 
t . Update
the states of nodes in v(t + 
t ) according to the activation
rule (4). We set 
t = 0.01.

(3) Loop over all active nodes in v(t + 
t ) and examine
whether or not the deterministic threshold condition q̄ > θ is
satisfied. If there are false-active nodes, the nodes are deacti-
vated.

(4) Reset t as t + 
t .
(5) Repeat steps 2–4 until convergence, where no nodes

change their states.
(6) Repeat steps 1–5 and take the ensemble average.
To quantify the presence of false-active nodes in the dy-

namics of diffusion, we define the cumulative fraction of
false-active nodes as

	 =
∫ T

0
dt

∑
k

pk

∑
m, q̄�θ

ρ1
k,m(t )

≈
�T/
t
∑

τ=0

ρ̂1,false(τ
t )
t, (20)

where the first line is based on the AME solution, in which
the sum of ρ1

k,m is taken over all m such that q̄ � θ (i.e., the
true threshold condition is not satisfied). The integral is ap-
proximated by the sum in the second line where ρ̂1,false(τ
t )
denotes the simulated fraction of false-active nodes at t =
τ
t for τ = 0, 1, . . . , �T/
t
. T is the time to convergence.
Note that since seed nodes are initially active while their
neighbors are all inactive, the fraction of false-active nodes
at t = 0 is ρ0. We assume that ρ0 is small enough. For a
sufficiently large T , the value of 	 that would be attained
when there is no contagion, denoted by 	0, is given by

	0 ≈ ρ0
t + (1 − 
t )ρ0
t + (1 − 
t )2ρ0
t + · · ·
= ρ0. (21)

The first line reflects the updating process in which a fraction

t of all nodes changes their states. In this hypothetical case
where there is no contagious effect, all updating seed nodes
will surely change the state from false active to true inactive.
The fraction of false-active nodes therefore decays at a rate of
1 − 
t . Equation (21) indicates that the cumulative fraction
of false-active nodes in the absence of contagion is given by
ρ0. Therefore, we normalize 	 by subtracting 	0 ≈ ρ0 to
eliminate the direct influence of seed nodes. The normalized
	, denoted by 	̄, is then given by

	̄ := 	 − ρ0. (22)

Recall that a rise in λ generally expands the cascade region
[Figs. 3(b) and 4]. In fact, there is a certain value of λ at which
both ρ1 and 	̄ suddenly increase [Fig. 5(b)], indicating that a
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small change in individuals’ accommodation threshold may
cause a sudden shift to the opposite equilibrium. Although
such an increase in 	̄ could be observed if there is a rise in
ρ1, our counterfactual simulation shows that a global cascade
would not occur even above the critical value of λ if false-
active nodes were absent [blue triangles in Fig. 5(b)]. This
observation leads us to conclude that misperception can be
a cause of global cascades rather than an outcome. In other
words, social contagion may arise in a self-fulfilling manner:
a group of nodes that are activated due to misperception may
initiate a global cascade, suggesting that the initially “wrong”
decision to be active could turn out to be “correct” ex post.

Figure 5(b) also indicates that there is a certain degree of
accommodation, denoted by λ̃, at which the cumulative share
of false-active nodes is maximized. When λ is small, active
nodes are scarce and accordingly there are few false-active
nodes. When λ is close to one, on the other hand, a global
cascade surely occurs and most nodes become true active,
while there are only a few false-active ones. This implies that
the fraction of false-active nodes will be maximized between
the two extremes.

D. State reversals

In the threshold model without uncertainty, it is known
that nodes monotonically change their state from inactive to
active, but not vice versa [27,29]. However, in the presence
of uncertainty, nodes may revert their states from active to
inactive (i.e., deactivation), depending on the size of the signal
they observe.

To quantify the frequency of state reversals, we define R as
the cumulative fraction of nodes that have been deactivated,

R =
�T/
t
−1∑

τ=0

|{i : si[(τ + 1)
t] − si(τ
t ) < 0}|
N

, (23)

where si(t ) ∈ {0, 1} denotes the state of node i at time t .
|{i : si[(τ + 1)
t] − si(τ
t ) < 0}|/N denotes the fraction of
nodes that reverted their state from active to inactive at time
(τ + 1)
t .

We find that the reversal rate R drastically rises near the
critical point above which a global cascade can occur (Fig. 6)
and converges to 0 as λ → 1. When λ is less than the critical
value, R takes values close to zero because the majority of
nodes rarely become active. When λ is larger than the criti-
cal value, on the other hand, the majority of nodes become
active sooner or later. The reversal rate decreases as individ-
uals become more accommodative because an increase in λ

makes it more likely that the fraction of active neighbors will
increase monotonically during the contagion process. This
suggests that state reversals are most frequent near the criti-
cal point where there is a strong tension between activation
and deactivation.

IV. SEQUENTIAL BAYESIAN UPDATE

So far, we have assumed that the prior f (q) is always
unbiased [i.e., E(q) = q̄] and the posterior f (q|m̃) is also
unbiased for a sufficiently large β [i.e., limβ→∞ E(q|m̃) = q̄].
While the assumption of unbiasedness allows us to quantify
the pure effect of uncertainty, the cost is that the prior param-

FIG. 6. Steady-state fraction of active nodes and the cumulative
fraction of nodes that reverted the states, R. We set N = 104, 〈k〉 =
8, θ = 0.18, β = 5, ρ0 = 0.01. Average is taken over 10 000 runs.

eter α is contingent on the true value q̄ (Sec. II C). In this
section, we instead consider a sequential Bayesian updating
scheme in which the posterior obtained in the (t −1)th update
is used as the prior in the t th update. The updating rule is
given by

ft (q|{m̃t }) = f (m̃t |q) ft−1(q|{m̃t−1})∫ 1
0 f (m̃t |q) ft−1(q|{m̃t−1})dq

, (24)

where {m̃t } := (m̃1, . . . , m̃t )� denotes the history of observed
signals up to the t th update. As before, we specify f (m̃|q) =(k

m̃

)
qm̃(1 − q)k−m̃ and the initial prior is given by f0(q|m̃0) =

f (q).
We assume that the prior in the initial update, f (q), is

specified as Beta(a, b) for a, b > 0. The posterior in the
t th update is then given by Beta(a + ∑t

τ=1 m̃τ , b + tk −∑t
τ=1 m̃τ ). Here, we determine the parameter a so that the

prior mean in the initial update [i.e., a/(a + b)] is equal to
the seed fraction ρ0(> 0) for a given b, which gives a =
bρ0/(1 − ρ0). The initial prior mean is thus given by

E(q) = ρ0. (25)

Note that while this updating scheme appears natural in that
the current prior is based on the information available at the
time of updating, the prior mean is generally biased (i.e., ρ0 �=
q̄). This suggests that a cascade may occur due to the biased
prior belief rather than the uncertainty effect. The posterior
mean leads to

E(q|{m̃t }) = ρ0b + (1 − ρ0)
∑t

τ=1 m̃τ

b + (1 − ρ0)tk
. (26)

We have limt→∞ E(q|{m̃t }) = limt→∞
∑t

τ=1 m̃τ /(tk), mean-
ing that in the limit of large t , the posterior mean will
be represented by the asymptotic average of realized sig-
nals. Note that for any t > 0, the average signal term∑t

τ=1 m̃τ /(tk) in Eq. (26) also becomes dominant as b →
0. Therefore, the lower the parameter b, the faster the
posterior mean will approach its asymptotic average. In
contrast, we have limb→∞ E(q|{m̃t }) = ρ0, meaning that
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FIG. 7. Simulated cascade size under sequential Bayesian updating. The initial prior f (q) is given by Beta(a, b), where a = bρ0/(1 − ρ0).
See the caption of Fig. 5 for the parameter settings.

individuals will become less responsive to the observed sig-
nals as b increases.

Figure 7 shows simulated cascade sizes against λ. As
we saw in Fig. 5(b), we observe a sudden transition to a cas-
cade region at a certain accommodation level (black circle).
The increase in 	̄ (red cross) also indicates that a global
cascade can occur only if there are a sufficient number of
false-active nodes. In fact, the value of λ at which the fraction
of false-active nodes reaches its maximum, denoted by λ̃,
coincides with the critical point at which the fraction of active
nodes increases drastically. The critical point and λ̃ shift to the
right as the prior parameter b increases (Fig. 7, right).

V. DISCUSSION

In this paper, we developed a threshold model of
cascades in the presence of noisy information. Each in-
dividual infers the distribution of the fraction of active
neighbors based on noisy signals and uses the inferred
distribution to decide whether or not to be active. The
analysis showed that misperception due to observation un-
certainty could promote or inhibit the spread of social
contagion.

There are several issues left for future research. First, while
we considered observational uncertainty about the state of
neighbors, there may be other types of uncertainty, such as the
quality or reliability of the information. In recent years, the
spread of misinformation has been one of the critical social
problems [30,31]; therefore, it is worthwhile to investigate
how the quality of information might affect the spreading
dynamics. Second, we considered static networks and the
cascade dynamics on them. The model could be extended
to study cascades in temporal networks, where the role of
uncertainty is intrinsically important since the contact history
of neighbors is generally stochastic. Third, while we analyzed
Erdős-Rényi random networks, more realistic network models
having a scale-free degree distribution and/or a community
structure need to be examined to understand the actual dy-
namics of complex contagion. In these respects, the current
model should be considered as a first step toward a better
understanding of cascades under uncertainty.
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