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Evolution of resonant three-wave interaction is governed by quadratic nonlinearities. While propagating
localized modes and inverse scattering mechanisms have been studied, transient states such as rogue waves
and breathers are not fully understood. Modulation instability modes can trigger growth of disturbances and the
eventual development of breathers. Here we study computationally the dynamics beyond the first formation of
breathers, and demonstrate repeating patterns of breathers as a manifestation of the Fermi-Pasta-Ulam-Tsingou
recurrence (FPUT). While nonlinearity governs the actual dynamics, the range of wave numbers for modulation
instability remains a useful indicator. Depending on the stability characteristics of the fundamental mode and
the higher-order harmonics (“sidebands”), “regular” and “staggered” FPUT patterns can arise. A “cascading
mechanism” provides analytical verification, as the fundamental and sideband modes attain the same magnitude
at one particular instant, signifying the first occurrence of a breather. A triangular spectrum is also computed,
similar to experimental observations of optical pulses. Such spectra can elucidate the spreading of energy among
the sidebands and components of the triad resonance. The concept of “effective energy” is examined and the
eigenvalues of the inverse scattering mechanism are computed. Both approaches are utilized to correlate with the
occurrence of regular or staggered FPUT. These numerical and analytical studies can enhance our understanding
of wave interactions in fluid mechanics and optics.
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I. INTRODUCTION

Three-wave interactions have been investigated in a wide
variety of physical systems, e.g., fluid dynamics, nonlinear
optics and plasma physics [1–6]. Resonant interactions occur
when the wave numbers and frequencies of the three waves
constitute a triad, namely, sum of the wave numbers (frequen-
cies) of two waves being equal to wave number (frequency)
of the third wave [7]. Mathematically such three-wave res-
onant interaction equations are “integrable” [8]. Elegant
analytical techniques such as the inverse scattering transform
have been applied to derive exact solutions for localized
modes and solitons [7–17]. Physically, phenomena linked to
such resonance, such as parametric amplification, frequency
conversion, and stimulated Raman and Brillouin scattering,
have enhanced our understanding of many pattern-forming
systems [18–20].

On another important topic in nonlinear dynamics, Fermi-
Pasta-Ulam-Tsingou recurrence (FPUT) refers to the ten-
dency of a strongly nonlinear multimodal system to come
back to its initial state after potentially complex redistribution
of modal energies [21–31]. FPUT was first discovered through
the process of energy thermalization in a chain of nonlinear
oscillators, subject to the initial excitation of one single or
a few normal mode(s) [21]. Energy is first transferred from
the initially excited mode to the higher-order modes of the
system. In subsequent evolution, energy moves back to the
initial state, with the higher-order modes returning to the
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ground state with zero excitation [32]. FPUT has been in-
vestigated through a huge variety of topics and perspectives,
e.g., Bose-Einstein condensates, chains of oscillators, discrete
breathers, and heat transport. Our goal here is to investigate
these energy exchanges based on the exact, rational and ex-
ponential solutions of integrable evolution systems, and in
particular, the three-wave resonant interaction equations [15].
A few widely utilized concepts and terminologies relating
to solitons and rogue waves will be discussed in the present
context first.

The nonlinear Schrödinger equation (NLSE) is a widely
adopted model for describing the processes of second-order
dispersion and cubic nonlinearity. Many computational and
experimental efforts in realizing FPUT are related to non-
linear wave motions in fluid mechanics, magnetic films, and
optics [25–27,29,33,34]. In the 1970s, one or two cycles of
FPUT could be observed in a wave channel, where slowly
varying, hydrodynamic wave packets are governed by the
NLSE [25,35]. In the 2000s and 2010s, FPUT was reported for
picosecond pulses in association with an optical loop mirror.
Modulation instability is believed to play a crucial role [36].
More recently, four or more FPUT cycles could be achieved
using an “ultralow loss” fiber. Both “in-phase” and “phase-
shifted” patterns could be observed.

From a theoretical perspective, FPUT, localized modes,
and breathers have played significant roles since the early
days of soliton theory [37–41]. In modern terminologies,
simulations and calculations under periodic boundary condi-
tions lead to breathers. For NLSE, breathers periodic in the
propagation or transverse variable are known as Kuznetsov-
Ma or Akhmediev breathers, respectively [42–44].
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The issues of nonlinear development of modulation in-
stability and emergence of breathers have been scrutinized
intensively. Here we just focus on a “cascading mechanism.”
Basically higher-order modes exponentially smaller than the
fundamental one initially grow at a higher rate [41]. Eventu-
ally all the modes attain roughly the same order of magnitude
at one instant in time. The breather is formed; subsequently
the breather decays. As the wave profile attains a small ampli-
tude, modulation instability resumes and the cycle is repeated,
leading to FPUT [33,45]. This cascading instability of the
higher-order modes has been demonstrated for members of
the Schrödinger family of evolution equations [43,44,46]. The
challenge here is to demonstrate such FPUT dynamics for the
three-wave resonant interaction system, where the nonlinear-
ity is quadratic.

The sequence of presentation can now be explained. The
constant background solutions for the three-wave resonant
interaction system and criteria of modulation instability are
derived (Sec. II). We compute the breather solution for this
system via the Darboux transformation (Sec. III). If peri-
odic boundary conditions are imposed, sequences of pulsating
modes (breathers) arise, decay, and recur for a few cycles
before disintegration (Sec. IV). These events are indeed man-
ifestations of FPUT. Regular and staggered patterns of FPUT
will be observed. The cascading mechanism will be demon-
strated through the first appearance of both types FPUT. The
concept of “effective energy” will be elucidated for these
FPUT patterns (Sec. V). Eigenvalues of the spatial linear
operator are computed, and their properties are consistent with
our theoretical framework (Sec. VI). Finally, conclusions are
drawn (Sec. VII).

II. BASIC FORMULATIONS

We consider the normalized three-wave resonant interac-
tion equations as [11,15,47]

∂�1/∂τ + V1∂�1/∂ξ = �2�
∗
3 , (1a)

∂�2/∂τ + V2∂�2/∂ξ = −�1�3, (1b)

∂�3/∂τ + V3∂�3/∂ξ = �2�
∗
1 . (1c)

Here ξ and τ are the transverse and propagation directions;
Vj, j = 1, 2, 3 are the group velocities of the three slowly
varying wave packets. By moving in a frame with velocity V3,
we can for simplicity set V3 to be zero subsequently.

The three-wave equations [Eqs. (1a)–(1c)] yield plane-
wave solutions

�
[0]
1 (ξ, τ ) = δ1 exp [i(K1ξ + q1τ )],

�
[0]
2 (ξ, τ ) = δ2 exp [i(K2ξ + q2τ )],

�
[0]
3 (ξ, τ ) = iδ3 exp [i(K3ξ + q3τ )],

(2)

where the wave numbers Kj and frequencies q j satisfy the
resonance relations,

K2 = K1 + K3, q2 = q1 + q3, (3)

and wave-amplitude parameters (δ1, δ2, δ3) satisfy the follow-
ing conditions:

q1δ1 + K1V1δ1 + δ2δ3 = 0, (4a)

q2δ2 + K2V2δ2 + δ1δ3 = 0, (4b)

−δ1δ2 + (q1 − q2)δ3 = 0. (4c)

The solutions are

K1 = −q2
1 − q1q2 + δ2

2

(q1 − q2)V1
, K2 = −−q1q2 + q2

2 − δ2
1

(−q1 + q2)V2
,

δ3 = δ1δ2

q1 − q2
. (5)

We name the mode (K2, q2) as the “parent wave” and the
modes (K1, q1), (K3, q3) as “daughter waves.” The naming
system of parent and daughters is not uniform in the literature.

To investigate the sensitivity to initial conditions, a mod-
ulation instability analysis is conducted. While similar tasks
have been undertaken in the literature [48], the formulation
will be presented here briefly for completeness and for con-
sistency in notation.

Perturbations are introduced on the plane wave [Eq. (2)]:

�1(ξ, τ ) = {δ1 + w11 exp [i(pξ + �τ )] + w12 exp [−i(pξ + �τ )]} exp [i(K1ξ + q1τ )],

�2(ξ, τ ) = {δ2 + w21 exp [i(pξ + �τ )] + w22 exp [−i(pξ + �τ )]} exp [i(K2ξ + q2τ )],

�3(ξ, τ ) = i{δ3 + w31 exp [i(pξ + �τ )] + w32 exp [−i(pξ + �τ )]} × exp (i[(K2 − K1)ξ + (q2 − q1)τ ]),

(6)

where w11, w12, w21, w22, w31, w32 are nonzero real constants; p and � represent the wave number and angular frequency of
the disturbance, respectively. The criterion for instability is the vanishing of the determinant of the coefficient matrix:

Det(M ) = 0, (7a)

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

M1 0 iδ3 0 0 iδ2

0 M2 0 iδ3 iδ2 0
iδ3 0 M3 0 iδ1 0
0 iδ3 0 M4 0 iδ1

0 −δ2 −δ1 0 M5 0
−δ2 0 0 −δ1 0 M6

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7b)

M1 = iq1 + iV1 p + iV1K1 + i�, M2 = iq1 − iV1 p + iV1K1 − i�,

M3 = iq2 + iV2 p + iV2K2 + i�, M4 = iq2 − iV2 p + iV2K2 − i�,

M5 = q1 − q2 − V3 p + V3K1 − V3K2 − �, M6 = q1 − q2 + V3 p + V3K1 − V3K2 + � . (7c)
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FIG. 1. Modulation instability growth rates |Im(�)| versus perturbation wave number p with the choice of parameters as V1 = 1, V2 = 0.8,
V3 = 0, δ1 = 1, δ2 = 1, q1 = 2, and q2 = 1.

The dispersion relation can be expressed as a sixth-power polynomial [Eq. (7a)]. The explicit formulas are tedious, hence we
just report the numerical results. Typical instability growth rates are illustrated (Fig. 1).

III. BREATHER MODES

Before we present the computational results on breathers and FPUT patterns, it will be instructive to outline the theoretical
scheme to obtain breathers, i.e., modes with periodic boundary conditions in the transverse variable. Equation (1) is integrable.
There is a Lax pair formulation,

�ξ = U�, �τ = V�, (8)

where �(ξ, τ ) = (φ1, φ2, φ3)T is a 3 × 1 column vector (superscript T = transpose), matrices U(ξ , τ ) and V(ξ , τ ) are given by

U =

⎛
⎜⎜⎝

− i
3 (−2V1 + V2 + V3)λ �3(ξ,τ )√

(V1−V3 )(V2−V3 )
− �2(ξ,τ )√

(V1−V2 )(V2−V3 )

− �∗
3 (ξ,τ )√

(V1−V3 )(V2−V3 )
− i

3 (V1 − 2V2 + V3)λ �1(ξ,τ )√
(V1−V2 )(V1−V3 )

�∗
2 (ξ,τ )√

(V1−V2 )(V2−V3 )
− �∗

1 (ξ,τ )√
(V1−V2 )(V1−V3 )

− i
3 (V1 + V2 − 2V3)λ

⎞
⎟⎟⎠, (9a)

V =

⎛
⎜⎜⎝

i
3 (−V1V2 − V1V3 + 2V2V3)λ − V3�3(ξ,τ )√

(V1−V3 )(V2−V3 )
V2�2(ξ,τ )√

(V1−V2 )(V2−V3 )
V3�

∗
3 (ξ,τ )√

(V1−V3 )(V2−V3 )
i
3 (−V1V2 + 2V1V3 − V2V3)λ − V1�1(ξ,τ )√

(V1−V2 )(V1−V3 )

− V2�
∗
2 (ξ,τ )√

(V1−V2 )(V2−V3 )
V1�

∗
1 (ξ,τ )√

(V1−V2 )(V1−V3 )
i
3 (2V1V2 − V1V3 − V2V3)λ

⎞
⎟⎟⎠, (9b)

and λ is the complex spectral variable. A constraint on the group velocities, i.e., V1 > V2 > V3, should hold. The Darboux
transformation for Eq. (1) can be written as [11]

�
[1]
1 = �

[0]
1 − i(λ∗ − λ)

√
(V1 − V2)(V1 − V3)(V2 − V3)φ2φ

∗
3

φ1φ
∗
1 + φ2φ

∗
2 + φ3φ

∗
3

, (10a)

�
[1]
2 = �

[0]
2 − i(λ∗ − λ)

√
(V1 − V2)(V2 − V3)(V3 − V1)φ1φ

∗
3

φ1φ
∗
1 + φ2φ

∗
2 + φ3φ

∗
3

, (10b)

�
[1]
3 = �

[0]
3 − i(λ∗ − λ)

√
(V1 − V3)(V2 − V3)(V1 − V2)φ1φ

∗
2

φ1φ
∗
1 + φ2φ

∗
2 + φ3φ

∗
3

. (10c)

Here the plane-wave states �
[0]
1 , �

[0]
2 , �

[0]
3 [Eq. (2)] serve as the “seed” solution, and solutions of increasing complexity are

built recursively through Eqs. (8)–(10). To obtain the breather modes, we set the transformation

� = Gϒ, (11)

with the 3 × 3 nonsingular matrix:

G =
⎛
⎝exp [i(K1x + q1t )] 0 0

0 exp [i(K2x + q2t )] 0
0 0 exp [i(K1x + q1t ) + i(K2x + q2t )]

⎞
⎠. (12)
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FIG. 2. Fundamental breather of Eq. (1) with the parameters V1 = 1, V2 = 0.8, V3 = 0, δ1 = 1, δ2 = 1, q1 = 2, q2 = 1, and λ = 5i.

Utilizing Eqs. (8) and (11), we derive

ϒξ = (
G−1UG + G−1

ξ G
)
ϒ = U0ϒ, (13a)

ϒτ = (
G−1VG + G−1

τ G
)
ϒ = V0ϒ, (13b)

where

U0 =

⎛
⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎠, V0 =

⎛
⎜⎜⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎟⎟⎠.

(13c)

The elements of the matrices U0, V0 are fully listed in
Appendix A. Combining Eqs. (11) and (13), the solution for
Lax Pair (8) can be obtained as

� = �1 + �2 + �3, (14)

where �1, �2, �3 are expressed in terms of the eigenval-
ues and eigenvectors of U0. Our approach is different from
those in the literature as we include a nonzero wave num-
ber in the carrier wave envelope [11]. Typical “eye-shaped”
breather modes (a “peak” flanked by two “valleys”) can
arise (Fig. 2). Similarly, analytical “four-petal,” four-petal,
and eye-shaped breathers for the three components have been
demonstrated [47] (further descriptions of a four-petal state
are given in Sec. IV D). These analytic breather modes will
now be compared with the numerically obtained entities.
Furthermore, the peaks of the breathers for the �1, �3 com-
ponents occur at the same spatial-temporal position where
the valley of the �2 component appears. This is different
from the coupled NLSE case where the peaks appear at the
same place.

IV. FERMI-PASTA-ULAM-TSINGOU RECURRENCE

Instead of localized modes, we now consider wave patterns
periodic in the transverse variable. In the fluid mechanics or
optics context, this will be the group velocity coordinate or
retarded time, respectively. For convenience, we shall take
the propagation variable (τ ) as “time” in the subsequent
discussion. Computationally, periodic boundary conditions
are imposed in the numerical simulations. The counterpart

of a localized rogue wave is then a periodic “breather.” A
linear calculation such as modulation instability once again
proves to be a remarkably accurate and informative indicator
of the nonlinear dynamics of the system. More precisely,
if the wave number of the disturbance and its higher har-
monic belong to the unstable band, two or more classes
of breathers may appear. If only the disturbance itself is
unstable, only one pattern of a definite wavelength will
be observed.

Indeed similar scenarios have occurred in earlier studies,
e.g., hydrodynamic surface wave packets governed by the
nonlinear Schrödinger equation [35]. The identical principle
holds for resonance between long and short waves, e.g., sur-
face and internal modes, where the group velocity of the short
wave matches the phase speed of the long wave [49].

In the literature of nonlinear dynamics and the Schrödinger
equation, the distinction between Akhmediev breathers (peri-
odic in the transverse variable) and Kuznetsov-Ma breathers
(periodic in the propagation variable) is often made. The gov-
erning equations for triad resonance here are different [Eq.
(1)]. Furthermore, breathers periodic in time or space have not
been studied in depth yet. Hence we shall just investigate here
the properties of one particular class of breathers with the help
of FPUT.

We study the situation where all three plane waves are
perturbed by just one selected mode. Analytically we choose,
as initial conditions,

�1(ξ, 0) = δ1[a0 + ε1 exp (ip1ξ ) + ε1 exp (−ip1ξ )]

× exp [i(K1ξ )],

�2(ξ, 0) = δ2[b0 + ε2 exp (ip1ξ ) + ε2 exp (−ip1ξ )]

× exp [i(K2ξ )],

�3(ξ, 0) = iδ3[c0 + ε3 exp (ip1ξ ) + ε3 exp (−ip1ξ )]

× exp (i[(K2 − K1)ξ ]), (15)

where p1 is the wave number of the perturbation, a0 =√
1 − ε2

1, b0 =
√

1 − ε2
2, and c0 =

√
1 − ε2

3, with ε1, ε2, and
ε3 denoting the (small) amplitude of the disturbance. Com-
putationally a split-step Fourier scheme is implemented. The
linear part is solved by Fourier spectral collocation with a
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FIG. 3. Regular FPUT: (a)–(c) Numerical simulations for |� j |, j = 1, 2, 3 with Eq. (15) as the initial pulse; (d) profiles of breathers at
τ ≈ 8.636; (e) spectrum of |�1| versus time τ ; (f) wave amplitude versus normalized wave number at τ ≈ 8.636. Parameters chosen are
V1 = 1, V2 = 0.8, V3 = 0, p1 = 3, δ1 = 1, δ2 = 1, q1 = 2, q2 = 1, ε1 = 0.01, ε2 = 0.01, and ε3 = 0.01.

periodic boundary conditions in the domain [−L/2, L/2]. The
nonlinear portion is treated by a fourth-order Runge-Kutta
method. To ensure the stability of the numerical integrator,
we choose the discretization parameter �ξ = 0.0307 and a
time step �τ = 5 × 10−4. The evolution pattern for different
values of p1 will be described.

If the wave numbers of the higher harmonics of the pertur-
bation fall outside the modulation instability spectrum, there
will only be one preferred wavelength in the FPUT. This will
be termed “regular FPUT” in the present discussion. If there
are two or more linearly unstable modes, FPUT will exhibit
multiple patterns and the name “staggered FPUT” will be
adopted.

A. Regular FPUT

As an illustrative example, we consider p1 = 3 in the un-
stable range. A wave number of 2p1 or 6 is in the stable
regime. Hence only one breather with wavelength 2π/3 in ξ is
observed, appearing at time τ ≈ 9, 28, and a few more cycles
(Fig. 3). The present FPUT configuration is a doubly periodic
pattern in both time (τ ) as well as the spatial coordinate (ξ ),
as illustrated in Figs. 3(a)–3(c), and Fig. 3(d), respectively.
The FPUT patterns cannot persist forever and will break up
after a few cycles. As FPUT is a periodic pattern in both the ξ

and τ directions, the parent wave and daughter waves can be
expanded in a Fourier series:

�1(ξ, τ ) = δ1

⎡
⎣B0(τ ) +

∞∑
j=1

B± j (τ ) exp (±i j p1ξ )

⎤
⎦ exp (iK1ξ ), (16a)

�2(ξ, τ ) = δ2

⎡
⎣C0(τ ) +

∞∑
j=1

C± j (τ ) exp (±i j p1ξ )

⎤
⎦ exp (iK2ξ ), (16b)

�3(ξ, τ ) = iδ3

⎡
⎣D0(τ ) +

∞∑
j=1

D± j (τ ) exp (±i j p1ξ )

⎤
⎦ exp [i(K2 − K1)ξ ], (16c)
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where B0, C0, D0 are the “pumps” (background plane waves
or average values); B± j , C± j , D± j , j = 1, 2 · · · denote the jth
harmonic (or sideband) components.

The evolution of the spectrum of |�1| versus τ is dis-
played [Fig. 3(e)]. The spectrum is almost symmetric on
two sides of the pump. This situation is similar to that in
the nonlinear Schrödinger case [50]. Furthermore, FPUT is
generated and also sustained by modulation instability. The
energy is initially confined to the pump and the first harmonic
(spectral plot at τ = 0), but is then transferred to the higher
harmonics on each side of the pump [Fig. 3(f)]. A triangular
spectrum can be observed in a plot of amplitude versus wave
number [Fig. 3(f), τ ≈ 8.636]. The (green) star in Fig. 3(f)
indicates a normalized wave number of |�1| being unity. The
corresponding wave numbers for |�2| and |�3| satisfying
the triad condition are then of values different from integers.
The spectra of |�2| and |�3| are nearly identical. Initially
(τ = 0), the energy resides in the pump only. Energy starts
to distribute to the harmonics during the stage of modula-
tion instability. At the formation of the breather, the transfer
reaches the climax point and the energy of the pump attains
a minimum at that time instant. Numerically, at τ ≈ 8.636,
80% of the energy remains in the pump component of �1. In
a bigger contrast, 36% and 58% of energy remain in the pump
component of �2 and �3, respectively. The parent component
of the triad (�2) contributes more in the energy sharing during
the FPUT cycle. A similar picture holds for the next occur-
rence of the breather at τ ≈ 17.976.

B. Staggered FPUT

For a smaller perturbation wave number, say, p1 = 3/2,
both the p1 and 2p1 (= 3) modes belong to the unstable band.
Hence two kinds of breathers, with spatial wavelengths (in
ξ ) of 4π/3 and 2π/3, appear at τ ≈ 10.021 and 17.866,
respectively [Figs. 4(a)–4(f)]. The spectral plot is also illu-
minating [Fig. 4(g)]. Similar to the FPUT dynamics described
in Sec. IV A above, the spectrum is almost symmetric at each
side of the pump. For any particular instant in time, there is
one dominant wave number and smaller sidebands. As time
evolves, the energy flows from the central wave number to the
sidebands. The central component then diminishes in strength,
but subsequently energy goes back to the central wave num-
ber. This pattern will repeat in the propagation variable (τ
here) until FPUT breaks up. There is a triangular spectrum, as
a plot of the wave amplitude versus the normalized wave num-
ber displays this geometric shape [Fig. 4(h)]. Similar to the
previous analysis, we employ a (green) star in the spectrum
of |�1| to denote the point of normalized wave number being
unity. For the energy transfer, we again confirm that the energy
of the central wave number will be smallest at the formation of
the breather, as maximum “thermalization” of energy occurs
at that point. Numerically, the central wave numbers of �1,
�2, and �3 components at τ ≈ 10.021 have 73%, 39%, and
18% of the energy left, respectively. This time the �3 com-
ponent contributes most of the energy. At the occurrence of
the second type of breather (τ ≈ 17.866), the energy levels
of the three components are only of 82%, 39%, and 56% of
the original values, respectively. The parent component, i.e.,
�2, contributes more energy at this time instant. The scenario

of thermalization of energy is not completely identical to the
regular FPUT case of Sec. IV A.

C. Cascading mechanism

For the nonlinear Schrödinger family of evolution equa-
tions, modulation instability and a cascading mechanism are
often present [43,46]. Higher-order harmonics, exponentially
small, initially will nevertheless grow at a rate higher than
that of the fundamental mode. All modes eventually reach the
same magnitude at roughly the same instant in time (or the
value of the propagation variable). A breather is formed. The
theoretical calculations consist of perturbation methods and
linearization around the higher-order modes. As such calcula-
tions have been performed for the derivative and coherently
coupled Schrödinger equations [44,46], the treatment here
will be brief and full details are explained in Appendix B.

If we assume that the jth harmonic of the parent wave, Cj ,
goes like an exponential,

Cj = v j exp [ j�τ ], v j = initial amplitude, �= growth rate,

the formation time of the breather can be obtained by sim-
ple algebraic manipulation and is given by [Eq. (B21),
Appendix B]

Cj (τ ) = exp[ j�(τ − τ j )], τ j = − ln(v j )

j�
. (17)

The precise expressions of v j , j = 1, 2, 3, 4 are tabulated
in Appendix B.

We now define an analytical spectrum function Fj as

Fj = ln[Cj (τ )] = j�(τ − τ j ), j = 1, 2, 3 · · · . (18)

For the purpose of verifying this cascading mechanism,
i.e., Eqs. (17) and (18), we plot the analytical spectra for the
regular FPUT case [Fig. 5(a)]. The growth rate � is about
0.57. These spectra of sidebands (or harmonics) intersect at
one point, τ ≈ 8.64, which is consistent with the first appear-
ance of the breather in Fig. 3. For the staggered FPUT case
(Fig. 4), the analytical spectra of the first-, second-, third-, and
fourth-order sidebands intersect at one point [ τ ≈ 10.02 in
Fig. 5(b)], which is also consistent with the first appearance
of the breather in Fig. 4.

We can also obtain Fourier spectra information directly
from the numerical simulations. For this purpose, the “numer-
ical spectrum” can be computed by

Qj (τ ) = 1

L

∫ L/2

−L/2
�n(ξ, τ ) exp (−ip1ξ )dξ, j = 1, 2, 3,

(19)

where L denotes the magnitude of the periodic domain, p1

represents the perturbation wave number. The first harmonic
of the �2 component (parent wave) decreases while those for
the �1 and �3 components (daughter waves) increase, which
implies an energy transfer among the three components of the
three-wave resonance. The amplification rate from modula-
tion instability with p1 = 3/2 is about 0.446; i.e.,

F1 = 0.4462(τ − 10.02). (20)

The diamond line in Fig. 5(c) is a graphical plot of
Eq. (20). The first-order analytical and numerical spectra
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FIG. 4. Staggered FPUT: (a),(c),(e) numerical simulations for |� j |, j = 1, 2, 3 with Eq. (15) as the initial pulse; (b),(d),(f) profiles of
breathers at τ ≈ 10.021 (solid) and 17.866 (dashed); (g) spectrum of |�1| versus time; (h) wave amplitude versus normalized wave number at
τ ≈ 10.021. Parameters chosen are V1 = 1, V2 = 0.8, V3 = 0, p1 = 1.5, δ1 = 1, δ2 = 1, q1 = 2, q2 = 1, ε1 = 0.01, ε2 = 0.01, and ε3 = 0.01.

agree well. On the other hand, the growth rates of the
three components change during the propagation. This sit-
uation occurs as the second harmonic is unstable when
p1 = 3/2.

D. Comparison between numerical and analytical breathers

For hydrodynamic waves in shallow water and fluid of
intermediate depth, the periodic wave actually consists of an
infinite array of identical, equally spaced solitons (but moving
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FIG. 5. (a) Analytical spectra of the first-, second-, and third-
order sidebands with parameters V1 = 1, V2 = 0.8, V3 = 0, δ1 = 1,
δ2 = 1, q1 = 2, q2 = 1, u1 = 0.01, v1 = 0.01, w1 = 0.01, � = 0.57,
and p1 = 3; (b) analytical spectra of the first-, second-, and third-
order sidebands with parameters V1 = 1, V2 = 0.8, V3 = 0, δ1 =
1, δ2 = 1, q1 = 2, q2 = 1, u1 = 0.01, v1 = 0.01, w1 = 0.01, � =
0.4462, and p1 = 3/2; (c) comparison between numerical and ana-
lytical spectra for the first harmonic of |�1|, |�2|, and |�3| in Fig. 4.

at a speed different from that of an isolated soliton) [51,52].
For time transient states such as breathers and rogue waves, it
will be intriguing to test if some versions of this superposition
principle can still hold. Indeed such ideas have been explored
for the widely studied nonlinear Schrödinger equation [53].
For the present case of triad resonance with three compo-
nents and multiple rogue wave modes, we do not expect such
a simple superposition principle to hold. Nevertheless, it is
instructive to assess the hypothesis by graphical plots.

For this exercise in comparison of wave profiles, we adopt
the names commonly used in the literature. Eye-shaped rogue
waves are modes with one peak separating two valleys. Four-

petal rogue waves are modes consisting of two peaks, two
valleys and a saddle point in the middle. For a few typical
parameters, we indeed observe eye-shaped profiles for the
�2 component [Fig. 2(b)]. Similar configuration holds for
the numerical simulations [Fig. 3(b)]. In terms of the actual
displacements, the analytical description of a rogue mode of
the breather fits reasonably well with the computational one
(Fig. 6).

V. EFFECTIVE ENERGY

Modulation stability is known to have a strong connection
with the configurations of rogue waves observed [54]. We
plan to substantiate this link further here. For this purpose,
we select Eq. (15) as the initial condition. Effective energy for
each component is defined by [15]

Ej = 1

2

∫
(|� j |2 − |� j0|2)dξ, j = 1, 2, 3, (21)

where � j0 denotes the plane-wave background and the inte-
gration is taken over one period in the transverse variable ξ .

In order to understand the dynamics, we describe a correla-
tion among modulation instability growth rate, group velocity
V1, and the modulation wave number p (Fig. 7). We first trace
the variation of growth rates as V1 varies, using a typical value
p = 3 studied earlier (black solid line in Fig. 7). We exclude
the neighborhood V1 being zero, as a singular solution will
then occur in Eq. (5). The key features are as follows:

(i) As V1 moves from −1 to 0, the modulation instability
growth rate first increases, attains a local maximum, and then
decreases. Meanwhile, the instability sideband broadens as V1

approaches zero.
(ii) As V1 moves from 0 to 1, the same trend holds; i.e.,

the instability growth rate increases and then decreases as V1

approaches unity. Again the instability sideband is wider for
values of V1 closer to zero.

The concept of effective energy can now be utilized to
investigate the effects of modulation instability. Equation (15)
is chosen as the initial condition. We compute the effective
energies (E1, E2, E3), and show the results in a contour plot
with respect to the group velocity V1 and propagation variable
τ (Fig. 8).

For any fixed value of V1, say, V1 = −0.8, one can trace
the development of the energy (or in an equivalent manner,
the displacement) by moving along a horizontal line for in-
creasing τ . There is an extremum in effective energy at τ ≈ 6,
corresponding to the formation of a breather. The modes �1,
�3 (or E1, E3) are in phase as they both exhibit positive
effective energy at the formation of the breather. The mode �2

(or E2) is out of phase with these two as the effective energy
is negative.

This concept of effective energy also clearly illustrates the
dynamics of different types of breathers. For the case where
only the fundamental disturbance is unstable, there is just one
type of breather in the FPUT patterns. Indeed the value of the
propagation variable for the first occurrence of the breather is
half the FPUT period. We can inspect again, say, V1 = −0.8.
The breather first arises at τ ≈ 6 (rectangle in dotted lines, left
plot of Fig. 8) and recurs at τ ≈ 18 (rectangle in solid lines),
with a period of 12.
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FIG. 6. Zoomed-in view of the region in (a) Fig. 2(b) and (b) Fig. 3(b); (c) comparison of the profiles of the �2 component from these
approaches at a fixed time instant (τ ).

For a smaller value of V1, say, V1 = −0.4, the modulation
instability spectrum is wider (more unstable sidebands), and
two or more types of breathers can appear. We can readily
confirm this feature by starting at V1 = −0.4 and moving
horizontally for increasing τ (rectangle in dashed line, left plot
of Fig. 8).

The time for the first formation of the breather will be
smaller if the modulation instability is stronger. From the
perspective of the cascading mechanism, this is plausible as
strong instability will need a smaller time for all the modes
to attain roughly the same magnitude [46]. The analytical
significance of modulation instability is thus remarkable, as
a linear calculation can predict the first formation time of
breathers and the types of these pulsating modes, even though
strong nonlinearity is affecting a substantial portion of the
evolution process. A typical example of FPUT is displayed
(Fig. 9).

VI. EIGENVALUES

Formulations of the inverse scattering transform for the
three-wave interaction equations have been documented

extensively in the literature [16,48]. Hence we shall concen-
trate on one aspect relevant to our present discussion, namely,
the spectra of eigenvalues of the spatial linear operator. More
precisely, the eigenvalues of⎡

⎣φ1(ξ, τ )
φ2(ξ, τ )
φ3(ξ, τ )

⎤
⎦

ξ

= U

⎡
⎣φ1(ξ, τ )

φ2(ξ, τ )
φ3(ξ, τ )

⎤
⎦ (22)

are independent of τ . This implies that the dynamics of the
slowly varying wave packets at any time τ is determined by
the spectra of the eigenvalues of the spatial linear operator
at the initial condition. Following the analysis from earlier
works [55], we assert that these eigenvalues will determine the
amplitudes of the nonlinear waves. To associate the latter with
FPUT, we compute the spectra of eigenvalues of the spatial
linear operator with the initial condition [Eq. (15)]. To this
end, the Fourier collocation method is employed. The eigen-
function �(ξ, τ ) = (φ1, φ2, φ3)T and the initial condition are
expanded in a Fourier series in the domain [−L/2, L/2]. The
matrix eigenvalue problem for the Fourier coefficients is then
solved:

φ1(ξ ) =
N∑

n=−N

a1,n exp (ink0ξ ), φ2(ξ ) =
N∑

n=−N

a2,n exp (ink0ξ ), (23a)

φ3(ξ ) =
N∑

n=−N

a3,n exp (ink0ξ ), �1(ξ, 0) =
N∑

n=−N

b1,n exp (ink0ξ ), (23b)

�2(ξ, 0) =
N∑

n=−N

b2,n exp (ink0ξ ), �3(ξ, 0) =
N∑

n=−N

b3,n exp (ink0ξ ), (23c)

where k0 = 2π/L. Combining Eqs. (22) and (23) and collect-
ing terms, we obtain the eigenvalue problem for the Fourier
coefficients a j ,n, b j,n, j = 1, 2, 3. We consider two repre-
sentative examples. The eigenvalues, λ, for p1 = 3 (red dots)
and 1.5 (blue circle), correspond to the regular and stag-
gered FPUT patterns (Fig. 10). From the fine resolution plot

[Fig. 10(b)], we can see that the maximum value of the imag-
inary part of the eigenvalues for the p1 = 3 case is smaller
than that of the p1 = 1.5 case. Following the logic of the
previous analysis, the amplitude of the slowly varying wave
packet for the cases of p1 = 3 is smaller than that of p1 = 1.5.
The former is at a value of about 2.5, while the latter almost
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FIG. 7. Contour plot of the modulation instability growth rate
with respect to V1 and p; black solid line denotes p = 3. Parameters
are V2 = 0.8, V3 = 0, δ1 = 1, δ2 = 1, q1 = 2, and q2 = 1.

reaches 3. From the profiles of the breathers in Figs. 3 and 4,
these results are in accordance with those obtained from the
analysis of the eigenvalues.

VII. CONCLUSIONS

Three-wave resonant interaction systems are studied, with
the group velocities of three waves along the direction of
the transverse variable, i.e., Vj , j = 1, 2, 3, as parameters.
Modulation instability modes play an important role in this
dynamical system with quadratic nonlinearities. While the
evolution of the wave profile is dictated by nonlinearity, the
range of wave numbers necessary for instability still remains
a powerful indicator. Indeed under the theoretical framework
of periodic boundary conditions, a periodic array of pulsating
modes (known as a breather) can occur and will repeat for
a few cycles before disintegration. This is connected with the
classical phenomenon of FPUT. Depending on the wavelength
of the initial disturbance, one, two, or more types of breathers
will appear.

A fundamental eye-shape breather is established for a res-
onant triad by utilizing the Darboux transformation method.
Theoretically this analytical breather should satisfy the re-
lation V1 > V2 > V3. Two types of FPUT, i.e., repeated
occurrences of breathers, are constructed numerically. One
is a regular pattern, where one dominant wave number from
modulation instability triggers the cascading mechanism. The

other is a staggered form, where two (or more) wave numbers
from the initial perturbations belong to the unstable band.
In terms of computational results, there are two (or more)
periods for the recurrence of these staggered FPUT patterns.
The cascading mechanism is analyzed to predict the forma-
tion time for both regular and staggered FPUT patterns and
the growth of the first sideband by Fourier expansion. Trian-
gular spectra versus time and normalized wave number are
displayed to elucidate the property of the FPUT. Comparing
the initial triangular spectrum with that at the formation time
yields the energy transfer among these harmonics of the three
components.

We also examine the concept of effective energy. By scru-
tinizing the variation of the effective energy with the group
velocity parameter, we identify the occurrence of different
types of breathers, i.e., regular and staggered forms, and the
period of FPUT profiles. Finally, to enhance the association
with theoretical investigation, a comparison between the ana-
lytical and numerical breathers is conducted.

There are still unresolved issues and challenges for future
investigations. For example, the second-order rogue waves
have been established analytically [48]. However, physical
applications and comparisons with experimental data (if any)
have not been attempted. It would be instructive to explain
or describe the usage of these analytical solutions in phys-
ical applications such as fluid mechanics, especially in the
context of surface and internal waves. Besides the Darboux
transformation and computational schemes, the elegant tech-
niques of “finite gap” integration and the inverse scattering
transform have also been employed [56,57]. Physically, the
nonlinear stages of modulation instability involve excitation
of higher-order modes. Geometrically, a “finite gap” integra-
tion scheme for the periodic boundary condition problem of
the governing equations will also induce many modes (or
“bands”). The prominent band leads to the intensively studied
Akhmediev breather, but eventually other bands and breather
modes also enter the picture. We believe that a significant
amount of knowledge (and surprise) in the fields of FPUT and
wave propagation [58,59] will be awaiting for scientists and
researchers.
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APPENDIX A

The elements of the matrices [Eq. (13c)] are given by

a11 = − i

3

[
3
(
q2

1 − q1q2 + δ2
2

)
(q1 − q2)V1

+ (−2V1 + V2 + V3)λ

]
, (A1)

a12 = a21 = iδ1δ2

(q1 − q2)
√

(V1 − V3)(V2 − V3)
, a13 = −a31 = − δ2√

(V1 − V2)(V2 − V3)
, (A2)

a23 = −a32 = δ1√
(V1 − V2)(V1 − V3)

, a22 = − i

3

[
3
(
q1q2 − q2

2 + δ2
1

)
(q1 − q2)V2

+ (V1 − 2V2 + V3)λ

]
, (A3)
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FIG. 8. Contour plot for the evolution of effective energy with τ for various group velocities V1. Parameters selected are V2 = 0.8, V3 = 0,
p1 = 3, δ1 = 1, δ2 = 1, q1 = 2, q2 = 1, ε1 = 0.01, ε2 = 0.01, and ε3 = 0.01.

a33 = − i

3

[
3
(
q1q2 − q2

2 + δ2
1

)
(q1 − q2)V2

+ 3
(
q2

1 − q1q2 + δ2
2

)
(q1 − q2)V1

+ (V1 + V2 − 2V3)λ

]
, (A4)

b11 = i

3
[3q1 + 2V2V3λ − V1(V2 + V3)λ], (A5)

b12 = b21 = − iV3δ1δ2

(q1 − q2)
√

(V1 − V3)(V2 − V3)
, b13 = −b31 = V2δ2√

(V1 − V2)(V2 − V3)
, (A6)

b23 = −b32 = − V1δ1√
(V1 − V2)(V1 − V3)

, b22 = i

3
[3q2 + 2V1V3λ − V2(V1 + V3)λ], (A7)

b33 = i

3
[3q1 + 3q2 + 2V1V3λ − V3(V1 + V2)λ]. (A8)

APPENDIX B

Cascading instability can be used to study the growth of the sidebands of FPUT [43]. This cascading mechanism for triad
resonance is elucidated in precise detail here. For the cascading instability of the second-order sidebands, we truncate Eq. (16)
to

�1(ξ, τ ) = δ1

[
B0(τ ) + B1(τ ) exp (ip1ξ ) + B−1(τ ) exp (−ip1ξ )

+B2(τ ) exp (2ip1ξ ) + B−2(τ ) exp (−2ip1ξ )

]
exp (iK1ξ ), (B1)

FIG. 9. (a–c) Eye-shaped, dark, and eye-shaped FPUT wave profiles patterns, respectively, with parameters V1 = −1, V2 = 0.8, V3 = 0,
p1 = 3, δ1 = 1, δ2 = 1, q1 = 2, q2 = 1, ε1 = 0.01, ε2 = 0.01, and ε3 = 0.01.
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FIG. 10. (a) Eigenvalues of the spatial linear operator [Eq. (22)] with the initial conditions for the two cases of p1 = 3 (red dots) and 1.5
(blue circle); (b) zoomed-in view for one selected region.

�2(ξ, τ ) = δ2

[
C0(τ ) + C1(τ ) exp (ip1ξ ) + C−1(τ ) exp (−ip1ξ )

+C2(τ ) exp (2ip1ξ ) + C−2(τ ) exp (−2ip1ξ )

]
exp (iK2ξ ), (B2)

�3(ξ, τ ) = iδ3

[
D0(τ ) + D1(τ ) exp (ip1ξ ) + D−1(τ ) exp (−ip1ξ )

+D2(τ ) exp (2ip1ξ ) + D−2(τ ) exp (−2ip1ξ )

]
exp [i(K2 − K1)ξ ]. (B3)

On setting

B0(τ ) = exp (iq1τ ),C0(τ ) = exp (iq2τ ), D0(τ ) = exp [i(q2 − q1)τ ], (B4)

B±1(τ ) = exp (iq1τ )u1 exp (±�τ ), C±1(τ ) = exp (iq2τ )v1 exp (±�τ ), (B5)

D±1(τ ) = exp [i(q2 − q1)τ ]w1 exp (±�τ ), (B6)

and substituting Eqs. (B4)–(B6) into Eq. (1), we have

i exp [i(q1 − q2)τ ]δ2δ3C2(τ ) + δ1B2,τ (τ ) = 0, (B7)

iu1w1δ1δ3 exp (iq2τ + 2�τ ) + δ2C2,τ (τ ) = 0, (B8)

− exp (−iq1τ )δ1δ2C2(τ ) + iδ3D2,τ (τ ) = 0. (B9)

Separating modal dependence as

B2(τ ) = exp (iq1τ )u2 exp (2�τ ), C2(τ ) = exp (iq2τ )v2 exp (2�τ ), (B10)

D2(τ ) = exp [i(q2 − q1)τ ]w2 exp (2�τ ), (B11)

we obtain

u2 = u1w1δ
2
3

(q1 − 2i�)(q2 − 2i�)
, v2 = − u1w1δ1δ3

q2δ2 − 2iδ2�
, w2 = u1w1δ

2
1

(q2 − 2i�)(−q1 + q2 − 2i�)
. (B12)

Similarly, we can get the third- and fourth-order sidebands as

B3(τ ) = exp (iq1τ )u3 exp (3�τ ), C3(τ ) = exp (iq2τ )v3 exp (3�τ ), (B13)

D3(τ ) = exp [i(q2 − q1)τ ]w3 exp (3�τ ), (B14)
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B4(τ ) = exp (iq1τ )u4 exp (4�τ ), C4(τ ) = exp (iq2τ )v3 exp (4�τ ), (B15)

D4(τ ) = exp [i(q2 − q1)τ ]w4 exp (4�τ ), (B16)

where

u3 = (u2w1+u1w2)δ2
3

(q1 − 3i�)(q2 − 3i�)
, v3 = − (u2w1+u1w2)δ1δ3

δ2(q2 − 3i�)
, (B17)

w3 = (u2w1+u1w2)δ2
1

(q2 − 3i�)(−q1 + q2 − 3i�)
, (B18)

u4 = (u3w1+u2w2+u1w3)δ2
3

(q1 − 4i�)(q2 − 4i�)
, v4 = − (u3w1+u2w2+u1w3)δ1δ3

δ2(q2 − 4i�)
, (B19)

w4 = (u3w1+u2w2+u1w3)δ2
1

(q2 − 4i�)(−q1 + q2 − 4i�)
. (B20)

We can generalize this trend to the jth harmonic as

Bj (τ ) ∝ u j exp ( j�τ ), Cj (τ ) ∝ v j exp ( j�τ ), Dj (τ ) ∝ w j exp ( j�τ ). (B21)
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