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Largest Lyapunov exponent as a tool for detecting relative changes in the particle positions
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Dynamics of the driven Frenkel-Kontorova model with asymmetric deformable substrate potential is examined
by analyzing response function, the largest Lyapunov exponent, and Poincaré sections for two neighboring
particles. The obtained results show that the largest Lyapunov exponent, besides being used for investigating
integral quantities, can be used for detecting microchanges in chain configuration of both damped Frenkel-
Kontorova model with inertial term and its strictly overdamped limit. Slight changes in relative positions of the
particles are registered through jumps of the largest Lyapunov exponent in the pinning regime. The occurrence
of such jumps is highly dependent on type of commensurate structure and deformation of substrate potential.
The obtained results also show that the minimal force required to initiate collective motion of the chain is not
dependent on the number of Lyapunov exponent jumps in the pinning regime. These jumps are also registered in
the sliding regime, where they are a consequence of a more complex structure of largest Lyapunov exponent on

the step.
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I. INTRODUCTION

Synchronization effects have been a subject of intensive
theoretical and experimental studies in charge density wave
transport [1-7], vortex matter [8—10], irradiated Josephson
junctions [11-15], superconducting nanowires [16,17], and
driven colloidal systems [18]. One of the models used for
investigation of synchronization phenomena (mode-locking,
i.e., Shapiro steps), starting from microscopic dynamics, is
the dissipative Frenkel-Kontorova (FK) model under external
periodic forces [19-22]. Recently, it has been shown that
dc-driven FK model with a lateral periodic excitation to the
substrate potential can be used to generate Shapiro steps
as well [23]. The one-dimensional FK model represents a
chain of coupled particles which are subjected to the sub-
strate potential. For the standard FK model, the particles are
harmonically coupled to their nearest neighbors and the sub-
strate potential is sinusoidal. To capture certain phenomena
in Josephson junction arrays [24-26], charge density wave
systems [5—7] and tribology [27-29] different generalizations
of the FK model are used.

Due to competition between the length scales of interpar-
ticle and substrate potential, many nontrivial ground states
of the model are possible. They can be classified into two
categories: Commensurate (for which the interparticle average
distance, i.e., winding number, is rational) or incommensurate
(for which the winding number is irrational) [19,22,30]. If
an external dc driving force is applied, there exists a critical
threshold value, i.e., critical depinning force F., which sep-
arates two dynamical regimes—pinning and sliding regime.
The latter regime is defined by collective motion of the par-
ticles along with nonzero average velocity, whereas in the
pinning regime the particles are pinned to the static configu-
rations with zero average velocity. When both external dc and
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ac forces are applied to the FK model, mode-locking appears
due to locking between the frequency of particle motion and
frequency of external ac force, which results in the staircase-
like response function [21,31-36]. A new class of nonlinear
periodic deformable potentials, which could be specified by
suitable choice of parameters, was introduced in Refs. [37,38].
By fixing parameters, different periodic potentials, such as as-
symetric deformable potential, which are relevant for studying
Josephson junctions, charge density waves, heat conduction
in low-dimensional lattices, and crystals with dislocations,
can be obtained. Unlike the case of the standard FK model,
when the subharmonic steps either do not exist or they are
too small, for the FK model with asymmetric deformable
substrate potential large subharmonic steps can be observed
in the response function plot [31,32,34].

Aside from the response function, the largest Lyapunov
exponent (LE) also provides certain insight into the dynamics
of dissipatively driven FK model. It has been shown that the
largest LE can be viewed as a tool to characterize chaotic,
periodic, and quasiperiodic motion (see Refs. [39,40] and
references therein). Furthermore, the LEs are also used for
observation of dynamical phase transitions (pinning to slid-
ing regime and unlocking transition) [14,15,21,41,42] and
thermally induced phase transitions [43-46]. Specifically, the
largest LE calculated for the standard overdamped FK model
in the sliding regime takes on negative values on the steps,
determining the trajectories periodic in time, while it reaches
zero outside the steps, characterizing the unlocking transition
to the quasiperiodic regime [21,41]. On the other hand, in the
underdamped regime chaos sometimes appears at the edges
of the Shapiro steps and system exhibits structural chaotic
behavior [15,23]. Moreover, according to Ref. [47] calculating
the largest LE presents the most sensitive way for detec-
tion of the Shapiro steps, especially the subharmonic ones.

©2023 American Physical Society
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Also, it has recently been shown that the LE spacings for
certain parameters can change from Poissonian statistics to
Wigner’s surmise [40]. In the case of Wigner’s surmise the
largest LE fluctuation statistics shows behavior similar to the
Tracy-Widom distribution [40].

In the present paper, we will show that the largest LE can be
applied to investigate the changes in relative positions of the
particles in generalized dissipatively driven FK model with
asymmetric deformable substrate potential. It will be shown
that calculation of the largest LE can be useful for analysis
of dynamics of an ac 4 dc-driven FK model even in the pin-
ning regime. In order to confirm the nature of the structural
changes in chain configuration, we will compare the results
obtained by the largest LE analysis with Poincaré sections for
two neighboring particles. The paper is organized as follows:
The model is introduced in Sec. II and simulation results are
presented in Sec. III. Finally, Sec. IV concludes the paper.

II. MODEL

In this paper, we investigate both strictly overdamped and
damped generalized Frenkel-Kontorova model with asymmet-
ric deformable potential (ASDP):

K (1 —7r»)1—cosQru)]

Vu) = Q7). [14+r2+2rcos(zu))?

(D

where r is the shape parameter and K pinning strength, driven
by periodic force:

F(t) = Fyc + F,c cos(Qm gt ), 2)

where Fy. is the dc force and F,. and vy are the amplitude
and frequency of the ac force, respectively. Notice that the
choice of r = 0 corresponds to the simple sinusoidal sub-
strate potential of the standard FK model, whereas it is
deformable for O < |r| < 1. The system of the equations of
motion for strictly overdamped FK model is given by N first-
order nonlinear differential-difference equations:

= w1+ — 2w — V') + F(1),
I=1,2,....N. 3)

with N being the number of particles and i, the position of the
Ith particle.

The competition between two frequency scales (one of
the external periodic force and the other of the motion of
particles over the sinusoidal potential driven by Fy.) results
in the appearance of Shapiro steps. These steps correspond to
the resonant solutions of (3). If {u;(¢)} is the solution of (3)
with initial condition {u;(y)}, then:

oijmiu ()} = {Mm‘ (t - %) + ja} 4)

is also a solution of the same equations corresponding to the
initial condition o j ., {u;(t9)}. The set of indices i, j, and m
are arbitrary integers with i defining relabeling of the particles
and j and m corresponding to space and time translations,
respectively, whereas a is the periodicity of the potential V (u)
(a = 1 for undeformed case corresponding to » = O and a = 2
when deformation is included). The average velocity of the

resonant solution satisfies the equation:

o+ ja

b= Vo, o)
m

where o is the winding number, i.e., interparticle average
distance [47]. In the case of commensurate structures we
consider in the present paper, w = g, where p and ¢ are
coprime integers, meaning that g particles are distributed over
p substrate potential wells in average. For m = 1, the steps are
called harmonic, whereas for m > 1 they are subharmonic.

ASDP and the corresponding pinning force for K = 4 and
four values of shape parameter r are presented at Figs. 1 and
2, respectively. By increasing the value of the shape parameter
r, two nonequivalent types of potential wells appear (one
with flat and the other with sharp bottom), which changes the
periodicity of the substrate potential from a = 1 (for r = 0)
toa =2 (for 0 < |r| < 1) and effectively increases number of
degrees of freedom [33,47-49]. In the case of v = }1, where g
represents the average number of particles per a potential well,
harmonic and subharmonic steps are numbered according to
b=y, [47,50].

To obtain response functions, equations of motion (3) were
integrated according to the fourth-order Runge-Kutta method
with periodic boundary conditions. For the initial conditions
at zero applied force we set particles to be in positions u; =
lw,1 =1, ..., N.In the numerical settings periodic boundary
conditions are taken to be uy = uy — Nw and uy,1 = u; +
Nw. All simulations in the paper are conducted for N = 8 and
the dc force was increased starting from zero with step 107>,
Detailed explanation of the approach used to obtain the largest
LE is given in Ref. [51]. In order to calculate the largest LE a
perturbed point #; is chosen as:

(1) = () & | 0 6
ity (tss) = uy(tss) ﬁv (6)

where 7 is the necessary time for system to reach steady
state and dp = 1077 is the small parameter used to define
perturbation of the initial configuration. The plus and minus
signs in the equation appear with equal probability in order
to reduce the possibility of projecting onto the subspace not
dominated by the largest LE [47]. After steady states are
reached for different values of dc force, the finite-time LEs
are calculated, which for large values of ¢ converge to their
asymptotic limit [40].

III. RESULTS

In this section, a comparative study of the generalized
dissipatively driven FK model dynamics will be presented
using the response function and the largest LE as a function of
average driving force as well as the Poincaré sections for two
neighboring particles.

Average velocity

N

te+T
0= (N = fim o3 [ i, @)
=1 Vs

and the largest LE are shown in Fig. 3 for wide range of dc
forces, which includes both pinning and sliding regimes, in
the case of w = % (two particles per a substrate potential well

064213-2



LARGEST LYAPUNOV EXPONENT AS A TOOL FOR ...

PHYSICAL REVIEW E 107, 064213 (2023)

r=20

0.20+

0.15+

~— 0.10+

0.05

0.0 05 1.0 4.0

0.05

20 25 3.0 35

u

05 1.0 15

r =0.01

0.20

0.151

~—0.10+

0.05+

00 05 10 15 25 3.0 35 4.0

0.20

0.151

~— 0.10+

0.051

0.00
0.0

20 25 30 35

u

05 1.0 15 4.0

FIG. 1. Asymmetric deformable potential for K = 4 and four different values of the shape parameter r

in average) and r = 0.2. As mentioned, for the generalized FK
model with ASDP, increasing the value of shape parameter r
effectively increases the number of degrees of freedom and
hence large subharmonic steps are observed in Fig. 3 for v =
! and can also appear in any commensurate structure, even

2
with integer values of winding number. Note that these steps
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are quite small in the case of the standard FK model with ratio-
nal values of winding number, whereas for integer values of w
they do not exist since the overdamped FK model with integer
value of w reduces to single particle model [31,47,50,52,53].
Similarly to the standard FK model [41], the largest LE can be
used for detection of both harmonic and subharmonic Shapiro
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FIG. 2. Pinning force F (1) = —V’(u) for K = 4 and four different values of the shape parameter r.
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FIG. 3. Average velocity (a) and the largest LE (c) as functions of dc force for v = %, F.=02,K=40,v,=0.2, r =0.2, and three
different transient times f,. Zoomed parts of (a) and (c) are shown in (b) and (d), respectively. Large harmonic and subharmonic steps are
marked as well. Arrows in (d) mark the beginning and the end of the second harmonic step.

steps and also dynamical phase transition from a pinning to a
sliding regime. However, for the generalized FK model used
in this paper the largest LE on the step shows a more complex
structure as seen in Fig. 3(d). Moreover, an additional feature
is observed in this case. The jump of the largest LE in pinning
regime, in interval Fy. € (0.12159, 0.1618) with minimum at
Fac = 0.12701, is seen in Fig. 3(c). The largest LE is calcu-
lated for three different transient times in order to verify that
this jump is not an artifact of numerical calculations. Since
the shape and the position of the jump remain the same as
transient time is increased, we conclude that its appearance is
a consequence of the system’s dynamics. Furthermore, in the
Appendix we show that the jump is not a result of the strictly
overdamped limit as it is detected even when Wolf’s algorithm
for the damped FK model with inertial term is employed.
It is thus necessary to further investigate the origin of this
feature.

Due to the fact that the largest LE jump was observed
in the pinning regime, where the average velocity is zero,
logical framework of the investigation is to examine relative
positions of the neighboring particles. In order to provide
better visualization of the relative particle positions for the
initial conditions u; = lw, [ = 1,..., N, we used a modulo
operation. The relative motion of two neighboring particles
is presented in Fig. 4 for values of dc force before the jump
[Figs. 4(a) and 4(b)] and after the jump [Figs. 4(c) and 4(d)].
The curvy regions correspond to the particles’ jiggling (for-
ward and backward motion) induced by the ac force. By
comparing Figs. 4(a) and 4(b) with Figs. 4(c) and 4(d), one

can notice the significant shift of region of jiggling after the
jump of the largest LE. Notice that this shift is a consequence
of the additional force (besides the driving force) originating
from the ASDP that acts on the first particle of the initial
configuration (see Fig. 2). It allows the said particle to fall into
the first narrow potential well seen in Fig. 1. Consequently,
the system goes through structural change in chain configura-
tion, passing from one pinned configuration to another. This
structural change is directly witnessed through the jump of the
largest LE in the pinning regime. Therefore, we corroborate
that the largest LE, besides for detection of chaotic, periodic,
and quasiperiodic motion, in the case of damped FK model
can also be an important tool for spotting slight changes of the
relative positions between particles in the system.

However, additional increase of dc force is required for
the system to go through transition to sliding regime. In this
concrete situation, the critical depinning force F, is around
Fyc = 0.1618. In Fig. 5 one can see the difference between
the pinning [Fig. 5(a)] and sliding [Fig. 5(b)] regimes. The
latter case corresponds to the situation where the collective
motion appears, which yields v £ 0. A similar shift to the
one detected in the pinning regime by the largest LE jump
also occurs in the sliding regime. This is the cause of the
more complex structure on the step observed in Fig. 3(d).
To prove that claim, we investigated the largest LE jump on
the second harmonic step which occurs for Fg. = 0.4014. By
examination of this using Poincaré sections (see Fig. 6), we
observed the difference in relative particle motion before and
after the jump.
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With further increasing of r more jumps of the largest
LE can be observed in the pinning regime (see, for instance,
Fig. 7 for r = 0.7, where two jumps emerge). This is a direct
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FIG. 6. Poincaré sections for two neighboring particles with coordinates u; and u, for the given set of parameters: w = %, F,. =0.2,

K=4.0,v9=0.2,and r =0.2.

One can also see that the value of critical depinning force
increased significantly for » = 0.7. Such behavior is attributed
to increasing discreteness and pinning of the system with in-
creasing r and critical force diverges as r — 1 [31]. However,
there is a small region O < |r| < 0.1 in which F, decreases
with the increase of shape parameter. In this area, the effect of
changing oscillation frequencies of particles inside potential
wells due to the increase of r, leading to more instability,
becomes dominant and the result is lowering of the critical
depinning force [31]. This region of the decrease of critical
force depends on the value of winding number as can be seen
in Ref. [48]. Also, the dynamics of the system in this area is
quite similar to the standard FK model case and once again
there are no jumps of the largest LE in the pinning regime.
We also investigated the case of the integer values of wind-
ing number. Contrary to the standard case, subharmonic steps
are detected for the generalized FK model with ASDP for
integer values of w [31,47]. However, the largest LE jumps in
the pinning regime were not observed in this case. This should
not be surprising as the interactions between the particles tend
to make the system less stable and it is easier to displace it
to another available configuration. For instance, in the case of
w = 1, there exists only one particle per a substrate potential

well in average and this situation is much more robust to ex-
ternal disturbances than when there are two or more particles
per a potential well in average. Consequently, the jumps of
the largest LE in the pinning regime, originating from the
structural changes in system’s configuration, will not emerge.

On the other hand, more and more jumps of the largest
LEs are expected to appear in the pinning regime as the
average number of the particles per a substrate potential well
increases, i.e., the rational value of winding number decreases.
The response functions and the largest LEs were examined
for multiple values of winding number » = é and we have
confirmed that the number of jumps increases with increasing
q. As an example, in Fig. 8 one can observe two jumps in
the pinning regime in case of w = }1 and r = 0.2, whereas for
W= % and r = 0.2 only one jump in the pinning regime was
present (see Fig. 3).

Judging from the Figs. 3 and 7 one might intuitively pre-
sume that as the number of the jumps increases, the critical
force rises as well. In this case, greater number of jumps and
larger critical force are attributed to larger asymmetry of the
successive substrate potential wells as the shape parameter
rises. However, by comparing Figs. 3 and 8, we see that a
greater number of jumps does not necessarily mean a larger
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FIG. 7. Average velocity (a) and the largest LE (b) as functions of
driving force for w = %, Fe=02,K=4.0,v9=0.2,and r =0.7.
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value of the critical depinning force. In fact, for w = 1 with
increasing ¢, which also gives rise to the number of jumps
of the largest LE in the pinning regime, the critical depinning
force decreases before reaching its saturation value for larger
shape parameters and diverging at r — 1 [48]. This is merely
a consequence of the fact that the larger the average number
of particles per potential well, the more unstable they are and
easier to displace.

IV. CONCLUSION

In this paper, dynamics of the driven overdamped gen-
eralized FK model with ASDP is investigated by analyzing
corresponding response functions and the largest LEs. The ob-
tained results have shown that the largest LE presents a more
convenient method for analyzing the behavior of the system
as it allows one to detect certain disturbances in the pinning
regime. We confirmed that these disturbances of the largest LE
in the pinning regime are attributed to the system’s dynamics
and not to the employed numerical methods or overdamped
limit. Furthermore, the largest LE jumps in the pinning regime
suggest that system goes through certain structural changes
in chain configuration, which was confirmed by analyzing
Poincaré sections for two neighboring particles. The number
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FIG. 8. Average velocity (a) and the largest LE (b) as functions of
driving force for w = %, F. =02, K=40,v9y=0.2,and r =0.2.
Large harmonic and subharmonic steps are marked.

of these jumps increases with increasing the value of shape
parameter and average number of particles per a substrate po-
tential well since both of these factors contribute to lowering
stability of the system. However, the number of the largest
LE jumps in the pinning regime is not generally related to
the critical depinning force or the behavior in the sliding
regime due to existing saturation effects in these systems [48].
Moreover, we showed that these jumps are also present in
the sliding regime, where they are a consequence of a more
complex structure of the largest LE on the step.

It is already widely known that the largest LE repre-
sents a reliable tool for characterizing chaotic, periodic,
and quasiperiodic motion. That is why it is important to
outline that the present paper provides yet another useful
purpose of the largest LE—spotting slight changes of the
relative positions between the particles in the system. In other
words, the largest LE analysis can be used not only for
investigating integral quantities, that are accessible for exper-
imental measurements, but also for detecting microchanges
in chain configuration. Besides the discussed generalized FK
model, the presented results can be applicable to any sys-
tem of interacting oscillators under time-dependent forces:
The Fermi-Pasta-Ulam chain [54], Toda chain [55], and other
related models. Furthermore, the observed jumps may ap-
pear in the charge density wave transport or in the irradiated
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FIG. 9. Average velocity (a) and the largest LE (c) as functions of dc force for w = %, F. =02, K=4.0,vy=0.2, r=0.2, and three
different values of mass m. Zoomed parts of (a) and (c) are shown in (b) and (d), respectively. The largest LE is calculated according to the
Sprott’s algorithm [51] for the strictly overdamped limit m = 0, whereas for two other masses we exploited Wolf’s algorithm [58], which can

be used to obtain full LE spectrum.

Josephson junction systems with current driving and unhar-
monic current-phase relation in zero voltage state (static case).
In the latter case, the LE jumps can be used as detectors
of changes of phase differences, analogous to particle posi-
tions changes in the FK model, which are not observables in
Josephson junction systems. Investigation of particle motion
over a potential energy landscape is important for a deeper un-
derstanding of the physics of technologically important charge
density wave systems, irradiated Josephson junctions, and
vortex lattices. In such systems, typically, only averaged and
integrated quantities are accessible for measurements and it is
very difficult to investigate microscopic dynamics. Because of
that, motion of colloidal particles in optical energy landscapes
is studied with the purpose of observing the microscopic
dynamics of particles in real space and time [18,56,57]. The
results from this paper can be experimentally tested by driving
colloidal particles across an optical ASDP potential energy
landscape. The mentioned physical systems are the systems
that are closely related to the FK model under external driving
forces.
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APPENDIX

In order to compare the results given in this paper for
the strictly overdamped model with the more general case of
damped FK model, we calculated average velocity and largest
LE as functions of dc force in both cases. The general damped
FK model is more complicated and can be used for description
of wider class of physical systems and phenomena. The sec-
ond reason for considering damped FK model in Appendix is
to check whether the observed jumps of the largest LE are just
the artifacts of the strictly overdamped model.

System of equations for the damped FK model is given by:

miiy = w1 +w—y — 2w — iy — V') + F(2),

I=1,2,...,N, (Al)
where m is particle mass. In Fig. 9 response function and
the largest LE are shown for three different values of mass
m. Further increase of mass can induce phenomena such as
hysteresis and chaos (see Refs. [42,59]). One can observe that,
as m — 0, dynamical behavior of the system becomes similar
to the strictly overdamped model for m = 0 [see Eq. (3)].
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Furthermore, it is evident that the previously detected jumps
of the largest LE in the pinning regime, which are attributed
to the slight changes of the relative positions between the

particles, are not a consequence of the strictly overdamped
limit and all of the mentioned results are applicable to the
damped FK model with inertial term as well.
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