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Performance analysis of indicators of chaos for nonlinear dynamical systems

A. Bazzani,1 M. Giovannozzi ,2,* C. E. Montanari,1,2 and G. Turchetti1
1Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy

2Beams Department, CERN, Esplanade des Particules 1, 1211 Geneva 23, Switzerland

(Received 27 March 2023; accepted 7 June 2023; published 22 June 2023)

The efficient detection of chaotic behavior in orbits of a complex dynamical system is an active domain
of research. Several indicators have been proposed, and new ones have recently been developed in view of
improving the performance of chaos detection by means of numerical simulations. The challenge is to predict
chaotic behavior based on the analysis of orbits of limited length. In this paper the performance analysis of past
and recent indicators of chaos, in terms of predictive power, is carried out in detail using the dynamical system
characterized by a symplectic Hénon-like cubic polynomial map.
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I. INTRODUCTION

The study of the long-term evolution of Hamiltonian sys-
tems is a very difficult task from both a theoretical and
a numerical point of view. The KAM theory [1] does not
provide a solution to the stability problem for Hamiltonian
systems in more than two degrees of freedom. Therefore, great
effort has been devoted to improving time stability estimates
after the celebrated Nekhoroshev theorem [2]. However, the
existence of chaotic layers in phase space strongly affects
the long-term evolution of the orbits, and for this reason,
numerical indicators have been proposed to detect the chaotic
character of orbits using a limited number of time steps.

For a given Hamiltonian model, one has to tackle the prob-
lem of comparing the performance of the various indicators
to assess which one provides the optimal classification of the
orbits. In applications, this task must be accomplished taking
into account the characteristics of the physical problem under
consideration. For instance, in the field of accelerator physics,
the study of the charged-hadron motion in the magnetic lattice
of a circular accelerator is often devoted to the determination
of the region of phase space in which bounded motion occurs.
The extent of such a region is called dynamic aperture, and its
precise determination involves studying the stability of orbits
of a 6D symplectic map in a neighborhood of an elliptic fixed
point, up to 108–109 iterations (see, e.g., [3]). An exhaustive
analysis of the phase-space topology is clearly beyond the
current computational capabilities, even for relatively simple
systems. Therefore, indicators of chaos turn out to be ex-
tremely useful to reduce the amount of computational time
needed to assess the character of orbits (regular or chaotic).
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This task may be affected by the presence of orbit diffusion
in phase space, which occurs in chaotic layers. The presence
of small stochastic effects, which naturally arise in physical
systems, may prevent orbit trapping near regular regions, the
so-called stickiness phenomenon [4,5], thus inducing diffu-
sive behavior in phase space.

It is worth noting that polynomial symplectic maps are cen-
tral for the analysis of accelerator physics problems, but they
are also present in other domains and have been intensively
studied to understand the phase space structure of Hamilto-
nian systems [6], and are a fundamental tool for long-term
integration of orbits [3].

The main result of this paper is to show that it is possible
to determine a classification performance ranking of the main
commonly used chaotic indicators when applied to a generic
4D cubic polynomial symplectic map of Hénon-like form
(see, e.g., [3]), which is an excellent prototype dynamical
system for applications, such as circular hadron accelerators.

The indicators of chaos are typically based on the existence
of positive Lyapunov characteristic exponents, and their nu-
merical performance is strongly affected in the regions where
sticky orbits are present.

The family of fast Lyapunov indicators (FLIs) [7] has been
proposed to distinguish the regions of regular and chaotic
motion for symplectic maps [5]. They also proved to be suit-
able for identifying resonant regions in phase space and to
visualize the Arnold web of resonances where slow diffusion
occurs [8]. These indicators are based on the evolution of an
initial deviation vector and provide the linear response of the
tangent map along an orbit. When considering one or more
initial deviation vectors, the result depends on the direction
of the initial deviation vectors. To overcome this, the linear
response to a random displacement vector with zero mean
value and unit variance was recently proposed [9]. The trace
of the corresponding covariance matrix defines the square
Lyapunov error (LE), which is similar to FLI. Furthermore,
the invariants of the covariance matrix of order k > 1 are
asymptotically related to the sum of the first k Lyapunov
exponents. However, unlike the generalized alignment index
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(GALI(k)) indicators [10,11], these invariants do not depend
on the initial deviations [12]. Recently, a couple of approaches
have been proposed to improve the performance of some indi-
cators, namely, applying the weighted Birkhoff averaging [13]
or the mean exponential growth of nearby orbit (MEGNO)
[14], which is used to filter the oscillations and to improve the
accuracy by averaging on map iterations [15,16].

To calculate the sensitivity to small deviations along an or-
bit, the reversibility error method (REM) can be used [17,18].
In this case the linear response to the forward evolution in the
presence of small random noise is considered, followed by
the unperturbed backward evolution. The covariance matrix
of the random process, which provides the final deviation
from the initial condition in the limit of zero noise amplitude,
can be computed, and its invariants quantify the violation
of reversibility. The first invariant for the forward-backward
process BF is the square of the reversibility error, which is
equal to the sum of the squares of Lyapunov errors computed
at each iteration of the map. This invariant can be compared
with the results for REM, when the stochastic perturbation is
generated by the finite numerical precision present in both the
forward and backward directions.

Finally, a completely different indicator introduced by
Laskar [19,20] is represented by the frequency map analysis
(FMA), which computes the variation of the main frequency
of a given orbit considering different orbit lengths to detect
the chaotic character.

In this paper we perform an accurate analysis of the perfor-
mance of the indicators briefly introduced above to classify
the orbits of a 4D modulated polynomial symplectic map,
namely, a 4D Hénon map that is considered a reference model
for several applications. Note that the approach based on the
isospike diagrams (see, e.g., [21–24] and references therein),
successfully applied in non-Hamiltonian systems for detecting
chaotic dynamics, has not been considered here, as it might
require a full assessment of its applicability to the systems
under consideration in this article. In Sec. II we define math-
ematically and discuss in some detail the chaos indicators
considered, and in Sec. III we discuss their numerical imple-
mentation. In Sec. IV we present the numerical results and
rank the different indicators in terms of classification effi-
ciency, in particular, studying their predictivity. Finally, some
conclusions are drawn in Sec. V. In addition, we report some
details on the computational cost of implementing indicators
using parallel computing facilities in Appendix A, while some
considerations on the time dependence of indicators are pre-
sented in Appendix B.

II. DEFINITION AND MAIN PROPERTIES
OF INDICATORS OF CHAOS

A. Frequency map analysis

Originally introduced by Laskar in the field of celes-
tial mechanics, the FMA rapidly found applications outside
the initial domain of application (see, e.g., [19,20,25–39]
for a selected list of references, with special emphasis on
accelerator-related applications) and is a numerical method to
inspect the global dynamics of multidimensional Hamiltonian

systems, taking advantage of the quasiperiodicity of regular
orbits located on KAM tori.

Given a Hamiltonian system H (I, θ ) = H0(I ) + εH1(I, θ ),
where for ε = 0 the Hamiltonian H0(I ) is integrable and (I, θ )
are action angle variables in Rn×T n, where T represents a
one-dimensional torus. If the system is nondegenerate,

det

(
∂ν(I )

∂I

)
= det

(
∂2H0(I )

∂I2

)
�= 0, (1)

the application

F : I ∈ Rn −→ ν ∈ Rn (2)

is a diffeomorphism on its image. This means that the invari-
ant tori are equally identified by the action variables I or by
their corresponding frequency vector ν. For a nondegener-
ate system, when ε is sufficiently small, the KAM theorem
[40–42], states that there still exists a set of initial conditions
of positive measure that correspond to regular orbits on in-
variant tori, for which, according to Pöschel [43], a similar
diffeomorphism still applies.

Based on this theoretical framework, it is possible to distin-
guish between regular orbits on the KAM tori, which feature
a discrete structure for Fourier components defined by the
harmonic of the fundamental frequencies, and chaotic orbits,
which exhibit a complex structure in the Fourier spectrum
[32]. In this sense, FMA is a technique that performs numer-
ical evaluations of the frequency vector ν from a time series
corresponding to a certain interval [i, i + n], for different val-
ues of i. In case of a regular orbit lying on a KAM tori, the
frequency vectors for various i will agree up to the precision
of the numerical method used to determine the frequency. On
the other hand, a chaotic orbit will have ν that evolves over
different intervals, showing fluctuations in frequency space
[30].

To achieve an accurate numerical evaluation of funda-
mental frequencies, multiple studies have been carried out to
improve standard algorithms such as the fast Fourier trans-
form (FFT) or the average phase advance (APA) [19,44–46].
In the work of Bartolini et al. [47], the fundamental frequency
is evaluated using an FFT combined with a Hanning filter and
an interpolation algorithm, resulting in a closed-form formula
for the fundamental frequency. In recent studies [48], the
frequency determination carried out using the average phase
advance algorithm is improved by applying the weighted
Birkhoff averaging [49], which will be used in the sequel to
perform the evaluation of FMA. More precisely, we define
FMAn as the Euclidean distance between two vectors defined
by the fundamental frequencies ν1 and ν2, evaluated, respec-
tively, over the time intervals [0, n/2] and [n/2, n] of the orbit.
An initial condition on a KAM torus has FMAn converge
to zero when n → ∞. In contrast, an initial condition in a
chaotic layer will converge to an asymptotic value for FMAn

bounded away from zero.

B. Lyapunov error invariants

Let M(x, n) be a time-dependent symplectic map with
x ∈ R2d where the first d components of x are the space
coordinates and the last d their conjugate moments. Denoting
by DM the Jacobian matrix (DM )i j = ∂Mi/∂x j and by xn the
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orbit after n iterations, the corresponding tangent map Ln(x)
is defined by

xn = M(xn−1, n − 1) ≡ Mn(x), x0 = x,

Ln(x) = DM(xn−1, n − 1) Ln−1(x) ≡ DMn(x), L0 = I,
(3)

where Mn(x) = M(x, n − 1) ◦ Mn−1(x) with M0(x) = x.
For any initial condition x, consider a small stochastic

deviation εξ where ξ is a unit random vector with 〈ξ〉 = 0 and
a unit covariance matrix 〈ξ ξT 〉 = I, where the superscript T
denotes the transposed vector. Letting yn = M(yn−1, n − 1)
be the orbit with initial condition y0 = x0 + εξ the linear
response �n(x) initialized by �0 = 0 is given by

�n(x) = lim
ε→0

yn − xn

ε

= DM(xn−1, n − 1) × lim
ε→0

yn−1 − xn−1

ε

= DM(xn−1, n − 1)�n−1

= Ln(x) ξ. (4)

The random vector �n has zero mean and covariance matrix

�2
n (x) = 〈

�n(x)�T
n (x)

〉 = Ln(x)LT
n (x). (5)

The Oseledets theorem [50] states that the limit

lim
n→∞

(
LT

n Ln
)1/2n = W e� WT (6)

exists, where W is an orthogonal symplectic matrix and � is
diagonal with entries λ j (x) ordered in a decreasing sequence
in j.

The diagonal entries of � are the Lyapunov exponents,
and the columns of W the corresponding Lyapunov vectors.
Since the eigenvalues of LT

n Ln are the same as those of the
covariance matrix LnLT

n , the two matrices have the same
characteristic polynomial. Then consider the corresponding
invariants I (k)

n (x), k = 1, . . . , 2d , i.e., the coefficients of the
characteristic polynomial. The first invariant I (1)

n (x), is given
by the trace of the covariance matrix, namely,

I (1)
n (x) ≡ Tr

[
�2

n (x)
] = Tr

[
LT

n (x) Ln(x)
] = LE2

n(x), (7)

which is the square of the Lyapunov error LEn(x). Note that it
does not depend on the initial deviation vector or on the cho-
sen orthogonal reference frame, and its asymptotic behavior
is determined by the first, i.e., largest, Lyapunov exponent λ1.

The other invariants I (k) are the sum of all products that
combine k distinct eigenvalues if they are simple. The ge-
ometric interpretation is straightforward. Letting e j be the
standard base vectors, we have Ln = (e1 n, . . . , e2d n) where
e j n = Ln e j . As a consequence, the invariant I (k)

n (x) is the sum
of the squared volumes of the (2d

k ) parallelotopes whose sides
are the vectors e j1 n(x), . . . , e jk n(x).

The difference with respect to GALI (k)
n indicators (see

Sec. II E) is that the I (k)
n (x) are independent of the initial

displacements.
For a symplectic map, Ln(x) is a symplectic matrix, and

�2
n (x) = Ln(x) LT

n (x) is symplectic and positive definite. As
a consequence, ordering the eigenvalues in a decreasing se-
quence, we have eλ j;n eλ2d− j+1;n = 1. The asymptotic behavior

of the invariant I (k)
n , k � 2d is given by

lim
n→∞

1

2n
log I (k)

n (x) = λ1(x) + · · · + λk (x). (8)

In a region of chaotic motion, λ j n(x) are positive for j � d
just as their limit λ j (x), so that I (k)

n (x) has exponential growth
with n, for n sufficiently large. In a region of regular motion,
I (k)
n (x) grows according to a power law I (k)

n (x) ∼ n2k for k � d
as all Lyapunov exponents vanish.

C. Fast Lyapunov indicator and weighted Birkhoff averaging

The fast Lyapunov indicator [7] is one of the best known
dynamic indicators, due to its straightforward implementation
and its sensitiveness to the detection of chaotic structures [51].
Given M(x, n), its tangent map Ln(x), and an arbitrary initial
unitary deviation vector ξ, the FLI is defined for n � 1 as

FLIn(x0, ξ) = ln ‖Ln(x0)ξ‖, (9)

i.e., the logarithm of the linear response �n(x), calculated for
an arbitrary fixed deviation vector. The quantity FLIn/n tends
to the largest Lyapunov exponent as n → ∞. Therefore, in a
region of regular motion, this quantity tends to zero, whereas
in a region of chaotic motion it takes a positive value.

It is possible to take advantage of the properties of the
logarithm in Eq. (9) to avoid overflows for large values of
n, and to express the limit FLIn/n as an average along the
trajectory xn [52]:

FLIn(x0, ξ)

n
=

n−1∑
i=0

ln ‖yi − xi‖
n

,

yi = DM(xi−1, i − 1)
yi−1 − xi−1

‖yi−1 − xi−1‖ ,

y1 = DM(x0, 0)ξ. (10)

In the work of Das et al. [13], it is presented how the applica-
tion of the weighted Birkhoff averaging method WBn [49] in
the evaluation of FLI can lead to superconvergence properties
when applied to oscillating time series. Instead of consider-
ing equal weighting (1/n), the weighted Birkhoff averaging
method uses a weighting function w( i

n ), which acts similarly
to a window function in spectral analysis. A function w(t )
that proved to be very effective in improving the convergence
of quasiperiodic time series averages [49] reads as follows:

w(t ) :=
{

exp
[− 1

t (1−t )

]
, for t ∈ (0, 1)

0, for t /∈ (0, 1)
. (11)

Replacing the standard mean with w(t ) in Eq. (10) leads to
the weighted fast Lyapunov indicator FLIW B

n :

FLIW B
n (x0, ξ) =

n−1∑
i=0

w

(
i

n

)
ln ‖yi − xi‖. (12)

We expect that FLIW B
n (x0, ξ) converges faster than

FLIn(x0, ξ)/n to their common limit at least in the case
of regular orbits.

To simplify the notation, in the numerical analysis we
refer to FLIn(x0, ξ)/n and FLIW B

n (x0, ξ) as FLIn(ξ)/n and
FLIW B

n (ξ), respectively, specifying the choice made for the
initial unitary displacement ξ.
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D. Backward-forward reversibility error

The reversibility error is obtained by computing the linear
response of the dynamics to small additive stochastic pertur-
bations on the orbit after n forward iterations n followed by n
backward iterations

yn′ = M(yn′−1, n′ − 1) + εξn′ , y0 = x

1 � n′ � n ,

yn′ = M−1(yn′−1, 2n − n′) + εξn′ ,

n + 1 � n′ � 2n.

(13)

where ξn′ are random vectors with zero mean and unit covari-
ance matrix 〈ξn′ 〉 = 0 and 〈ξn′ξ

T
n′′ 〉 = δn′n′′ . We denote by xn′

the orbit when random deviations are absent ε = 0. This orbit
enjoys the symmetry property xn′ = x2n−n′ for n + 1 � n′ �
2n, so the reversibility condition x2n = x is satisfied.

The linear response for the BF process is defined by

�BF
n′ (x) = lim

ε→0

yn′ − xn′

ε
, 1 � n′ � 2n, (14)

and the cumulative random deviation �BF
n′ (x) satisfies the

recurrence

�BF
n′ = DM(xn′−1, n′ − 1) �BF

n′−1(x) + ξn′ ,

1 � n′ � n,

�BF
n′ = DM−1(x2n−n′+1, 2n − n′) �BF

n′−1 + ξn′ ,

n + 1 � n′ � 2n. (15)

From the recurrence relation of the tangent
map (3) evaluated for n′ and from the equality
DM−1[M(x, k), k)] DM(x, k) = I for k = 2n − n′ it follows

DM(xn′−1, n′ − 1) = Ln′ (x) L−1
n′−1(x),

DM−1(x2n−n′+1, 2n − n′) = (DM(x2n−n′ , 2n − n′))−1

= L2n−n′ (x) L−1
2n−n′+1(x). (16)

Replacing Eq. (16) in Eq. (13) we obtain the final result:

�BF
n (x) = Ln(x)

n∑
k=1

L−1
k (x) ξk ,

�BF
2n (x) = L−1

n (x) �BF
n (x) +

n−1∑
k=0

L−1
k (x) ξ2n−k

=
n−1∑
k=1

L−1
k (x) (ξk + ξ2n−k ) + ξ2n + L−1

n (x)ξn. (17)

If random deviations are present only in the forward process,
the covariance matrix of �BF

2n is given by

�2 BF
n (x) =

〈
�BF

2n (x)
[
�BF

2n (x)
]T

〉

=
n∑

k=1

[
LT

k (x)Lk (x)
]−1

. (18)

If random deviations are present in both the forward and back-
ward processes, we define �2 BF

n as 1/2 the covariance matrix
of �BF

2n , and the result is the r.h.s. of Eq. (18) where the last
term of the sum (LT

n Ln)−1 is replaced by 1
2 I + 1

2 (LT
n Ln)−1 due

to the boundary condition, and asymptotically, for n → ∞ the
difference is negligible.

The invariants of the matrix �2 BF
n , i.e., the coefficients

of the characteristic polynomial det(�2 BF
n − λI), λ ∈ C, and

λi an eigenvalue, provide information on the effect of small
random perturbations along the orbits. If the map M is sym-
plectic, both Ln and LT

n Ln are symplectic matrices, and the
trace of LT

n Ln and its inverse are equal. As a consequence, it
is not difficult to check that the trace of (

∑
n′ (LT

n′ Ln′ )−1)k and
of (

∑
n′ LT

n′ Ln′ )k are equal and the invariants of the covariance
matrices of the BF process become

I (k) BF
n (x) = I (k)

(
n∑

k′=1

[
LT

n′ (x) Ln′ (x)
]−1

)

= I (k)

(
n∑

k′=1

LT
n′ (x) Ln′ (x)

)
. (19)

The first invariant has a very simple relation to the Lya-
punov error LEn(x). Explicitly, we have the following:

(
EBF

n (x)
)2 ≡ I (1) BF

n (x) =
n∑

n′=1

Tr
[
LT

n′ (x)Ln′ (x)
]

=
n∑

n′=1

[LEn(x)]2. (20)

We conclude by observing that the BF reversibility error
analysis can be applied to investigate the effect of rounding
errors in numerical computations [17]. Letting Mε be the
map evaluated with round-off errors and M−1

ε its inverse, we
have M−1

ε [Mε (x)] = x + O(ε). In the IEEE 754 international
standard, the precision of a real number is ε ∼ 10−16. Iteration
with rounding is defined by Eq. (13) where εξn′ is missing,

but M is replaced by Mε . The matrix 1
2 �BF

2n (�BF
2n )

T
, whose

average defines the covariance matrix of the BF reversibility
error, is replaced by

XBF
2n (x) = 1

2

y2n − x
ε

(y2n − x)T

ε
. (21)

This matrix has a nonzero eigenvalue, with eigenvector
y2n − x, and a null eigenvalue of multiplicity 2d − 1 with
eigenspace orthogonal to y2n − x. The noise-induced re-
versibility error method (REM) squared is the nonzero
eigenvalue of such a matrix, equal to its trace, and given by

[
REMBF

n (x)
]2 = Tr

[
XBF

2n (x)
]

= 1

2

y2n − x
ε

· y2n − x
ε

. (22)

The main difference is that REM, due to rounding, is the
result of a single realization with a pseudorandom error and,
therefore, is affected by large fluctuations when we vary n
or x. These fluctuations are absent for the BF reversibility
error previously defined, since averaging over the random
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deviations is carried out. The other relevant difference is that
the higher-order REM invariants are zero.

Note that the implementation of REM is trivial since it does
not require the evaluation of the tangent map and the compu-
tational cost is just twice the cost of the orbit computation,
provided that the inverse map is explicitly known.

E. GALI(k) indicators

The k-order indicators GALI(k) use the volumes of paral-
lelotopes whose sides are normalized images of the k linearly
independent vectors η j with 1 � j � k,

GALI(k)
n (x) =

∥∥∥∥ Ln(x)η1

‖Ln(x)η1‖
∧ · · · ∧ Ln(x)ηk

‖Ln(x)ηk‖
∥∥∥∥, (23)

where ∧ stands for the external product of two vectors. Their
asymptotic behavior for chaotic orbits, whose first d Lya-
punov exponents are positive, is given by

GALI(k)
n ∼ e−n((λ1−λ2 )+···+(λ1−λk )), (24)

where we assume a decreasing order for the exponents.
For regular, quasiperiodic orbits, whose Lyapunov expo-

nents vanish, the GALI(k) indicators decay following a power
law. We recall that the Lyapunov error invariants I (k)

n grow
exponentially with a coefficient given by the sum of the first
k Lyapunov exponents for chaotic orbits, or according to a
power law for regular orbits.

F. Introducing filters

We conclude by remarking that the introduction of a filter
such as MEGNO [15,53] that drastically reduces the nu-
merical oscillations of the indicator of chaos may greatly
improve the efficiency of the indicator. In principle, the os-
cillations disappear using suitable normal coordinates for the
considered systems, but their computation faces the limits and
technical difficulties of perturbation theory. Referring to the
phase flow that interpolates the orbits at integer times t = n,
MEGNO, applied to LEt (x), it has the double-time average of
d log LEt (x)/d log t :

MEGNOn[LE(x)] =
〈〈

t
d log LEt (x)

dt

〉〉

where 〈 f (t )〉 = 1

t

∫ t

0
f (t ′) dt ′.

(25)

If the indicator LEn(x) grows exponentially as eλt , then
MEGNOn[LE(x)] increases as λt . If LEn(x) follows the
power law tα , then MEGNOn[LE(x)] converges to 2α.

III. NUMERICAL IMPLEMENTATIONS

A. Models

To test the effectiveness of the proposed indicators of
chaos, we consider a 4D polynomial symplectic map depen-
dent on time, which is a generalization of the Hénon map
[54]. The origin is an elliptic fixed point, and the nonlin-
ear terms combine fixed quadratic nonlinearities and variable

cubic ones. The map reads⎛
⎜⎜⎝

xn+1

px,n+1

yn+1

py,n+1

⎞
⎟⎟⎠ = R(ωx,n, ωy,n)

×

⎛
⎜⎜⎝

xn

px,n + x2
n − y2

n + μ
(
x3

n − 3xny3
n

)
yn

py,n − 2xnyn + μ
(
y3

n − 3ynx3
n

)
⎞
⎟⎟⎠, (26)

where μ represents the intensity of the cubic nonlinearity and
R is a 4×4 rotation matrix defined as

R(ωx,n, ωy,n) =
(

R(ωx,n) 0
0 R(ωy,n)

)
, (27)

with R(ωx,n) and R(ωy,n) being 2×2 rotation matrices. In the
following, we refer to the map (26) as the 4D Hénon map and
remark that it is often used as a reference model in applica-
tions such as accelerator physics (see, e.g., [54–56]), since it
represents the dynamics generated by a magnetic lattice that
includes sextupole and octupole magnets [54].

Linear frequencies ωx,n and ωy,n are slowly modulated as a
function of time n according to

ωx,n = ωx,0

(
1 + ε

m∑
k=1

εk cos (�kn)

)
,

ωy,n = ωy,0

(
1 + ε

m∑
k=1

εk cos (�kn)

)
, (28)

where ε represents the modulation amplitude and the param-
eters εk and �k are taken from Table 1 in [55] to model the
effect of frequency modulation in a particle accelerator due to
ripples in the currents of the power supplies that feed the
magnets. Modulation of the linear frequency may cause the
appearance of weak chaotic regions in the stability basin near
the origin. We recall that the parameters εk have an order of
magnitude of 10−4.

In numerical simulations, two sets of frequencies ωx0 and
ωy0 have been considered, namely, (0.168, 0.201), which is
close to resonances of order 5 and 6, and (0.28, 0.31), which
are the frequencies in the transverse phase space for charged
particles orbiting in the LHC at injection energy [57]. We have
analyzed the performance of chaos indicators as a function of
parameters ε and μ, which have been varied in the intervals
[0,64] and [0,1], respectively. Some considerations on the
computational costs of implementing the various indicators
of chaos in a parallel computing architecture are reported in
Appendix A.

Figure 1 shows survival plots for various configurations
of the 4D Hénon map. A set of 300×300 initial conditions,
sampled on a uniform Cartesian grid in the x-y plane, choosing
px = py = 0, is tracked up to nmax = 108 turns. Grid bound-
aries are selected to sample a region of interest, which depends
on the linear frequencies and their modulation amplitude, that
contains the stability basin of the origin, more specifically
(x, y) ∈ [0.0, 0.45]×[0.0, 0.45] for the case (ωx0, ωy0) =
(0.168, 0.201), or (x, y) ∈ [0.0, 0.60]×[0.0, 0.60] for the
case (ωx0, ωy0) = (0.28, 0.31). An initial condition is
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FIG. 1. Survival plot for various 4D modulated Hénon maps with quadratic and cubic nonlinearities. Initial conditions, sampled on an
uniform Cartesian 300×300 grid in the x-y plane, are tracked up to nmax = 108 and are considered lost when their distance to the origin
exceeds a predefined maximum radius rc = 102. The two sets of linear frequencies feature different shapes of the stable region as can be seen
by comparing the plots in the two rows. The parameters ε and μ induce additional changes, in particular the increase of the size of the transition
region between stability up to nmax and shorter stability time. The color scale is related to the logarithm of the stability time as reported on the
right.

considered stable if its distance from the origin is less than
a certain control radius rc when n = nmax. Otherwise, the
initial condition is considered lost and its tracking is stopped,
and the stability time is given by the first value nstab for

which
√

x2
nstab

+ p2
x,nstab

+ y2
nstab

+ p2
y,nstab

� rc. The choice of rc

is rather arbitrary (we have considered rc = 102), and the
dependence of the results on rc is very weak since at that
amplitude the dynamics of the 4D Hénon map is fully domi-
nated by polynomial terms. The two rows of Fig. 1 show the
survival plots for the two sets of frequencies considered in the
studies. The shape of the stable region (yellow area) strongly
depends on the frequencies, as different sets of resonances
affect the dynamics. Furthermore, the impact of ε and μ is also
clearly seen. The first enlarges the transition region between
stable initial conditions and unstable ones, i.e., the region for
which nstab < nmax, where a weak diffusion occurs, while the
latter changes the shape of the stable region.

IV. RESULTS OF NUMERICAL INVESTIGATIONS

In the following, we report the results of the numerical
study of the dynamic indicators presented in Sec. II, namely,
log10(LE), FLI, FLIW B, MEGNO(LE), GALI(4), REM, and
FMA. Note that we consider the logarithm of LE, as it is
a quantity comparable to FLI and MEGNO(LE). We first
focus on the dependence of FLI on the choice of the initial
displacement vector ξ, and compare it with log10(LE). Next,
we discuss a comparison between the convergence rate of
FLI and that of FLIW B. Finally, we compare the classification
performance of all dynamic indicators by determining their

accuracy, together with its time dependence, in reconstructing
a ground truth (GT) evaluated at a high iteration time.

A. Dependence on the initial displacement

The main feature of LE, compared to FLI, is its inde-
pendence from the initial choice of direction of the unitary
displacement vector ξ. To highlight this, in Fig. 2 we di-
rectly compare the calculated values of log10[log10(LE)/n]
with those of log10(FLI/n), calculated with an initial dis-
placement along one of the four orthonormal base vectors
x̂, p̂x, ŷ, and p̂y. These calculations are carried out for a set of
300×300 initial conditions, sampled on a uniform Cartesian
grid in the x-y plane. It is possible to see how, at low turn num-
ber (n = 102, top row), the different choice of displacement
highlights the structures in FLI that are missing in LE. This
can be explained by considering that the displacement vector
is not fully aligned along the largest Lyapunov exponent yet.
In contrast, these structures are missing for LE, which has
smoother behavior.

The observed differences are much reduced for a higher
number of turns (n = 104, bottom row), as the initial dis-
placement tends to become almost aligned along the direction
corresponding to the largest Lyapunov exponent. However,
despite the smaller differences between log10(log10(LE)/n)
and log10(FLI/n), the behavior of the various indicators is still
not the same. It is worth noting how displacements along x̂ and
ŷ produce similar structures that are, however, different with
respect to the case in which displacement is carried out along
p̂x or p̂y. Globally, these observations underline the value
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FIG. 2. Color maps of log10[log10(LE)/n] and log10(FLI/n) indicators for a low iteration number (n = 102, top row) and a high iteration
number (n = 104, bottom row). In both rows, the FLI for the four possible displacements is shown together with LE, to highlight the different
structures shown by the indicators. It is possible to see how, for low iteration numbers, different choices of initial displacement for FLI
highlight structures that do not appear in LE. The differences reduce for higher number of turns but are still present. These structures have a
vague resemblance to the net of resonances that is present in phase space. Note that an arrow at the bottom of the color bar means that pixels
of the bottom color correspond to a value equal to or lower than the bottom value. White pixels correspond to initial conditions whose distance
from the origin has exceeded a predefined radius (rc = 102) during the tracking, before reaching the target iteration number n. [Simulation
parameters used: (ωx0, ωy0) = (0.168, 0.201), ε = 64.0, μ = 0.5].

of the invariance properties of LE, which seems to be more
promising than FLI for the analyses that will be discussed in
the following sections.

As this dependence on the initial displacement decreases
with higher iteration numbers, we will focus only on FLI(x̂)
for the remainder of the paper, as the rest of the results are not
significantly affected by this choice.

B. Application of weighted Birkhoff averaging to FLI

As an additional analysis of the time dependence of chaos
indicators, we compare the values obtained for FLI at different
times, using the standard approach that considers the mean in
Eq. (10), that is, FLI/n, or the variant based on the use of
Birkhoff weights as in Eq. (12), that is, FLIW B. The analy-
sis starts considering two ensembles of regular and chaotic
particles that have been classified by means of the value of
the FLI indicator computed for n = 108 turns (effectively this
sets a ground-truth level, as discussed in the next section).
The sets are also used to calculate the time evolution of FLI/n
and FLIW B with the objective of evaluating possible improve-
ments in the latter compared to the first. In Fig. 3 (top) the
comparison is made for a subset of the set of regular initial
conditions, whereas the behavior of chaotic ones is shown
in the bottom plot. It is possible to observe how, for regular
initial conditions, Birkhoff averaging consistently speeds up
the convergence of FLIW B to zero.

The case of chaotic initial conditions has different char-
acteristics. In fact, a saturation region is observed for the
indicator value on the order of 10−3 for both indicators.
When this value is reached, both indicators oscillate around it.

However, the slope with which this nonzero value is reached
is different for the two indicators and is higher in absolute
value for FLIW B than for FLI/n, similar to what is observed for
the case of regular orbits. It is also worth stressing the pres-
ence of initial conditions that, up to some n = 106 turns,
feature a steady decrease in the value of the dynamic indicator,
as if they were characterized by regular motion. However, af-
ter that, the value of the indicator suddenly increases, reaching
the value that identifies chaotic orbits. This behavior clearly
defies any approach aimed at classifying initial conditions as
regular or chaotic in finite time.

The improvement caused by the Birkhoff averages is also
clearly visible in Fig. 4, where the time evolution of the dis-
tribution of the values of FLI/n (top) and FLIW B (bottom) is
shown. The part of the distribution corresponding to the regu-
lar initial conditions reaches its peak (yellow band) and moves
towards zero with increasing n. However, the displacement
towards zero is faster for FLIW B. Furthermore, the peak of the
distribution is sharper for FLIW B than for FLI. In both graphs,
a faint trace of a peak is visible corresponding to the indicator
value of about 10−3. This feature is remarkably similar for the
two indicators, as already seen in Fig. 4.

This behavior shows that the regular orbits benefit from
the use of the Birkhoff averages, whereas the chaotic ones are
mostly unaffected by the special averaging mechanism. These
features can be exploited for the classification problem that
will be addressed in the next section.

C. Classification performance

For this analysis we study the predictive performance of
chaos indicators in terms of a binary classification of a large
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FIG. 3. Time evolution of FLI computed using either a standard
mean or the Birkhoff averaging. Top plot: Indicators computed for
a set of 100 regular initial conditions; the fit highlights a faster
convergence rate for the Birkhoff averaging. Bottom plot: Indica-
tors computed for a set of 100 chaotic initial conditions. A similar
improvement in convergence rate is observed for low n values before
reaching a saturation value of the indicator of the order of 10−3. [Sim-
ulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, μ = 0.5].

set of initial conditions by varying the number of iterations n.
It should be stressed that this classification is performed only
on the orbit of an initial condition that has been detected to be
stable for nmax.

An overview of the time dependence of the dynamic in-
dicators and the distribution of their values observed in our
numerical investigation is given in the Appendix B. The main
feature of interest, which constitutes the basis of this analysis,
is the general tendency of dynamic indicators to create a
bimodal distribution, as has also been reported for finite-time
Lyapunov exponents in [58,59]. We focus on studying the
evolution of this specific characteristic, i.e., the presence of
two peaks in the distribution of indicator values, as a function
of time, which is the key feature used for the classification
analysis.

As the development of the bimodal distribution requires
various orders of magnitude of the number of turns, we per-
form our analysis on the logarithm of the seven dynamic indi-
cators, namely, log10[log10(LE)/n], log10[MEGNO(LE)/n],
log10(FLI/n), log10(FLIW B), log10(GALI(4)), log10(REM),
and log10(FMA). The factor n−1 is included in the first two
indicators to observe a comparable evolution of values over

FIG. 4. Time evolution of the distribution of the values of FLI
(top) and FLIW B (bottom) indicators for the whole set of 15 684
initial conditions that survived up to nmax = 108. The Birkhoff av-
eraging leads to faster convergence towards zero of the regular initial
conditions, which are represented by the yellow band. Furthermore,
the width of such a band is narrower for FLIW B with respect to
FLI. The red dashed lines represent threshold values, defined by our
algorithm, representing the attempt to perform the binary classifica-
tion in regular and chaotic initial conditions. [Simulation parameters:
(ωx0, ωy0) = (0.28, 0.31), ε = 32.0, μ = 0.1].

time with the two FLI indicators, since, ultimately, its pres-
ence does not alter the outcome of these studies.

To carry out this task, we first construct a ground truth (GT)
for different sets of parameters for the 4D Hénon map, iterated
for nmax = 108. The initial conditions are then classified into
a binary chaotic/regular classification scheme using the LE
indicator. An example is given in Fig. 5, where eight cases, the
same as those depicted in Fig. 1, are displayed. Dark colors
identify regular regions of the phase space, whereas lighter
colors denote chaotic regions. It is clearly seen that the fre-
quency modulation and the presence of the cubic nonlinearity
increase the extent of the chaotic areas of the phase space,
also generating regions in which regular and chaotic orbits are
deeply intertwined.

The GT classification is built from the distribution of the
values of log10[log10(LE)/n] for nmax. The resulting distribu-
tion has a main group of regular initial conditions with low
value LE, and a second group of chaotic initial conditions
with higher value LE. Due to the large separation of these two
clusters, a threshold value has been calculated to distinguish
them using a kernel density estimation method (KDE) [60,61]
with a Gaussian kernel and different bandwidth values. This
allows investigating the Mode Tree [62] of the distribution,
detecting its two main modes, and setting the position of the
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FIG. 5. Distributions of log10[log10(LE)/n] for various 4D modulated Hénon maps (the same cases shown in Fig. 1) with quadratic and
cubic nonlinearities. 300×300 initial conditions, sampled on an uniform Cartesian grid in the x-y plane, are tracked up to nmax = 108. It is
possible to observe how the case for ε = 0.0, μ = 0.0, corresponding to the absence of modulation and cubic nonlinearities, lead to regular
motion almost everywhere, except for a small set of initial conditions. For the other cases, extended regions of chaotic motion are visible. Note
that the maximum value registered in the color maps corresponds to numerical saturation.

minimum of the distribution between them. It is worth stress-
ing that more refined approaches might be devised to detect
the peaks or, equivalently, cluster the indicator values, but they
have not been considered in this analysis. In fact, our focus is
on the performance of the indicator in generating a suitable
distribution for the classification problem, even for low values
of n, not on designing a sophisticated algorithm to analyze the
distribution of the indicator, including its peculiarities.

An example of the GT construction process can be seen in
Fig. 6. Stable initial conditions up to nmax are identified by
direct tracking (first graph from the left), and the value of the

indicator LE is calculated for the set of stable initial conditions
(second graph from the left). At this stage it is possible to
compute the distribution of LE and determine the threshold
that separates the peaks of the bimodal distribution (third plot
from the left) and provides the criterion to classify any given
initial condition as regular or chaotic. Applying the com-
puted threshold, it is possible to generate a binary map with
the resulting classification (fourth plot from the left). In this
case the determination of the threshold for the case shown is
rather straightforward, as the large separation between the two
peaks makes the actual value of the threshold not particularly

FIG. 6. GT construction for a modulated Hénon map. From left to right: A survival plot of the initial conditions stable up to nmax = 108

(yellow is stable, purple is unstable); distribution of the LE indicator for all stable initial conditions, evaluated at nmax; histogram of
log10[log10(LE)/n], classified with a threshold evaluated with a KDE-based procedure; binary classification of regular (yellow) and chaotic
(purple) initial conditions. [Simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, μ = 0.5].
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FIG. 7. Example of the KDE-based procedure for computing a
threshold for the binary classification (regular or chaotic) of initial
conditions. Top: Application to log10(REM) (evaluated at n = 105).
KDEs with various bandwidth are used until the two main peaks of
the bimodal distribution are detected; the threshold is then placed
at the position of the minimum of the distribution between them.
This procedure is applied to all dynamic indicators except for FMA.
Bottom: Application of the procedure to log10(FMA) (evaluated
at n = 105), which clearly exhibits a three-mode distribution. The
procedure is applied so that it detects the three main modes of
the distribution and then sets the threshold at the minimum of the
distribution between the two modes at higher values. [Simulation
parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, μ = 0.5].

relevant. However, when n � nmax the separation between the
peaks decreases and the threshold value becomes essential for
an efficient classification of the initial conditions.

Examples of the procedure for determining the threshold
based on the indicator distribution are shown in Fig. 7. In the
top plot, the case of REM is depicted (but it is representative
of all other indicators except FMA). The use of KDE with
different bandwidth clearly shows how the two peaks of the
distribution can be detected. This allows the position of the
threshold to be set at the location of the minimum value
of the distribution in between the two peaks. The case of
FMA is different since the distribution has three peaks and
the standard algorithm to determine the threshold must be
adapted. Therefore, KDE is used to determine the position of
the three peaks, and the threshold is set at the position of the

minimum of the distribution between the two peaks with the
largest amplitude.

This choice is somewhat arbitrary, but the features of the
distribution clearly indicate that the performance of the indi-
cator is limited, with little possibility of improving it. Indeed,
the nonnegligible fraction of initial conditions that generate
the part of the distribution between the extreme peaks cannot
be clearly classified by the proposed approach, as some of
them will turn chaotic, while other will turn regular, if the
indicator is computed over a longer time span.

Once the GT has been computed, we define as predictive
performance of a dynamic indicator the accuracy in recon-
structing the binary classification in the GT, that is, the ratio
between the correctly labeled initial conditions and the total
number of stable initial conditions. Such a reconstruction is
attempted using the same strategy implemented for the de-
termination of the GT; namely, we consider the distribution
of the dynamic indicator under consideration and define a
binary classification using a threshold computed via the KDE-
based approach. The resulting thresholds evaluated over time
for REM and FMA are visualized in detail in Fig. 8, while
the results for the other dynamic indicators are presented in
Appendix B.

The accuracy performance of the dynamic indicator is then
evaluated for various n < nmax. We expect a good-performing
dynamic indicator to achieve high-accuracy values when
it generates two separate groups, even when n � nmax.
Such behavior, in fact, enables effective mode detection and
consequent effective GT reconstruction. In contrast, a poor-
performing dynamic indicator will need a longer tracking
time before showing the presence of two separate clusters,
causing the threshold determination to be unable to separate
the chaotic from the regular initial conditions.

A global comparison of the classification performance of
the seven dynamic indicators is carried out, and the accuracy
achieved by the dynamic indicators as a function of n is shown
in Fig. 9 for different sets of parameter values for the 4D
Hénon maps.

When considering the Hénon maps with ε = 0.0, i.e., with-
out frequency modulation, a rather small fraction of chaotic
orbits with a very mild dependence on n of the accuracy
of the various dynamic indicators is observed. Furthermore,
FMA differs from all other indicators, clearly showing poorer
performance in terms of accuracy. All other indicators have
very similar performance, the only difference being in the
time at which a steplike increase in accuracy is observed,
which occurs for n = 103–104, corresponding to four to five
orders of magnitude lower than nmax. This sudden increase in
accuracy is related to the time required by dynamic indica-
tors to generate a bimodal distribution that can be efficiently
analyzed using our KDE-based procedure. In this sense, it
should be noted that GALI(4) is the most accurate indicator,
as it reaches high-accuracy values even at very low values of
n and the gradual increase does not occur in the range of n
shown in the graphs. In general, the behavior observed for all
indicators (except FMA) shows that a rather accurate predic-
tion of GT can be achieved using the information provided by
the indicators over a rather limited number of turns.

In the case with ε = 32.0, i.e., with frequency modulation
and a larger fraction of chaotic orbits, the situation changes
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FIG. 8. Distribution of values of log10(REM) (left) and log10(FMA) (right) as a function of time for a modulated 4D Hénon map. The red
dashed lines represent threshold values, defined by our algorithm shown in Fig. 7, representing our criterion to distinguish regular and chaotic
orbits. For low values of the iterations n, the distribution of both indicators is in general represented by a unimodal function. For higher values
of n, we can see the formation of two separate clusters in the case of REM, making the distribution bimodal. For FMA, we have in general a
different behavior, as it tends to form a trimodal distribution. [Simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, μ = 0.5.]

dramatically. Accuracy depends rather strongly on n, suggest-
ing that chaos detection requires a larger number of turns to
be accurate. In terms of the ranking of the indicators, FMA
remains the worst [this is certainly true for case (ωx0, ωy0) =
(0.28, 0.31), while for case (ωx0, ωy0) = (0.168, 0.201) a bet-
ter performance is observed]. REM and GALI(4) are the best

values in a wide range of values of n. Furthermore, they
do not show any sudden jump in accuracy because of their
well-behaved distribution. Finally, we remark that beyond
n = 106–107, the precision of all indicators is very similar.

To provide a quantitative assessment of the perfor-
mance of the dynamic indicators, we define a performance

FIG. 9. Time dependence of the accuracy achieved in reconstructing the GT (computed for nmax = 108) by the various dynamic indicators
for eight cases of the 4D modulated Hénon maps (the same cases shown in Fig. 1), differing by cubic nonlinearities and frequency modulation.
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TABLE I. Performance estimate of the dynamic indicators for the various Hénon map configurations, evaluated using Eq. (29) over the
interval n = 104–106. Values are ranked in decreasing order. It is clearly seen that GALI(4) is the highest scorer and REM is the second-best
scorer in most of the cases considered. The uncertainty in the performance estimate is evaluated by applying a variation of the calculated
thresholds of ±5%.

(ωx, ωy ) = (0.28, 0.31)
ε = 0.0; μ = 0.0 ε = 0.0; μ = 0.5

log10(GALI(4) ) 0.99700 ± 0.00014 log10(GALI(4) ) 0.9956 ± 0.0002
log10[FLIW B(x̂)] 0.9966 ± 0.0005 log10(REM) 0.99423 ± 0.00004
log10[MEGNO(LE)/n] 0.9965 ± 0.0008 log10[log10(LE)/n] 0.99 ± 0.03
log10(REM) 0.99629 ± 0.00003 log10[FLIW B(x̂)] 0.99 ± 0.10
log10[log10(LE)/n] 0.99 ± 0.05 log10[FLI(x̂)/n] 0.9080 ± 0.0016
log10[FLI(x̂)/n] 0.94 ± 0.01 log10[MEGNO(LE)/n] 0.90 ± 0.14
log10(FMA) 0.8738 ± 0.0005 log10(FMA) 0.8797 ± 0.0004

(ωx, ωy ) = (0.28, 0.31)
ε = 32.0; μ = 0.0 ε = 32.0; μ = 0.5

log10(GALI(4) ) 0.9453 ± 0.0014 log10(GALI(4) ) 0.924 ± 0.002
log10(REM) 0.9329 ± 0.0003 log10(REM) 0.9096 ± 0.0003
log10[MEGNO(LE)/n] 0.93 ± 0.08 log10[MEGNO(LE)/n] 0.90 ± 0.09
log10[log10(LE)/n] 0.924 ± 0.011 log10[log10(LE)/n] 0.888 ± 0.015
log10[FLIW B(x̂)] 0.913 ± 0.007 log10[FLIW B(x̂)] 0.88 ± 0.02
log10(FMA) 0.869 ± 0.003 log10[FLI(x̂)/n] 0.843 ± 0.009
log10[FLI(x̂)/n] 0.863 ± 0.007 log10(FMA) 0.797 ± 0.005

(ωx, ωy ) = (0.168, 0.201)
ε = 0.0; μ = 0.0 ε = 0.0; μ = 0.5

log10(GALI(4) ) 0.9896 ± 0.0004 log10(GALI(4) ) 0.9909 ± 0.0004
log10(REM) 0.98682 ± 0.00009 log10[MEGNO(LE)/n] 0.99 ± 0.09
log10[FLIW B(x̂)] 0.986 ± 0.002 log10(REM) 0.98850 ± 0.00012
log10[log10(LE)/n] 0.981 ± 0.003 log10[FLIW B(x̂)] 0.988 ± 0.002
log10[FLI(x̂)/n] 0.980 ± 0.016 log10[log10(LE)/n] 0.99 ± 0.07
log10(FMA) 0.9319 ± 0.0010 log10[FLI(x̂)/n] 0.980 ± 0.015
log10[MEGNO(LE)/n] 0.9 ± 0.2 log10(FMA) 0.9510 ± 0.0009

(ωx, ωy ) = (0.168, 0.201)
ε = 32.0; μ = 0.0 ε = 32.0; μ = 0.5

log10[GALI(4)] 0.903 ± 0.003 log10[GALI(4)] 0.914 ± 0.003
log10(REM) 0.8880 ± 0.0004 log10(REM) 0.8915 ± 0.0004
log10[MEGNO(LE)/n] 0.87 ± 0.09 log10[MEGNO(LE)/n] 0.89 ± 0.11
log10[log10(LE)/n] 0.863 ± 0.016 log10(FMA) 0.881 ± 0.007
log10[FLI(x̂)/n] 0.849 ± 0.012 log10[log10(LE)/n] 0.88 ± 0.02
log10[FLIW B(x̂)] 0.849 ± 0.007 log10[FLIW B(x̂)] 0.870 ± 0.012
log10(FMA) 0.843 ± 0.004 log10[FLI(x̂)/n] 0.850 ± 0.017

estimate as

1

2

∫ 6

4
Accuracy(10x ) dx, (29)

i.e., the integral of the accuracy achieved and displayed in
Fig. 9 normalized to the integral of the ideal case with unit
accuracy throughout the turn interval. The reasons for such
a definition are twofold: First, it avoids the possible bias
introduced by indicators that are more efficient in detecting
the chaotic behavior at low number of turns but that are not
so efficient afterwards; second, it probes the predictive power
of the indicator by setting an upper bound that is lower than
the turn number used for determining the GT. Equation (29)
has been numerically evaluated using the trapezoidal rule and
considering 50 values of n equally spaced on a logarithmic
scale over the interval 104–106. The performance estimate
values for the dynamic indicators for the various Hénon maps
are reported in Table I.

Performance estimates have been ranked in decreasing or-
der, separating the various cases considered in our analyses.
GALI(4) turns out to be the highest scorer in all cases, fol-
lowed by REM. Then we find MEGNO and FLIW B(x̂), while
FMA tends to be the last in this ranking. The error associated
with each performance estimate value is provided by the vari-
ation of the accuracy whenever the automatic threshold value
is varied by ±5%. This quantity provides information on the
robustness of the accuracy against perturbation of the thresh-
old: A small value indicates a high stability of the numerical
values. It is also worth noting that the performance estimates
of the best dynamic indicators are correlated with small values
of the corresponding error.

Important insights on the performance of the various indi-
cators can be gained by looking at the relative identification
error in terms of false positive, i.e., when a regular or-
bit is classified as chaotic, and false negative, i.e., when a
chaotic orbit is classified as regular. A false negative is almost
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FIG. 10. Identification errors for the various indicators as a function of the number of turns for the cases displayed in the first row of Fig. 9.

unavoidable, according to the behavior shown in Fig. 3, un-
less the indicator is calculated over a very large number of
turns, which means accepting a very limited predictive power
of the indicator. However, the behavior of the two types of
errors reveals interesting features of the various indicators.
An overview of the dependence of false positive and false
negative errors is shown in Fig. 10, where relative errors
are displayed as functions of the turn number for the map
configurations considered in the first row of Fig. 9.

The behavior of the false positive error reveals a funda-
mental difference between FMA and the other indicators. In
fact, FMA shows an error value that is only slightly dependent
on the turn number and drops to small values for very large n.
For the other indicators, for a low number of turns, this type of
error is large, and then, around 104 turns, it drops essentially to
zero. This feature is related to the fact that, for a low number of
turns, the bimodal structure is not yet present. It is also worth
noting that, for the case of FLI(x̂) the Birkhoff averaging
introduces a clear improvement by pushing the position of
the sudden drop to zero of the false positive error to a lower
number of turns.

The false negative error increases sharply at a turn num-
ber close to that corresponding to the abrupt decrease in the
false positive error. After this turn number, two behaviors are
observed: In the first case, the error level is approximately
constant until it drops to a low value after n ≈ 107. This value
is relatively close to that used to determine the GT, which indi-
cates a limited predictive power of the indicator. In the second
case, the error level decreases almost linearly as a function
of n. This is the key to achieving good performance and is

the feature shown by REM and GALI(4). It should be noted
that FMA also behaves in this way, i.e., with a linear decrease
in the false positive error. However, when the false negative
error drops, a jump in the false positive error is observed.
This error then shows a decrease that is almost negligible up
to nmax. These characteristics, related to the characteristics of
the distribution of the FMA values, prevent this indicator from
reaching a good performance level.

As a last comment, these features are always present, but
frequency modulation strongly enhances the errors.

V. CONCLUSIONS

In this paper various numerical indicators to identify the
chaotic character of orbits of Hamiltonian systems have been
presented and discussed in detail. The powerful Birkhoff
averages were used to improve the convergence rate of an
indicator in the case of regular initial conditions. The goal of
our analysis is to evaluate the performance of the indicators
in terms of accuracy in the binary classification of an orbit
identified by its initial conditions, as regular or chaotic. An
important element in this assessment is whether the correct
classification can be achieved by using the information over a
limited number of turns, i.e., whether an early chaos detection
can be effectively performed, which is equivalent to probing
the predictive power of dynamic indicators.

The dynamical system that has been selected as a test
bed for performance analysis is a 4D Hénon-like symplectic
map, with or without cubic nonlinearity and with or without
frequency modulation. This choice is justified by the relevant
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applications of this map to understand long-term stability
problems in particle accelerators. Several configurations have
been considered, and, for each case, a ground truth classi-
fication has been determined with n = 108 iterations. The
various indicators have been used to provide an estimate of
the classification performance with respect to ground truth as
a function of the number of turns used. The classification is
based on the bimodal feature of the indicator value distribu-
tions, which points out two clusters associated with regular
and chaotic orbits. To define a classification threshold, we
use a KDE-based algorithm to determine the position of the
distribution minimum between the two modes.

A ranking of the performance of the various indicators
has been established, with GALI(4) slightly outperforming
the other indicators in all the cases considered, immediately
followed by REM. Then we find FLIW B and MEGNO(LE).
Modulation of the linear frequencies significantly reduces the
predictive power of each indicator. It should be noted that
the identification errors of the various indicators are largely
dominated by the wrong labeling of the initial conditions as
regular.

The conclusions drawn for the case of the 4D Hénon-like
map are generic for a polynomial Hamiltonian system in a
neighborhood of elliptic fixed points. Hence, these results can
be particularly useful for applications such as nonlinear beam
dynamics. The specific choice of an indicator to predict the
chaotic character should take into account the performance
evaluated in our analysis, as well as the computational ef-
forts needed to compute the various indicators. In this sense,
REM could be a very interesting candidate due to its good
performance combined with computational efficiency, which
is particularly suitable for reducing the CPU time required for
the numerical integration of complex physical systems.

APPENDIX A: COMPUTATIONAL COSTS FOR
EVALUATING THE INDICATORS OF CHAOS

Evaluation of a dynamic indicator requires a variable
amount of computational cost, which could affect the fea-
sibility and efficiency of specific implementations or favor
the usage of specific dynamic indicators. Here we focus our
considerations on the specific case of a discrete map with a
known analytic expression for both the tangent and the inverse
maps.

For LE, FLI, and MEGNO(LE), the main computational
effort consists of tracking the value of Ln(x), along the orbit
of x. This implies the additional memory requirement to store
a matrix of size 2d×2d and the execution of matrix-matrix
and matrix-vector multiplications at each iteration. It should
be noted that an important feature of these indicators is that
their evaluation at a target iteration number n also provides
their value for all lower iteration numbers. This feature frees
up additional computational costs for the analysis of the evo-
lution of the dynamic indicator value over time.

GALI(k) requires the evaluation of Ln(x) to calculate the
normalized k images of η j with 1 � j � k. A practical and
fast method for computing the norm of external products in
Eq. (23) is given in [12], where it is proven that GALI(k) is
equal to the product of singular values z j , of A, where A is a

2d×k matrix that reads

A =

⎛
⎜⎜⎜⎝

(
Ln(x)η1

‖Ln(x)η1‖
)

1
· · ·

(
Ln(x)ηk

‖Ln(x)ηk‖
)

1
...

...(
Ln(x)η1

‖Ln(x)η1‖
)

2d
· · ·

(
Ln(x)η1

‖Ln(x)η1‖
)

2d

⎞
⎟⎟⎟⎠. (A1)

The singular values of A can be obtained by applying the
singular value decomposition (SVD) method [63]. Note that
the evaluation of GALI(k) for a target iteration number n̄ also
provides the values of η j for all lower values of n. However,
for each n � n̄ for which we wish to evaluate GALI(k), a
specific SVD calculation is required.

For the reversibility error indicator BF, it is possible to use
Eq. (17) to evaluate �BF

n (x) with the possibility of exploring
several realizations of ξ. This requires the evaluation, for each
iteration, of L−1

n (x) or Ln(x), together with the evaluation of
the sum with a selected or a set of selected noise realizations.
This can lead to higher memory demands when several noise
realizations or the time evolution of the indicator needs to
be evaluated. Furthermore, its evaluation at a target iteration
number n̄ does not provide the values for n � n̄, as each eval-
uation requires a different summation and noise realization. If
the map analyzed is symplectic, the corresponding invariant
defined in Eq. (20) can be used, resulting in a computational
effort comparable to the evaluation of LE.

REM, conversely, involves very little computational effort,
as it does not require the evaluation of Ln(x), but only the
execution of the orbit computation twice. This makes REM
very attractive for applications in which no explicit or ana-
lytical expression for the tangent map is available. However,
the evaluation of REM for a target iteration number n gives
no information on its value for lower iteration values, as its
evaluation requires separate backtracking each time.

Finally, for FMA, if the fundamental frequency is eval-
uated using FFT-based methods (see, e.g., [45,47]), consid-
erable effort is required in terms of memory usage, due to
the necessity of storing the entire orbit of M(x, n), then
performing the algorithm. This is not the case if the fundamen-
tal frequency is evaluated using the APA method (see, e.g.,
[45,47]), as the mean can be progressively evaluated without
the need to store the entire orbit history.

Modern parallel computing architectures, such as those of-
fered in general purpose graphics processing units (GPGPUs)
[64], follow the single-instruction, multiple-data (SIMD) ar-
chitecture, that is, they execute the same operations over large
data allocations, using thread wraps of hundreds of processing
cores.

To fully exploit the SIMD architecture, an algorithm must
offer options for scaling up parallelization without strong
penalties in terms of memory management or branching.

Tracking multiple initial conditions in discrete-time maps
is one of the most straightforward processes to implement in
a SIMD architecture, as it can be treated as a problem “em-
barrassingly parallel” [65], and multiple examples of GPGPU
applications can be observed, for example, in charged particle
tracking in accelerator physics [66–71].

The various indicators of chaos presented here offer, in
general, a straightforward conversion to a SIMD approach,
since it is immediately possible to perform the tracking and
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FIG. 11. Color maps of the various dynamic indicators for a modulated 4D Hénon map evaluated at n = 105. It can be seen how the
indicators globally highlight the same structures in phase space, with the exception of FMA, which also shows structures related to resonances.
Note that an arrow at the top of the color bar means that pixels of the top color correspond to a value equal to or greater than the top value.
White pixels correspond to initial conditions whose distance from the origin has exceeded a predefined radius (rc = 102) during the tracking,
before reaching the target iteration number nmax = 108. [Simulation parameters: (ωx0, ωy0) = (0.28, 0.31), ε = 32.0, μ = 0.5.]

the turn-after-turn dynamic indicator evaluation of several
initial conditions. This improvement alone enables mass pro-
cessing of initial conditions for large values of the turn number
nmax, allowing various types of statistical analysis.

However, an exception is given by FMA when evaluated
using FFT-based methods, as it requires one to keep track in
memory of the orbit of any initial condition and then perform
numerical estimates of the fundamental frequencies. Due to
this requirement, scaling up the procedure to a large number of
turns or a large number of initial conditions may lead to mem-
ory limitations. To fully benefit from the SIMD architecture,
we evaluated the fundamental frequency via the APA method
with Birkhoff weights, which does not require the storage of
the entire orbit but only the weighted mean phase advance,
which can be progressively evaluated without high memory
requirements.

A similar limitation is present in the BF reversibility er-
ror, since its direct evaluation, defined in Eq. (17), requires
maintaining track of the entire orbit when there is interest in
evaluating different realizations of ξn. In contrast, REM offers
a straightforward GPGPU approach, since it only requires
explicit forward and backward tracking, without the need to
evaluate the tangent map. We recall that REM evaluates only
the first invariant from a single noise realization, obtained by
exploiting the numerical roundoff.

APPENDIX B: TIME DEPENDENCE
OF DYNAMIC INDICATORS

When considering a large amount of initial conditions to
determine the properties of the corresponding orbits by means
of dynamic indicators, it is possible to obtain an accurate

picture of the phase-space structures, such as regions char-
acterized by regular dynamics and regions where frequency
modulation and nonlinearities induce chaotic behavior. In
Fig. 11 the seven chaos indicators computed for n = 105 are
presented for a set of initial conditions that turned out to be
stable up to nmax = 108. All indicators highlight a region of
regular motion close to the origin and chaotic structures at
higher amplitudes. Generally speaking, the various dynamic
indicators reconstruct very similar shapes for the regular and
chaotic regions of the phase space, with the exception of
FMA. Indeed, this indicator provides a lot of structure even
inside the region that is classified as regular by the other
indicators, and in which the values of the other indicators
are to a high degree of accuracy constant. We inspect the
distribution of values of the various dynamic indicators, com-
puted at a large number of turns. It is possible to observe the
formation of bimodal or, as we shall see for the case of FMA,
three-modal distributions. In Fig. 12 the time evolution of the
distribution of the indicator value is shown. The red lines rep-
resent the threshold that we use to distinguish between regular
and chaotic orbits, whose definition was given in Sec. IV C.

The indicators log10(LE)/n, FLI(x̂)/n, FLIW B(x̂), and
MEGNO(LE)/n have a comparable behavior and globally
tend to cluster regular orbits into an ensemble peaked at
near-zero values, whereas chaotic orbits are part of another
cluster featuring a large spread of values, which correspond
to indicator values that are orders of magnitude higher. To
achieve a valid overview of the value distribution, especially
its tendency to create a bimodal distribution [58,59], we
will consider the logarithm of these three indicators, i.e.,
log10[log10(LE)/n], log10[FLI(x̂)/n], log10[FLIW B(x̂)], and
log10[MEGNO(LE)/n].
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FIG. 12. Distribution of values of the various dynamic indicators as a function of time for a modulated 4D Hénon map. For low values of
the iterations n, the distribution is in general represented by a unimodal function. For higher values of n, we can see the formation of either
two separate clusters, making the distribution bimodal, or an individual cluster with a significant tail. log10(FMA) constitutes an exception,
as it evolves forming a trimodal distribution (also shown in detail in Fig. 7, bottom). The red dashed lines represent threshold values, defined
by our algorithm, representing our criterion to distinguish regular and chaotic orbits. [Simulation parameters: (ωx0, ωy0) = (0.28, 0.31),
ε = 32.0, μ = 0.5].

By direct inspection of the color maps in Fig. 12, it can
be seen how these four indicators generate bimodal distribu-
tions, with the peak corresponding to regular orbits featuring
a clear trend towards zero, and this trend appears to be faster
for log10[FLIW B(x̂)], and log10[MEGNO(LE)/n], due to the
applied filters. log10[FLI(x̂)/n] and log10[FLIW B(x̂)] feature
an increasing spread of values corresponding to chaotic or-
bits, a clear trend of the distribution of regular orbits toward
zero. A similar trend is also observed in log10[log10(LE)/n]
and log10[MEGNO(LE)/n]; however, the current numerical
implementation of LE suffers from numerical saturation for
chaotic orbits that exhibit exponential growth in the values of
the tangent map. This results in a limitation for the spread of
values that can be observed for chaotic orbits at high num-
bers of turns, but, ultimately, the distinction between clusters
remains.

GALI(4) takes values in the interval [0,1], corresponding
to the range of values of the volume of the 4D parallelotope,
constructed by normalized orthonormal displacements. The
unit value is associated with the initial orthonormal displace-
ment, whereas zero implies an exact chaos-induced alignment
of at least two displacement vectors along the direction of
the maximum Lyapunov exponent. Inspecting the indicator
distribution in logarithmic scale, i.e., log10(GALI(4)), high-
lights a bimodal distribution, where the peak corresponding
to the ensemble of regular orbits moves towards small values
of the indicator, following a power-law distribution. More-
over, an ensemble of chaotic orbits creates a tail distribution

of values lower than the regular ensemble, thus creating a
second, smaller-amplitude peak in the indicator distribution.
The presence of the logarithm when evaluating the distribu-
tion of GALI(4) generates a numerical artifact. Indeed, certain
chaotic orbits feature a 4D volume, computed using the SVD
method, that reaches values below numerical precision, which
are consequently registered as zero. We assign to these initial
conditions a value of 10−64, which represents a product of 4
singular values z j = ε ∼ 10−16 with extended precision. The
cluster of these special initial conditions generates yet another
peak in the indicator distribution that is, nevertheless, irrele-
vant in future considerations about the classification of orbits.

The dynamic indicator REM is also considered on a loga-
rithmic scale to better appreciate its behavior. The measured
Euclidean distance for the case of regular orbits ranges from
a few orders of magnitude higher than the numerical preci-
sion ε ∼ 10−16 for small values of n. These indicator values
increase with n following a power law (typically, the peak
reaches 105 for n = 105) due to the accumulation of the
numerical error. Instead, for chaotic orbits, we observe expo-
nential growth that saturates to an almost constant value. This
occurs since chaotic orbits belong to an invariant bounded
set of diameter D so that the saturation value is about ε−1D.
Similarly to GALI(4), we inspect the indicator in logarithmic
scale, i.e., log10(REM).

FMA is based on the evaluation of the Euclidean dis-
tance in the frequency space of the fundamental frequencies
computed over different time intervals. If we inspect its
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distribution on logarithmic scale, we observe how the indica-
tor converges to a three-mode distribution. This configuration
consists of an ensemble of initial conditions rapidly con-
verging to values close to numerical precision, an ensemble
of initial conditions maintaining values above 10−5, and

a well-populated ensemble of initial conditions that con-
nect these two ensembles (this distribution is also shown in
Fig. 7, bottom). Inspecting the logarithm of the indicator, i.e.,
log10(FMA), allows us to inspect the full spread of values
achieved by the various orbits.

[1] C. Siegel and J. Moser, Lectures in Celestial Mechanics
(Springer Verlag, Berlin, 1971).

[2] N. Nekhoroshev, An exponential estimate of the time of stabil-
ity of nearly-integrable Hamiltonian systems, Russ. Math. Surv.
32, 1 (1977).

[3] A. Bazzani, G. Servizi, E. Todesco, and G. Turchetti, A normal
form approach to the theory of nonlinear betatronic motion,
CERN Yellow Reports: Monographs (CERN, Geneva, 1994).

[4] H. Kandrup, C. Siopis, G. Contopoulos, and R. Dvorak, Dif-
fusion and scaling in escapes from two-degrees-of-freedom
Hamiltonian systems, Chaos 9, 381 (1999).

[5] J. D. Szezech Jr., S. Lopes, and R. Viana, Finite-time Lyapunov
spectrum for chaotic orbits of non-integrable Hamiltonian sys-
tems, Phys. Lett. A 335, 394 (2005).

[6] D. Turaev, Polynomial approximations of symplectic dynamics
and richness of chaos in non-hyperbolic area-preserving maps,
Nonlinearity 16, 123 (2003).

[7] C. Froeschlé, R. Gonczi, and E. Lega, The fast Lyapunov indi-
cator: A simple tool to detect weak chaos. Application to the
structure of the main asteroidal belt, Planet. Space Sci. 45, 881
(1997).

[8] V. Arnol’d, V. Kozlov, and A. Neishtadt, Mathematical As-
pects of Classical and Celestial Mechanics. Dynamical Systems
III, 3rd rev. version, Encyclopaedia of Mathematical Sciences
(Springer, Heidelberg, 2006).

[9] G. Turchetti, F. Panichi, S. Sinigardi, and S. Vaienti, Errors,
correlations and fidelity for noisy Hamilton flows. Theory and
numerical examples, J. Phys. A: Math. Theor. 50, 064001
(2015).

[10] C. Skokos, T. Bountis, and C. Antonopoulos, Geometrical
properties of local dynamics in Hamiltonian systems: The Gen-
eralized Alignment Index (GALI) method, Physica D 231, 30
(2007).

[11] C. Skokos and T. Manos, Chaos Detection and Predictability,
edited by Charalampos (Haris) Skokos, Georg A. Gottwald, and
Jacques Laskar (Springer, Berlin, 2016), pp. 129–181.

[12] C. Skokos, T. Bountis, and C. Antonopoulos, Detecting
chaos, determining the dimensions of tori and predicting slow
diffusion in Fermi–Pasta–Ulam lattices by the Generalized
Alignment Index method, Eur. Phys. J.: Spec. Top. 165, 5
(2008).

[13] S. Das, Y. Saiki, E. Sander, and J. A. Yorke, Quantitative
quasiperiodicity, Nonlinearity 30, 4111 (2017).

[14] J. A. Núñez, P. M. Cincotta, and F. C. Wachlin, Information
entropy, Celest. Mech. Dyn. Astron. 64, 43 (1996).
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[18] F. Panichi, K. Goździewski, and G. Turchetti, The reversibil-
ity error method (REM): A new, dynamical fast indicator
for planetary dynamics, Mon. Not. R. Astron. Soc. 468, 469
(2017).

[19] J. Laskar, Introduction to frequency map analysis, in Hamilto-
nian Systems with Three or More Degrees of Freedom, edited by
C. Simó (Springer Netherlands, Dordrecht, 1999) pp. 134–150.

[20] J. Laskar, Frequency map analysis and quasiperiodic decompo-
sitions, arXiv:math/0305364.

[21] M. R. Gallas, M. R. Gallas, and J. A. C. Gallas, Distribution of
chaos and periodic spikes in a three-cell population model of
cancer, Eur. Phys. J.: Spec. Top. 223, 2131 (2014).

[22] R. Meucci, S. Euzzor, E. Pugliese, S. Zambrano, M. R.
Gallas, and J. A. C. Gallas, Optimal Phase-Control Strategy
for Damped-Driven Duffing Oscillators, Phys. Rev. Lett. 116,
044101 (2016).

[23] J. Vélez, J. Bragard, L. M. Pérez, A. Cabanas, O. Suarez,
D. Laroze, and H. Mancini, Periodicity characterization of
the nonlinear magnetization dynamics, Chaos 30, 093112
(2020).

[24] A. E. Botha, Y. M. Shukrinov, J. Tekić, and M. R. Kolahchi,
Chaotic dynamics from coupled magnetic monodomain and
Josephson current, Phys. Rev. E 107, 024205 (2023).

[25] J. Laskar, Frequency map analysis of an Hamiltonian system,
in AIP Conference Proceedings (American Institute of Physics,
New York, 1995), Vol. 344, pp. 130–159.

[26] E. Lega and C. Froeschlé, Numerical investigations of the struc-
ture around an invariant KAM torus using the frequency map
analysis, Physica D 95, 97 (1996).

[27] Y. Papaphilippou and J. Laskar, Frequency map analysis and
global dynamics in a galactic potential with two degrees of
freedom, Astron. Astrophys. 307, 427 (1996).

[28] Y. Papaphilippou and J. Laskar, Global dynamics of triax-
ial galactic models through frequency map analysis, Astron.
Astrophys. 329, 451 (1998).

[29] Y. Papaphilippou, Global dynamics of a galactic potential via
frequency map analysis, in Hamiltonian Systems with Three
or More Degrees of Freedom, edited by C. Simó (Springer
Netherlands, Dordrecht, 1999), pp. 523–527.

[30] J. Laskar, Application of frequency map analysis, in The
Chaotic Universe: Proceedings of the Second ICRA Network
Workshop, Rome, Pescara, Italy, 1–5 February 1999 (World
Scientific, Singapore, 2000), Vol. 10, p. 115.

[31] M. Comunian, A. Pisent, A. Bazzani, G. Turchetti, and S.
Rambaldi, Frequency map analysis of a three-dimensional par-
ticle in the core model of a high intensity linac, Phys. Rev. ST
Accel. Beams 4, 124201 (2001).

[32] J. Laskar, Frequency map analysis and particle accelerators, in
Proceedings of the 2003 Particle Accelerator Conference, edited

064209-17

https://doi.org/10.1070/RM1977v032n06ABEH003859
https://doi.org/10.1063/1.166415
https://doi.org/10.1016/j.physleta.2004.12.058
https://doi.org/10.1088/0951-7715/16/1/308
https://doi.org/10.1016/S0032-0633(97)00058-5
https://doi.org/10.1088/1751-8121/aa5192
https://doi.org/10.1016/j.physd.2007.04.004
https://doi.org/10.1140/epjst/e2008-00844-2
https://doi.org/10.1088/1361-6544/aa84c2
https://doi.org/10.1007/BF00051604
https://doi.org/10.1051/0004-6361:20011189
https://doi.org/10.1111/j.1745-3933.2011.01065.x
https://doi.org/10.1016/j.cnsns.2015.10.016
https://doi.org/10.1093/mnras/stx374
http://arxiv.org/abs/arXiv:math/0305364
https://doi.org/10.1140/epjst/e2014-02254-3
https://doi.org/10.1103/PhysRevLett.116.044101
https://doi.org/10.1063/5.0006018
https://doi.org/10.1103/PhysRevE.107.024205
https://doi.org/10.1016/0167-2789(96)00046-2
https://ui.adsabs.harvard.edu/abs/1996A%26A...307..427P/abstract
https://doi.org/10.1103/PhysRevSTAB.4.124201


A. BAZZANI et al. PHYSICAL REVIEW E 107, 064209 (2023)

by J. Chew, P. Lucas, and S. Webber (IEEE Computer Society
Press, Piscataway, 2003), Vol. 1, pp. 378–382.

[33] Y. Papaphilippou, L. Farvacque, J. Laskar, and A. Ropert, Prob-
ing the non-linear dynamics of the ESRF storage ring with
experimental frequency maps, in Proc. 2003 Particle Accelera-
tor Conference (IEEE, New York, 2003), Vol. 1, pp. 3189–3191.

[34] L. Nadolski and J. Laskar, Review of single particle dynamics
for third generation light sources through frequency map analy-
sis, Phys. Rev. ST Accel. Beams 6, 114801 (2003).

[35] T. Shun-Qiang, L. Gui-Min, L. Hao-Hu, H. Jie, C. Guang-
Ling, and W. Cheng-Lan, Nonlinear optimization of the modern
synchrotron radiation storage ring based on frequency map
analysis, Chin. Phys. C 33, 127 (2009).

[36] D. Shatilov, E. Levichev, E. Simonov, and M. Zobov, Applica-
tion of frequency map analysis to beam-beam effects study in
crab waist collision scheme, Phys. Rev. ST Accel. Beams 14,
014001 (2011).

[37] Y. Papaphilippou, Detecting chaos in particle accelerators
through the frequency map analysis method, Chaos 24, 024412
(2014).

[38] T. Tydecks, S. Aumon, T. K. Charles, B. Haerer, B. Holzer,
K. Oide, Y. Papaphilippou, and J. Wenninger, FCC-ee dynamic
aperture studies and frequency map analysis, in Proc. IPAC’18
(JACoW Publishing, Geneva, 2018), pp. 244–246.

[39] P. Zisopoulos, Y. Papaphilippou, and J. Laskar, Refined betatron
tune measurements by mixing beam position data, Phys. Rev.
Accel. Beams 22, 071002 (2019).

[40] A. N. Kolmogorov, On the conservation of conditionally pe-
riodic motions under small perturbation of the Hamiltonian,
Dokl. Akad. Nauk SSR 98, 527 (1954) [Engl. transl.: Stochastic
Behavior in Classical and Quantum Hamiltonian Systems, Volta
Memorial Conference, Como, 1977, Lecture Notes in Physics
Vol. 93 (Springer, Berlin, 1979), pp. 51–56].

[41] J. Moser, On invariant curves of area-preserving mappings of
an annulus, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. IIa,
Nr. 1, 1 (1962).

[42] V. Arnold, Proof of a theorem of A. N. Kolmogorov on the
invariance of quasi-periodic motions under small perturbations
of the Hamiltonian, in Collected Works: Representations of
Functions, Celestial Mechanics and KAM Theory, 1957–1965
(Springer, Berlin, 2009), pp. 267–294.

[43] J. Pöschel, The concept of integrability on Cantor sets for
Hamiltonian systems, Celestial Mech. 28, 133 (1982).

[44] J. Laskar, C. Froeschlé, and A. Celletti, The measure of chaos
by the numerical analysis of the fundamental frequencies. Ap-
plication to the standard mapping, Physica D 56, 253 (1992).

[45] R. Bartolini, M. Giovannozzi, W. Scandale, A. Bazzani, and E.
Todesco, Precise measurement of the betatron tune, Part. Accel.
55, 1 (1996).

[46] R. Bartolini and F. Schmidt, A computer code for frequency
analysis of non-linear betatron motion, Tech. Rep., CERN-SL-
Note-98-017-AP (1998).

[47] R. Bartolini, A. Bazzani, M. Giovannozzi, W. Scandale, and
E. Todesco, Tune evaluation in simulations and experiments,
Part. Accel. 52, 147 (1995).

[48] G. Russo, G. Franchetti, and M. Giovannozzi, New techniques
to compute the linear tune, in Proc. IPAC’21, International
Particle Accelerator Conference No. 12 (JACoW Publishing,
Geneva, 2021), pp. 4142–4145.

[49] S. Das and J. A. Yorke, Super convergence of ergodic averages
for quasiperiodic orbits, Nonlinearity 31, 491 (2018).

[50] V. I. Oseledets, A multiplicative ergodic theorem. Character-
istic Lyapunov, exponents of dynamical systems, Tr. Mosk.
Mat. Obs. 19, 179 (1968) [Trans. Moscow Math. Soc. 19, 197
(1968)].

[51] E. Lega, M. Guzzo, and C. Froeschlé, Theory and applica-
tions of the fast Lyapunov indicator (FLI) method, in Chaos
Detection and Predictability, edited by C. H. Skokos, G. A.
Gottwald, and J. Laskar (Springer, Berlin, Heidelberg, 2016),
pp. 35–54.

[52] K. Alligood, T. Sauer, and J. Yorke, Chaos, in Chaos: An In-
troduction to Dynamical Systems (Springer, New York, 1996),
pp. 105–147.

[53] P. M. Cincotta and C. M. Giordano, Theory and applications of
the mean exponential growth factor of nearby orbits (MEGNO)
method, in Chaos Detection and Predictability, edited by C. H.
Skokos, G. A. Gottwald, and J. Laskar (Springer, Berlin, 2016),
pp. 93–128.

[54] A. Bazzani, G. Servizi, E. Todesco, and G. Turchetti, A normal
form approach to the theory of nonlinear betatronic motion,
CERN Yellow Reports: Monographs (CERN, Geneva, 1994).

[55] M. Giovannozzi, W. Scandale, and E. Todesco, Dynamic aper-
ture extrapolation in presence of tune modulation, Phys. Rev. E
57, 3432 (1998).

[56] A. Bazzani, M. Giovannozzi, E. H. Maclean, C. E. Montanari,
F. F. Van der Veken, and W. Van Goethem, Advances on the
modeling of the time evolution of dynamic aperture of hadron
circular accelerators, Phys. Rev. Accel. Beams 22, 104003
(2019).

[57] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J.
Poole, and P. Proudlock, LHC design report, CERN Yellow
Rep. Monogr. (CERN, Geneva, 2004).

[58] A. Prasad and R. Ramaswamy, Characteristic distributions
of finite-time Lyapunov exponents, Phys. Rev. E 60, 2761
(1999).

[59] J. C. Vallejo, J. Aguirre, and M. A. Sanjuán, Characterization
of the local instability in the Hénon-Heiles Hamiltonian, Phys.
Lett. A 311, 26 (2003).

[60] Y.-C. Chen, A tutorial on kernel density estimation and recent
advances, Biostat. Epidemiol. 1, 161 (2017).
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