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Enhanced signal response in globally coupled networks of bistable oscillators:
Effects of mean field density and signal shape
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This paper studies a set of globally coupled bistable oscillators, all subjected to the same weak periodic
signal and identical coupling. The effect of mean field density (MFD) on global dynamics is analyzed. The
oscillators switch from intra- to interwell motion as MFD increases, clearly demonstrating MFD-enhanced
signal amplification. A maximum amplification also occurs at a moderate level of MFD, indicating that the
response exhibits a nonmonotonic sensitivity to MFD. The MFD-enhanced response depends mainly on the
signal intensity but not on the signal frequency or the network topology. The analytical investigation provides a
simplified model to study the mechanism underlying this resonancelike behavior. It is shown that by modifying
the bistability nature of the potential energy, the mean field density can promote well-to-well oscillations and
larger amplitude motions. Finally, the robustness of this phenomenon to various signal waveforms is examined.
It can therefore be used alternatively to efficiently amplify weak signals in practical situations with large network
sizes.
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I. INTRODUCTION

Improving the response of a system to a weak input signal
is important in several areas of science and engineering, such
as sensory information processing and perception [1], weak
machine fault detection [2], and the transmission of weak
electrical [3], optimization of low-power harvesting [4], or
all-photonic/phononic transistors [5,6].

Various approaches have been developed to improve the
detection or amplification of external signals in coupled non-
linear oscillators. Among others, vibrational resonance [7],
nonlinear supratransmission [8], or a single impurity [9] can
be used. Optimal heterogeneity in system parameters [10,11]
and phase disorder [12] can amplify weak signals in a reso-
nancelike manner.

The characteristics of the coupling are also crucial in
observing this phenomenon. To illustrate, unidirectional cou-
pling enhances the response to a weak periodic signal [13–16].
For any value of coupling, Acebrón et al. [17] observed no
enhancement of the external signal in all-to-all networks. This
observation has been further corroborated by studies inves-
tigating the effect of coupling diversity between oscillators,
e.g., random scale-free or interactive-repulsive interactions
[17,18], couplings with heterogeneous signs or strengths
[19,20]. It is suggested that the diversity in the coupling of
oscillators promotes a competition-induced resonance effect,
where networks with identical couplings cannot [17–20].
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In contrast to previous investigations [7–14,16–20], the
present paper aims to show that weak signal enhancement
is observed in a resonancelike manner for identically and
globally (all-to-all) coupled oscillators. This coupling topol-
ogy is simple, analytically tractable, and widely used in the
literature on similar topics [7–14,16–20]. For comparison pur-
poses, two other topologies such as star and nearest-neighbor
coupling are briefly considered. Our world consists largely
of networks whose nodes can be neurons (brain), subjects
(social networks, ecology), devices (power grids), devices
(power grids), and elements (chemical reactions and biolog-
ical systems). Therefore, in practice, it may be difficult to
assign a different coupling or system parameter value to each
oscillator in order to enhance the response to a weak external
signal. Because of this practical problem, the present paper
suggests that an identical coupling may alternatively be used
to amplify weak signals in nonlinear physical systems by
assigning the same coupling to all oscillators to achieve this
task.

Previous studies on the behavior of signals in complex net-
works have mostly dealt with the case of different coupling or
system parameters among the system oscillators (or neurons)
[10–12,17–20], whereas the mean field influx density is suffi-
cient for dynamics control in identically coupled systems [21].
This parameter can either promote rhythmogenesis or quench
oscillations in coupled Stuart-Landau and Rössler oscilla-
tors, van der Pol circuits, spatial ecology, and epidemiology
[22–27]. However, the effects of mean field density (includ-
ing both promoting and inhibiting effects) on resonancelike
behavior and weak external periodic signal amplification is
still an open question and the subject of the present paper.

2470-0045/2023/107(6)/064208(8) 064208-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8435-6167
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.064208&domain=pdf&date_stamp=2023-06-16
https://doi.org/10.1103/PhysRevE.107.064208


FRANK THOMAS NDJOMATCHOUA et al. PHYSICAL REVIEW E 107, 064208 (2023)

The present study aims to identify the influence of the
mean field density on the signal response in networks of
coupled oscillators. Following the literature [10–12,18–20],
globally coupled and overdamped bistable oscillators sub-
jected to weak periodic stimuli are taken as a case study.
We find that the signal response exhibits a clear maximum
at an optimal level of mean field density. Remarkably, the
bell-shaped signal response curves produced are comparable
to the weak signal response in the diversity models in the liter-
ature. Through an analytical approach, it is shown that during
the collective oscillation, this resonancelike phenomenon is
driven by the nonmonotonic change in the height of the barrier
and the bistability character of the effective potential energy.
Finally, the robustness of this phenomenon to various signal
waveforms is examined.

II. THE MODEL

The main model used in this study is a mean field
(all-to-all) coupled overdamped and bistable oscillators
[10–12,18–20],

ẋi = xi − x3
i + C

N

N∑
j=1

(αx j − xi ) + f sin(ωt ), (1)

where i = 1, . . . , N , f is the amplitude of external signal, ω

its frequency, C the coupling strength, and the parameter α

controls the influx density of the mean field in the diffusive
coupling [21]. In this study, |α| � 1. This parameter has been
extensively applied in many distinct branches of science and
engineering to control the dynamics of mean field networked
oscillators [21–27]. In the limit of α = 0, the oscillators
are decoupled and modified with an additional self-feedback
term. The case of α = 1 corresponds to the full mean field
diffusion. For decreasing α from 1 to −1, the mean field effect
in the coupling is gradually weakened [21–27].

III. SIGNAL AMPLIFICATION

Without coupling (C = 0) and an external signal ( f = 0),
Eq. (1) represents a single bistable oscillator which has a
double-well potential V (x) = −x2/2 + x4/4 with two bot-
toms centered around x∗ = ±1, provided there are two types
of stable oscillations. For a weak external signal, i.e., f <

fth, depending on the starting state, the oscillator wiggles a
little at the bottom of one of the two wells. For a strong
external signal, i.e., f > fth, the oscillator moves with a con-
siderable amplitude by switching back and forth between the
two wells. The threshold of the amplitude of the external
signal is fth = √

4/27 � 0.3849 [10–12,28]. Throughout this
paper, the parameters considered are N = 50, ω = 0.1, C = 1,
and f = 0.1 < fth. Under this weak signal, the oscillators
in Eq. (1) cannot switch between their two wells at C = 0.
to be a subthreshold, i.e., it does not suffice to induce the
oscillators to jump between the two minima in any additional
force. The numerical calculations are implemented through
the fifth-order Runge-Kutta method with a fixed time step
�t = 0.01, and the initial conditions of the units are randomly
chosen from the two fixed points x∗ = ±1 [10,12,18–20].

FIG. 1. Signal amplification by different values of the mean field
density. The average system response is χ (t ) = N−1

∑N
i=1 xi, for α =

−0.5 (blue), 0.35 (red), and 0.5 (gray), and the input signal S(t ) =
f sin(ωt ) in black. The parameters used are f = 0.1, ω = 0.1,
N = 50, and C = 1.

The average value χ (t ) = N−1 ∑N
i=1 xi is considered as the

representative response of the system [10,12,18–20].
The optimal amplification of the input signal as a func-

tion of α can clearly be observed in Fig. 1 which shows
representative trajectories for α = −0.5 (small oscillations
around the value χ = 0), α = 0.35 (large oscillations between
χ � +1 and χ � −1), and α = +0.5 (small oscillations near
χ = +1). This result suggests that there is an intermediate
(critical) value for which the system responds optimally. The
mechanism underlying this resonancelike behavior is further
analyzed in the following section.

IV. CRITICAL MEAN FIELD DENSITY

In the previous section, it is shown that the variation of
the parameter α is sufficient for increasing the response of
the system. Note that the summation term in Eq. (1) can be
rewritten as

C

N

N∑
j=1

(αx j − xi ) = C(αχ − xi ). (2)

The insertion of Eq. (2) into Eq. (1) yields

ẋi = xi − x3
i + C(αχ − xi ) + f sin(ωt ). (3)

By taking the average of the left-hand-side term of Eq. (3)
as well as all the right-hand term of the same equation, the
following equation is obtained,

χ̇ = γχ − 1

N

N∑
i=1

x3
i + f sin(ωt ), (4)

where the parameter γ is defined by γ = 1 − C(1 − α).
Following Refs. [10,11], the quantity δi = xi − χ is

introduced to represent the trajectory deviation between
xi and the average activity of the system χ . After de-
velopment, N−1 ∑N

i=1 x3
i = χ3 + 3M2χ + 3M1χ

2 + M3, with
M1 = ∑N

i=1 δi, M2 = ∑N
i=1 δ2

i , and M3 = ∑N
i=1 δ3

i . Under the
assumption of a high degree of synchronization between the
unit oscillator, an average activity M1 � 0, M3 � 0. Further-
more, M2 vanishes after an initial transient washes out the
effect of possible different initial xi conditions [11]. The en-
semble dynamics can be therefore translated into

χ̇ = γχ − χ3 + f sin(ωt ). (5)
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FIG. 2. The potential of Eq. (7) for (a) α = −0.9, (b) α = 0,
(c) α = 0.41, and (d) α = +0.9. Solid and dashed lines denote the
potential at t = 0 and t = π/(2ω). The parameters used are the same
in Fig. 1.

This equation describes the overdamped motion of a
particle in a coupling-dependent potential with a periodic
force. Adding the signal to the potential, we get the potential
energy

V (χ, t ) = χ4

4
− γχ2

2
− χ f sin(ωt ). (6)

Since the signal amplitude f is fixed, the magnitude of
mean field density α becomes important to the potential V .
The dependences of V on α at t = 0 and t = π/(2ω) are
illustrated in Fig. 2. For α = −0.9, the potential V is V shaped
with a single well and χ is highly confined [Fig. 2(a)]. With
the increases of α, V turns progressively into a U-shaped
potential and the confinement reduces as the bottom of the
well becomes larger [Fig. 2(b)]. The oscillatory motions are
stable around the equilibrium but with a larger amplitude.
When α reaches α1 = 0.40 [Fig. 2(c)], a two-well configu-
ration appears with a slight barrier (W-shaped potential). The
potential barriers vanish when the external signal arrives at
its maximum or minimum, and the particle can pass over the
barriers. For α = 0.9, the potential barrier becomes higher.
As t evolves, the two barriers periodically rise and fall but
maintain the well [Fig. 2(d)]. In this case the particle cannot
pass over the barriers if it is initially in the potential well. For
α < 0.41 the external signal is a suprathreshold which can
force the particle out of the potential well, and thus α1 = 0.41
is the approximative critical mean field density strength.

The switching between the two wells becomes possible
when the bistability of the potential is destroyed [19,20,28].
The condition for this to happen is given by the condition
that the cubic equation γχ − χ3 + f = 0 have three real
roots [19,20,28]. Theretofore, the necessary condition for the

discriminant is ( f /2)2 − (γ /3)3 = 0, which gives

αcr = C − 1

C
+ 3

C

(
f

2

) 2
3

. (7)

For f = 0.1 in Eq. (7), the critical mean field density
strength is given by αcr � 0.4072, which is in good agreement
with the numerical result α1 � 0.41. In our amplification point
of view, the only dynamical events are well-to-well switching
transitions, and these occur whenever α < αcr. This resonance
is thus fundamentally a threshold phenomenon.

V. SPECTRAL AMPLIFICATION

A. Numerical analysis

To evaluate the amplitude of the input frequency in the
output signal, we calculate the Fourier coefficient η for the
input frequency ω. We use the η parameter instead of the
power spectrum because we are interested in the information
encoded in the frequency ω. For this task the η parame-
ter is a much more compact tool than the power spectrum
[10–12,17–20]. The spectral amplification is computed as fol-
lows: η = Q/ f ,

Q = |〈exp(ιωt )χ (t )〉|

= 2

MT

∣∣∣∣
∫ t0+MT

t0

χ (t )[cos(ωt ) + ι sin(ωt )]dt

∣∣∣∣, (8)

ι2 = −1, | · · · | the complex modulus, and 〈· · · 〉 the time av-
eraging. In our simulation we take M = 50 and t0 sufficiently
long to remove transient dynamics. The integrals in Eq. (8) are
evaluated numerically through the Simpson’s algorithm [29].
The initial conditions are taken sufficiently near to 0 during
the numerical estimate of η [13].

B. Theoretical analysis

To find an approximative analytical solution to Eq. (5),
linear and nonlinear approaches are used.

The linear approach consists in introducing a perturbation
ε(t ) to χ (t ) around the equilibrium point χeq (with f = 0).
The obtained linearized differential equation is

ε̇ = [
1 − C(1 − α) − 3χ2

eq

]
ε + f sin(ωt ), (9)

with

χeq =
{

χ±
eq = ±√

1 − C(1 − α), α < α∗
cr,

χ0
eq = 0, α � α∗

cr,
(10)

where α∗
cr = αcr obtained from Eq. (7) when f = 0. The solu-

tion of Eq. (5) in the linear framework is

χ (t ) =
⎧⎨
⎩

χ±
eq + f sin(ωt+φ2 )√

ω2+4[1−C(1−α)]2
, α < α∗

cr,

χ0
eq + f sin(ωt+φ1 )√

ω2+[1−C(1−α)]2
, α � α∗

cr,
(11)

with the phase shift φ2 = tan−1{[−ω/2[1 − C(1 − α)]},
φ1 = tan−1{ω/[1 − C(1 − α)]}. The calculation of the spec-
tral amplification Q/ f from the solution Eq. (11) is made by
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first computing

Q =
√

Q2
c + Q2

s ,

Qc = 2

T

∫ t0+T

t0

χ (t ) cos(ωt )dt,

Qs = 2

T

∫ t0+T

t0

χ (t ) sin(ωt )dt, (12)

which leads to the result

η = Q

f
=

⎧⎨
⎩

1√
ω2+4[1−C(1−α)]2

, α < α∗
cr,

1√
ω2+[1−C(1−α)]2

, α � α∗
cr,

(13)

with T = 2π/ω.

The nonlinear approach consists of finding an approximate
analytical value of χ (t ) of Eq. (5) using the harmonic balance
method [30], which amounts to seeking χ (t ) in the form

χ (t ) =
H∑

n=1

an cos(nωt ) + an+1 sin(nωt ), (14)

where an are the Fourier coefficients and H is the number of
harmonics. Inserting Eq. (14) (with H = 1) in Eq. (5) and
equating the coefficient of the cosine and sine terms sepa-
rately, one obtains

3a3
1 + 3a1a2

2 − 4a1γ + 4a2ω = 0,

3a2
1a2

4
− a1ω + 3a3

2

4
− a2γ − f = 0.

(15)

Note that χ (t ) = A sin(ωt + φ), A =
√

a2
1 + a2

2 , φ =
tan−1(a2/a1) [30]. After some algebraic manipulations
of Eq. (15), the following relationships are obtained:

η = A
f

,

9A6 − 24γA4 + 16(γ 2 + ω2)A2 − 16 f 2 = 0.

(16)

When η > 1 the system successfully amplified the signal
with the frequency ω, otherwise, the signal decreased. Thus η

stands for the spectral amplification factor.

C. Resonant amplification from mean field density

In Fig. 3, we plot the amplification factor η versus the mean
field density α for the external forcing with an amplitude f
below the threshold value. As predicted, there is an optimum
value of the mean field density for maximum amplification,
the main result of this paper. Notice that our approximate
treatment agrees rather well with the results coming from a
direct numerical integration of the original set of Eq. (1), when
the signal is slow. With α near −1, η � 1.0. The spectral
amplification increases up to a maximal value η > 1 near αcr

in a resonancelike manner, and subsequently drops to η < 1.
For ω = 0.1, the maximal spectral amplification is ηL

max � 10,
ηNL

max � 10, and ηnum
max � 6.367 where L, NL, and num stand for

linear, nonlinear, and numerical, respectively.

FIG. 3. The spectral amplification factor of the system as a func-
tion of the mean field density. The blue colored squares are obtained
by numerically solving Eqs. (1) and (8), while the black colored dots
are obtained from Eqs. (5) and (8). The theoretical results (linear and
nonlinear analysis) are obtained from Eq. (13) (pink area bounded
by the red line) and Eq. (16) (green area bounded by the green
line), respectively. The dashed line is the resonant backbone for both
linear (red color) and nonlinear (green color) cases, respectively. The
frequency is ω = 0.1. The remaining parameters used are the same
as in Fig. 1.

VI. INFLUENCE OF THE SIGNAL SHAPE
ON SIGNAL AMPLIFICATION

In the previous section, it is assumed that the external
signal is a periodic sinusoidal function although the majority
of signals in nature are more complex than sine waves. In
Refs. [12,31], the effect of signal shape on the amplification
has been investigated. In what follows, both signal waveform
and the mean field density effect are analyzed. It is now
assumed that the external signal in Eq. (1) has the form [32]

S(r, t ) = f (1 − r)2

2

1 − cos(ωt )

1 + r2 + 2r cos(ωt )
. (17)

The shape parameter is r (|r| < 1), the period T = 2π/ω

is the time lag between two consecutive pulses, and f is the
amplitude of the driving force S(r, t ). This signal may be ex-
perimentally implemented by electrical circuits as suggested
in Ref. [32].

Figure 4 shows the influence of the shape parameter r
on the driving force S(r, t ). The force S(r, t ) is reduced to
a sinusoidal signal when the shape parameter r = 0, while
for r > 0 and r < 0, S(r, t ) provides respectively broad wells
separated by narrow barriers and deep narrow wells separated
by broad flat barriers. Note that for r → −1 the impulse is
very wider, whereas for r → +1 the width of the impulse is

FIG. 4. Influence of the shape parameter r on the driving force
S(r, t ), for r = {−0.9; −0.5; 0; +0.5; +0.9}, f = 0.1, and ω = 0.1.
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FIG. 5. Influence of the shape parameter r on the critical mean
field density α̃cr. The analytical solution α̃ana

cr (black line) is obtained
from Eq. (21), while the numerical solution α̃num

cr is obtained by
means of Eq. (19) for χ̇ = 0, t = π/(2nω). The critical curve de-
limits the zone between χ∗

0 (blue zone) and χ∗
1,2 (pink zone).

narrow. Thus, it would be interesting to study, as in Sec. V,
the influence of this deformable force on signal amplification.

Taking into account the fact that the S(r, t ) form is difficult
to handle during analytical study, it is transformed through
Fourier’s series [32]. Thus, the equation governing the dynam-
ics of the coupled system is

ẋi = xi − x3
i + C

N

N∑
j=1

(αx j − xi ) + f (1 − r)

2

+ f (1 − r2)

2

+∞∑
n=1

(−1)nrn−1 cos(nωt ), (18)

and the averaged equation is

χ̇ = [1 − C(1 − α)]χ − χ3 + f (1 − r)

2

+ f (1 − r2)

2

+∞∑
n=1

(−1)nrn−1 cos(nωt ). (19)

According to the analysis made in Sec. V B, the approximate
solution of Eq. (19) is given by

χ (t ) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ∗
0 + ∑+∞

n=1
f (1−r2 )(−1)nrn−1 cos(nωt+φn,0 )

2

√
n2ω2+

[
1−C(1−α)−3χ∗2

0

]2
, α � α̃cr,

χ∗
1,2 + ∑+∞

n=1
f (1−r2 )(−1)nrn−1 cos(nωt+φn,1,2 )

2

√
n2ω2+

[
1−C(1−α)−3χ∗2

1,2

]2
, α > α̃cr,

(20)

with

α̃cr = 1 − 1

C
+ 3

2C
3

√
f 2(1 − r)2

2
,

χ∗
0 =

3

√√√√−q +
√

q2 + 4p3

27

2
+

3

√√√√−q −
√

q2 + 4p3

27

2
, (21)

χ∗
1 = 2

√
− p

3
cos

⎡
⎣1

3
arccos

⎛
⎝−q

2

√
−27

p3

⎞
⎠

⎤
⎦,

χ∗
2 = 2

√
− p

3
cos

⎡
⎣1

3
arccos

⎛
⎝−q

2

√
−27

p3

⎞
⎠ + 2π

3

⎤
⎦, (22)

φn,0,1,2 = arctan

(
nω

1 − C(1 − α) − 3χ∗2
0,1,2

)
,

p = −1 + C(1 − α), q = − f (1 − r)

2
. (23)

Furthermore, we obtain, after using Eq. (12),

η = Q

f
=

⎧⎨
⎩

1−r2

2
√

ω2+[1−C(1−α)−3χ∗2
0 ]2

, α � α̃cr,

1−r2

2
√

ω2+[1−C(1−α)−3χ∗2
1,2]2

, α > α̃cr.
(24)

It thus appears that the new critical diversity coefficient α̃cr

depends on the amplitude f of the force and on the shape
parameter r as well.

Figure 5 gives the variation of the mean field density as
a function of the shape parameter r. In this figure, the blue
zone corresponds to a single stable equilibrium χ∗

0 , while the

pink zone corresponds to two stable equilibria states χ∗
1,2. The

analytical solution α̃ana
cr (black line) is obtained from Eq. (21),

while the numerical solution α̃num
cr is obtained from Eq. (19)

for χ̇ = 0, t = π/(2nω).
Figure 6 shows the influence of the shape parameter r and

the mean field density on the signal amplification. As ob-
served in Fig. 6(a), η increases and reaches a maximum value
when α � α̃cr,i, i = 1, 2, 3. On the other hand, when α > α̃cr,i,
i = 1, 2, 3, a decrease in η is observed. Figure 6(b) gives
a comparison between the numerical and analytical investi-
gation for the signal amplification. Note that the analytical
investigation is conducted by solving the system:

ω

π

∫ 2π
ω

0
E (t, a1, a2) cos(ωt )dt = 0,

ω

π

∫ 2π
ω

0
E (t, a1, a2) sin(ωt )dt = 0,

(25)

by means of the Newton-Raphson method coupled with the
Simpson’s algorithm, and the nonlinear function E (t, a1, a2)
is defined by

E = ω[−a1 sin(ωt ) + a2 cos(ωt )] − [1 − C(1 − α)]

× [a1 cos(ωt ) + a2 sin(ωt )]+[a1 cos(ωt ) + a2 sin(ωt )]3

− f

2
(1 − r)2 1 − cos(ωt )

1 + r2 + 2r cos(ωt )
. (26)

Once the unknowns a1 and a2 are determined, the amplifi-
cation coefficient is calculated as in Sec. V B. As observed in
Fig. 6(b), the numerical solution [yellow/blue colored squares
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(a)

(c) (d)

(b)

FIG. 6. Influence of the shape parameter r and the mean field density α on the signal amplification in the case of linear approximation
[(a) with α̃cr,1 ≈ 0.256 446 807 822, α̃cr,2 ≈ 0.336 644 071 523, and α̃cr,3 ≈ 0.394 187 918 494]. (b) obtained for r = 0.9 and r = 0.95. The red
and green colored lines come from Eq. (21), while the yellow and blue colored squares, as well as the black colored dots, are the solutions of
Eqs. (18) and (19), respectively. The simultaneous effect of r and α on η is highlighted in (c) [using Eq. (18) (black colored lines) and Eq. (19)
(blue colored circles)] and (d) [using Eq. (25)]. For all these panels, ω is set to ω = 0.1 and the remaining parameters used are the same as in
Fig. 1.

and black colored dots, obtained using Eqs. (18) and (19),
respectively] coincides with the analytical solution given by
Eq. (25) (red/green colored line) for r = 0.9 and r = 0.95.
Figure 6(c) gives a perfect match between the signal amplifi-
cation coefficient, the 50 coupled units (black colored lines),
and the mean equation (blue colored circles) when the shape
parameter r and the mean field density vary simultaneously.
The same observation is noticed for Fig. 6(d) obtained from
Eq. (25). It follows from Fig. 6 that the shape of the signal
S(r, t ) also plays a significant role in the amplification of the
system response.

VII. INFLUENCE OF THE NETWORK TOPOLOGY ON
SIGNAL AMPLIFICATION

The aim here is to investigate whether a resonantlike the
signal amplification still occurs when the coupling between
the network units changes. For this purpose, the nearest-
neighbor coupling,

ẋi = xi − x3
i + C

2
(αxi+1 − xi ) + C

2
(αxi−1 − xi ) + S(t ),

(27)

as well as the starlike coupling [33],

ẋ = x − x3 + C

N

N∑
j=1

(αx j − x) + S(t ),

ẋ j = x j − x3
j + C(αx j − x) + S(t ), j = 1, 2, . . . , N, (28)

are used, where S(t ) can be a sinusoidal function
[S(t ) = f sin(ωt )] or a deformable periodic function defined
in Eq. (17). Given the form of Eqs. (27) and (28), the
response of the system is obtained through numerical and

semianalytical methods. Note that the numerical simulation is
done with periodic boundary conditions when necessary. The
semianalytical method is based on Eq. (25) with the variables
a1, a2 and the nonlinear function E (t, a1, a2) which now
depends on the number of units [a1 → ai,1, a2 → ai,2,
E (t, a1, a2) → Ei(t, ai,1, ai,2), η = 1

N f

√∑N
i=1 (a2

i,1 + a2
i,2),

i = 1, 2, . . . , N]. Let us specify that the nonlinear function
Ei(t, ai,1, ai,2) is obtained by looking for a solution under
the form xi(t ) = ai,1 cos(ωt ) + ai,2 sin(ωt ). The solution is
further introduced in Eq. (27).

Figure 7 shows the influence of the system topology on the
signal amplification. As observed in Figs. 7(a) and 7(b), the
nearest-neighbor coupling gives qualitatively similar results
compared to all-to-all coupling studied in Sec. V. However,
when the coupling topology is of the star type, the amplifi-
cation of the system exhibits a double-resonance peak [see
Figs. 7(c) and 7(d) for the sinusoidal and deformable function,
respectively] obtained for positive values of the mean field
density α. This result shows that the starlike coupling between
the network units not only influences the shape of the system
response but also contributes to the maximum amplification
compared to the cases of all-to-all and nearest-neighbor cou-
pling cases.

VIII. DISCUSSION AND CONCLUSION

It is well known that mean field density (MFD) plays con-
structive roles in many coupled systems [21]. For example,
this parameter can either promote rhythmogenesis or quench
oscillations in coupled Stuart-Landau and Rössler oscillators,
van der Pol electrical circuits, spatial ecology, and epidemi-
ology [22–27]. Our findings here show that natural systems
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(a)

(c)
(d)

(b)

FIG. 7. Signal amplification as a function of mean field density α and shape parameter r for next-nearest-neighbor coupling [(a) and (b)]
and starlike network coupling [(c) and (d)]. (a) Comparison between numerical simulation of Eq. (27) (solid blue square) and semianalytical
one (solid red diamonds) when S(t ) is a sinusoidal function. (b) Three-dimensional graph comparing semianalytical solutions obtained with
all-to-all coupling (solid lines) and next-nearest-neighbor coupling (solid circles) for different shape parameter values. Amplification from the
numerical simulation of Eq. (28) obtained with a sinusoidal function [(c)] and a deformable one [(d)] for starlike coupling. For all these panels,
ω is set to ω = 0.1 and the remaining parameters used are the same as in Fig. 1.

might profit from the MFD in order to optimize the response
to an external stimulus.

The mainstream idea in optimizing globally coupled oscil-
lator response is based on optimal heterogeneity [7–14,16–
20], whereas the current study shows that it is possible to
achieve the same result in a homogeneous network model
simply by changing the MFD. Therefore, such constructive
effects of MFD in complex systems may deserve more and
more attention in future works.

We have examined the signal response of connected
bistable oscillators to mean field density variations in net-
works. We provide an intriguing type of MFD-enhanced
signal response to external periodic stimulation that is resilient

to density and network size through extensive numerical
simulations. This kind of MFD-enhanced signal response to
periodic external forcing is crucial to the system’s overall
response. In addition, we performed a simple mean field
analysis that can qualitatively match the outcomes of the
simulation. Our research might be very helpful in understand-
ing how other networked systems can respond collectively
to external signals when MFD is present. One research area
that attracts the attention of scientists working on complex
networks is signal propagation [34–36]. This important aspect
is an interesting avenue for future investigation to test how
an enhanced signal response affects signal transport from one
node to another [34–36].
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