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The out-of-time ordered correlator (OTOC) is a measure of scrambling of quantum information. Scrambling
is intuitively considered to be a significant feature of chaotic systems, and thus, the OTOC is widely used as a
measure of chaos. For short times exponential growth is related to the classical Lyapunov exponent, sometimes
known as the butterfly effect. At long times the OTOC attains an average equilibrium value with possible
oscillations. For fully chaotic systems the approach to the asymptotic regime is exponential, with a rate given
by the classical Ruelle-Pollicott resonances. In this work, we extend this notion to the more generic case of
systems with mixed dynamics, in particular using the standard map, and we are able to show that the relaxation
to equilibrium of the OTOC is governed by generalized classical resonances.
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I. INTRODUCTION

The out-of-time ordered correlator (OTOC) has been
proposed as a measure of spreading of information and scram-
bling [1,2]. Recently, it was noticed that for chaotic systems
the short-time behavior is characterized by an exponential
growth which can be directly related (in some cases) to the
classical Lyapunov exponent. A straightforward generaliza-
tion would lead to characterizing systems with exponential
growth as chaotic and naming the growth rate the quantum
Lyapunov exponent. However, this is not a universal behavior.
There are systems that are not chaotic where the OTOC grows
exponentially [3–9], and the converse is also true: there are
systems universally accepted as quantum chaotic where the
growth is much slower [10–15].

Interestingly, a lot of information about the dynamics and
some underlying classical features can be obtained at later
times. After the initial growth of the OTOC, the system ap-
proaches an equilibrium state with oscillations. The study
of both the equilibrium value [16–21] and the oscillations
[13,22] has allowed us to distinguish chaotic from regular
behavior. However, evaluation of equilibrium-based measures
requires evolving up to long times and computing averages
over large time windows. This can be experimentally unattain-
able. Nevertheless, at a much shorter timescales there is
another classical quantity that can be used to characterize the
chaotic nature of a system. In a simplified way, fully chaotic
systems present two main features: exponential separation of
initial conditions (Lyapunov regime) and mixing. The mixing
property implies exponential decay of correlation functions
which is characterized by the largest Ruelle-Pollicott reso-
nance. The Ruelle-Pollicott resonances are the point spectrum
of the Perron-Frobenius operator expressed in a suitably de-
fined functional space [23]. For fully chaotic quantum maps
on the torus, it was shown [24] that the OTOC approaches

equilibrium exponentially, and the rate is given by the classi-
cal Ruelle-Pollicott resonance with the largest modulus.

The case of systems with mixed dynamics (i.e., nei-
ther fully integrable nor fully chaotic), although much more
generic, is less studied. In such systems the Ruelle-Pollicott
resonances are not strictly well defined. However, through
approximation schemes, the spectrum of the Perron-Frobenius
can be obtained. In this case, it is observed that there are
eigenvalues that tend to the unit circle, associated with regular
behavior, and there are other eigenvalues that persist inside
the unit circle and are considered generalized resonances.
The eigenfunctions of these resonances are located in chaotic
regions in phase space [25–29].

In this work, we use numerical methods to obtain the
generalized resonances and establish a correspondence with
the rate of approach to equilibrium of the OTOC, given by the
decay of a four point correlator. The numerical calculations
are done on the standard map [30], which can be parametri-
cally tuned from integrable to chaotic. The values obtained
for the resonances reproduce very well the structure in the
decay rate as a function of the chaos parameter. Interestingly,
we also find that in this case, the quantum evolution is able
to reveal classical related effects such as the appearance and
disappearance of stable islands in the classical phase space.
This is clearly reflected in the rich structure of the decay rates
as a function of the chaos parameter.

This paper is organized as follows. In Sec. II we define
the relevant quantities and observables to be used. In Sec. III
we compute numerically the decay rates as a function of the
chaos parameter for the standard map. Then, in Sec. IV, we
describe the numerical method to compute the spectrum of
the Perron-Frobenius operator. Once we have established the
method to compute the generalized resonances, we show their
relationship to the decay rates in Sec. V, leaving Sec. VI for
the concluding remarks.
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II. OUT-OF-TIME ORDERED CORRELATORS
IN QUANTUM MAPS

Generically, the OTOCs are defined as

C(t ) = 〈|[W (t ),V ]|2〉, (1)

where V and W are two operators, with W (t ) being the
Heisenberg operator at time t , and the average is taken with
respect to an equidistribution of states, which can be viewed
as the infinite temperature state for Hamiltonian systems.
This quantity was introduced by Larkin and Ovchinnikov
to study semiclassical approaches to superconductivity [1]
and received considerable attention later due to its con-
nection to the scrambling of quantum information chaotic
systems and the dynamics of black holes [31–33]. In fact,
when the operators have local support in different regions
of a many body system, the spreading of information can
be quantified by the OTOC. They are called OTOCs mainly
because their expansion as C(t ) = −2(O1 − O2) contains the
term

O1(t ) = 〈W (t )VW (t )V 〉, (2)

which is an out-of-time ordered product, and another correla-
tor, O2 = 〈W (t )2V 2〉.

The early time dynamics of the OTOCs in quantum sys-
tems with a classical chaotic counterpart is rather universal
and can be characterized by exponential growth with time
and saturation, as depicted in the schematic in Fig. 1(a). This
growth shows a clear relationship with the classical Lyapunov
exponent, and it lasts up to the so-called scrambling time at
which this quantity saturates [20,24,34–37]. Thus, it is re-
markable that the short-time dynamics of the OTOCs contains
a signature of the classical behavior. For one-body systems the
saturation time is proportional to the Ehrenfest time [24,34]
(τE ∼ ln D/λ, where D is the Hilbert space size).

After the Lyapunov regime, the approach to equilibrium
of C(t ) is governed by the correlator O1(t ). For fully chaotic
systems this decay is exponential, and it was hinted [38], and
demonstrated for chaotic quantum maps [24], to be related
to classical quantities known as Ruelle-Pollicott resonances
[39–41]. The Ruelle-Pollicott resonances can be loosely de-
fined as the point spectrum of the evolution operator of
classical distribution functions in the case of fully chaotic
systems. A classical dynamical system evolves through the
one step evolution operator defined by

ρ(x, t ) = Ltρ(x, 0) =
∫
M

dx0 δ[x − f t (x0)]ρ(x0, 0), (3)

where ρ(x, t ) is the density of representative points at x in
the phase space at time t in the zero coarse-grained limit, L
is the Perron-Frobenius (PF) evolution operator, f (·) is the
map, and the integral runs throughout phase space M [42].
When defined in L2 the PF is unitary. However, this is rather
restrictive. A way to unveil the spectrum of the PF operator is
to allow for distributions. Then one can define a functional
space adapted to the dynamics, smooth along the unstable
direction and (possibly) singular along the stable dimension.
For uniformly hyperbolic, chaotic systems, the spectrum of
the thus expressed PF operator consists of a point spectrum
and an essential spectrum [43]. The essential spectrum is

FIG. 1. Sketch of the typical time dependence of O1 =
〈W (t )VW (t )V 〉 for mixed quantum maps exhibiting different be-
haviors in the short-, intermediate-, and long-time regimes. At short
times, namely, for times below the Ehrenfest time t < tE , it has an
approximate constant value (blue shading). We name this short-time
behavior the Lyapunov regime because of the exponential growth in
C(t ) = 〈|[W (t ),V ]|2〉 = −2(O1 − O2), with O2 = 〈W (t )2V 2〉 (see
the top panel and [24] for more detail). Next, the correlator has an
exponential decay related to the Ruelle resonances of the classical
map (red shading). The succeeding regime is the power-law regime,
which we associate with regular vestiges of the map (green shad-
ing). For long times, O1 oscillates around his saturation value (cyan
shading).

bounded by a small radius r < 1. The eigenvalues composing
the point spectrum are the Ruelle-Pollicott resonances {λi},
where r � |λi| � 1 [23]. The case λ0 = 1 corresponds to the
invariant density. The correlation function decay is then de-
termined by resonances such that 1 > |λ1| > |λ2| > · · · , and
typically, if there are no degeneracies, it is dominated by λ1.
For quantum maps on the torus in the fully chaotic regime it
has been numerically proven [24] that the decay of O1 is given
by

O1(t ) ∼ |λ1|2t . (4)

The theoretical background for this behavior relies on the
spectral correspondence of coarse-grained propagators of den-
sities, from quantum to classical, in suitable limits (where the
order of limits matters) of zero coarse graining and a vanishing
effective Planck constant [29]. Once the correspondence is
established, a finite gap (1 − |λ1|), typical of chaotic behavior,
leads to decay like Eq. (4). For quantum systems with dissi-
pation it has been shown that the OTOC C(t ), after the initial
Lyapunov growth, decays as Eq. (4) [24,44].

The spectrum in the case of mixed phase space dynamics is
neither as simple to describe nor to compute, and studies about
it do not abound. In [25–27,45] using coarse graining and
truncation schemes, a description of the spectrum is made in
which eigenvalues that are close to the unit circle are identified
with regular island regions, and some persistent (“frozen”)
eigenvalues, with a modulus strictly smaller than 1, can be
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identified as corresponding to densities located in the chaotic
regions of phase space. The latter are “generalized” Ruelle
resonances.

We will show below that for a system with mixed dynam-
ics, the approach to equilibrium displays a clear exponential
regime determined by these so-called generalized resonances.
This is the regime that we study in the paper. We have also
observed a second power-law regime that is far less studied
that lies outside the scope of this work, and we leave it for
future endeavors.

Let us now define the relevant quantities that we will
consider in this work. The numerical calculations will be
done on quantum maps on the 2-torus, more specifically,
the Chirikov standard map [30,46]. After quantization of
the two-dimensional phase space, the periodic properties im-
pose discreteness on the position and momentum, and the
effective Planck constant is related to the dimension of Hilbert
space D as h̄eff = 1/(2πD). The operators we use to evaluate
the OTOCs in quantum maps are the so-called position and
momentum operators

X ≡ US − U †
S

2i
, P ≡ VS − V †

S

2i
, (5)

which are Hermitian and defined in terms of the unitary
Schwinger shift operators US and VS [47]:

VS =
∑

q

|q + 1〉〈q|, US =
∑

q

e2π iq/D|q〉〈q|, (6)

where |q〉 and |p〉 are, respectively, position and momentum
states for a D-dimensional system with periodic boundary
conditions (with q, p = 0, . . . , D − 1). They are related by
the discrete Fourier transform satisfying 〈p|q〉 = e−2π iqp/D

and VS|D − 1〉 = |0〉. In the semiclassical limit X and P ap-
proximate the position and momentum operators, respectively.
Thus, for the OTOC we take the average over the maximally
mixed state ρ = 1/D:

O1(t ) = 〈P(t )XP(t )X 〉 = Tr[P(t )XP(t )X ]/D, (7)

where, for a quantum stroboscopic map that evolves with
the unitary operator U , X (t ) = (U †)t XUt . For the numerical
calculations in the following sections, all the operators are
represented as D × D matrices, and O1(t ) is obtained through
successive matrix multiplications.

III. DECAY OF O1 FOR THE STANDARD MAP

Mixed systems are ubiquitous within Hamiltonian dy-
namics; however, they have been much less studied than
completely chaotic and integrable systems. This is because
the coexistence of different dynamics produces very complex
structures. In this work, we want to understand the effect that
chaotic regions and islands of stability have on the decay of
O1. For this reason, we have focused on the standard map, a
paradigmatic model within both classical and quantum stud-
ies. This is generated by the time-dependent Hamiltonian

H (q, p, t ) = p2/2 + K/(2π )2 cos(2πq)
∑

j

δ(t − j), (8)

where K is the strength of δ kicks. Due to the periodicity of
cos(·) the dynamics can be considered on a cylinder (by taking

FIG. 2. Sample phase spaces for the standard map (9) and K =
0.4, 1, 1.8, 6.6, 17, 18.86 (from left to right, top to bottom). The
labels are the same for every panel. The colors in the bottom left
and middle panels are meant to correspond to the K values used in
Fig. 3. Notice that for very large K (bottom right panel), small regular
islands can be seen.

p mod 1) or on a torus (by taking both p, q mod 1) [46]. We
are interested in the second description. So the corresponding
classical map is

pn+1 = pn + K
2π

sin(2πqn)
qn+1 = qn + pn+1

}
mod 1. (9)

The classical version of this model manifests a regular
to chaotic transition (as a function of driving strength K),
enabling us to benchmark the behavior of the OTOC against
the presence or absence of classical chaos and islands of sta-
bility. For small values of K the dynamics is regular. Below a
certain critical value Kc, the motion in momentum is restricted
by the Kolmogorov-Arnold-Moser (KAM) curves. These are
invariant curves with an irrational winding number that repre-
sent quasiperiodic motion, and they are the most robust orbits
under nonlinear perturbations [48]. At Kc = 0.971635406 . . . ,
the last KAM curve, with the most irrational winding number,
breaks down [49]. Above Kc, there is unbounded diffusion in
p. This critical point is important for the map on the cylinder,
nonperiodic in p, which is not considered in this work. For
very large values of K the motion is essentially chaotic with no
visible islands. However, as K is increased, at approximately
periodic K values, small islands do appear and then disappear.
An illustration of this behavior is presented is presented in
Fig. 2, where we see that there are no islands for large K = 17
and then at K = 18.86 two visible islands reappear.

The quantum standard map is defined by the Floquet evo-
lution operator,

U (K ) = e− i
h̄eff

P2/2e− i
h̄eff

K
4π2 cos(2πX )

, (10)

and its dynamics is given by a sequence of free propaga-
tions interleaved with periodic kicks. The advantage of the
previous formulation is that the numerical implementation
of the time evolution and the corresponding diagonalization
becomes very efficient using fast Fourier transformations [50].
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FIG. 3. |O1| versus time for K = 6.6 (circles) and K = 17
(squares). These two K values correspond to the bottom left and
middle panels in Fig. 2. For K = 6.6, we observe an exponential
decay for 5 � t � 8, and after that we find a power-law regime for
9 � t � 15. On the other hand, for K = 17 only the exponential
regime is observed in the interval 4 � t � 7 before the correlator
function saturates for long times. The dashed black lines in the main
panel were obtained by fitting |O1(t )| ∼ e−γ t . In the inset we show
the case of K = 6.6 in log-log scale, and the black dashed line
corresponds to a power-law fit, |O1(t )| ∼ tα .

For the map we consider, the kick strength is the chaos
parameter.

Let us now consider the behavior of the correlator O1 for
this map and different values of the kick strength K . In Fig. 3
we show a numerical evolution of O1 up to time t = 36 (the
time unit is a period) for K = 6.6 (circles) and for K = 17
(squares). A Hilbert dimension of D = 5000 was used in both
plots. The four different regimes described in Fig. 1 can be
clearly seen for K = 6.6. The dashed black lines in the main
panel correspond to an exponential fit, |O1(t )| ∼ e−γ t , while
in the inset we show the case with K = 6.6 in log-log scale to
expose the power-law regime and the (shifted) black dashed
line marks the corresponding fit. After these regimes, |O1|
slowly reaches the saturation value. In contrast, for K = 17
(main panel in Fig. 3) only the exponential regime between
t = 2 and t = 7 can be observed before saturation. We also
can appreciate differences in the classical phase space struc-
ture in these cases. For instance, notice that for K = 6.6, there
are regular islands in this classical phase space, which are
appreciable with the naked eye (see the bottom left panel of
Fig. 2). In contrast, for the K = 17 case, in the bottom-center
panel of Fig. 2, no regular structures are visible. In Sec. V we
will analyze this relation in more detail. In Fig. 4 we show the
decay rate γ as a function of K obtained by suitably fitting an
exponential in the decay of |O1(t )|. It can be clearly observed
that for small K the decay rate is negligible, and a transition
to strong exponential decay is observed for large K , consis-
tent with chaotic behavior. The oscillating structure, marked
by (almost) periodic dips, corresponds to the appearance or
disappearance of small islands in the classical phase space.

IV. NUMERICAL COMPUTATION OF THE CLASSICAL
SPECTRUM

As we mentioned in Sec. II the Ruelle-Pollicott resonances
are the point spectrum of the PF propagator. In the case

FIG. 4. Decay rate γ as a function of kicking strength K obtained
from fitting the exponential |O1(t )| ∼ e−γ t in suitably chosen time
intervals.

of hyperbolic systems they establish the exponential rate of
relaxation to the classical equilibrium density [39–41]. For
mixed systems, the appearance of regular islands in phase
space generates sticking in these regions, affecting the re-
laxation rate, which, in this case, depends on the size of
the regular regions. In these systems the Ruelle-Pollicott
resonances are not well defined. Nevertheless, generalized
resonances can be obtained using different numerical methods
identifying stable eigenvalues inside the unit circle with eigen-
functions localized inside the chaotic regions [25–27,45].

The task of computing the spectrum of the PF operator is
not simple in any case (chaotic or mixed), and numerical ap-
proximation methods need to be considered. In this section we
present the three methods we considered. The first method
[45,51], which we call the momentum-position method, con-
sists of expressing the Perron-Frobenius operator directly as

(q′, p′|L|q, p) = δ

{
p′ −

[
p + K

2π
sin(2πq)

]}

× δ(q′ − [q + p′]) (11)

in the phase space basis {|q, p)} and in terms of periodic δ

functions on the circle. In this way, the operator is unitary;
thus, the spectrum is located in the unit circle. In order to study
relaxation in these systems, one can coarse grain the dynamics
by adding noise, leading to a nonunitary operator. This can be
done by replacing the δ function in the above expression by

δ(x) →
∑

j

1

πs
exp[−(x − j)2/s], (12)

where s is a real parameter. Then, the approximate spectrum is
obtained by diagonalizing the operator in a reduced basis of D
vectors. Ideally, the resonances are obtained by diagonalizing
the operator for a finite value of s and then taking the limit of
noise to zero.

The second method [27,28,45] consists of express-
ing the PF operator in the Fourier-transformed phase
space, (q, p|k, m) = exp(imq) exp(ikp)/(2π ). In this case,
noise is required for the convergence of the eigenvalues
[24,28,29,45,52], especially for values of K where the phase
space is mixed. Thus, after adding noise to q with variance σ 2,
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FIG. 5. Eigenvalues of the truncated Perron-Frobenius operator computed with the Fourier method. The left panel corresponds to K = 6.6,
and the right panel corresponds to K = 17. In these cases we can see that there is a gap between the two leading eigenvalues such that |λ| < 1,
which lies on the real axis (big stars). We see that, in general, the larger the chaos parameter K is, the smaller the leading eigenvalues are. The
matrix dimension is D = 30 in both plots.

the evolution operator can be written as

(k, m|L(σ )|k′, m′) = Jm−m′ (k′ K ) exp

(
− σ 2

2
m2

)
δk−k′,m,

(13)

where Jν (x) is the Bessel function of the first kind and σ

is the noise parameter. Finally, we diagonalize a D × D ma-
trix which represents a coarse-grained approximation of the
PF operator. We will refer to this procedure as the Fourier
method. The advantage of this approach is that the thicker the
coarse grain is, the greater the importance of the low modes
associated with big structures of phase space is. Namely, a
low-dimensional matrix approximation can recover important
features of the phase space, discounting the influence of small
structures which usually are regular. The latter carries an
advantage in terms of numerical efficiency.

In Fig. 5 we exhibit an example of the spectrum for the
truncated Perron-Frobenius operator for K = 6.6 (left panel)
and K = 17 (right panel). The greater eigenvalue has modulus
1, and the next one is the leading eigenvalue λ1, which we will
associate with the decay of |O1|. In this case, we observe that
the modulus of the leading eigenvalue for K = 6.6 is greater
than the 1 for K = 17. As we will show below, the smallest
eigenvalues are associated with higher decay rates.

Finally, we have also considered the Ulam method [53] to
calculate the leading eigenvalues of the PF operator. This pro-
cedure consists of dividing the phase space into Nd = M × M
cells and propagating Nc trajectories on one map iteration
from each cell j. Then the matrix Si j is defined by the relation
Si j = Ni j/Nc, where Ni j is the number of trajectories moving
from a cell j to a cell i. By construction

∑
i Si j = 1, and

therefore, the matrix Si j ∈ RNd ×Nd pertains to the class of
PF operators (see [54,55]) and can be considered a discrete
approximation of the PF operator of the continuous classical
map [56]. However, we have observed that when there are
regular regions present, this method is less accurate, so we
favor the other two methods.

V. CLASSICAL DECAY OF O1

In Sec. III we showed examples of the decay |O1(t )| for
different values of the parameter K , as well as the dependence
of the decay rate on the chaos parameter. Here, we will show
evidence that the decay rate of |O1| shown in Fig. 4 is closely
related to |λ1| by

γ ≈ −2 ln(|λ1|). (14)

We can stress that the left hand side of the equation is obtained
from the quantum decay rate of |O1|, while the term on the
right hand side is a classical quantity. To this end we used
the methods described in the preceding section to calculate
the leading eigenvalue |λ1| (with modulus smaller than 1) of
the Perron-Frobenius operator. For the momentum-position
method we choose a noise value s = 0.001 that is based on
previous work [51], while for the Fourier method the noise
is σ = 0.2. For the Ulam method, we have observed that
the results for the mixed dynamics case do not fit the ones
obtained from the decay rates of |O1| (data not shown).

In Fig. 6 we show the leading eigenvalues of the Perron-
Frobenius operator |λ1| that, according to Eq. (14), is
equivalent to the quantity e−γ /2 obtained from the decay of
|O1|. In Fig. 6 we can see good agreement between the res-
onances obtained from both methods and the data obtained
from the fitted decay rate. From this it is evident that |λ1|, in
general, decreases with the chaos parameter K . However, we
also observe that for large values of K , even the system seems
to be in a fully chaotic region, and there are some bumps in
the curve. Below we show evidence that the four “bumps,” at
K ∈ [8, 11], K ∈ [12, 14], K ∈ [15, 17], and K ∈ [18, 20], are
associated with the recovery of regularity in the phase space
of the classical map.

A systematic way to show this is to estimate the area in
phase space Areg occupied by the regular islands as a function
of the chaos parameter K . To do so we randomly choose a
large number Ntot of initial conditions. We evolve them with
the map, but we introduce a hole in the chaotic region. By
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FIG. 6. Absolute value |λ1| of the leading eigenvalue of the
Perron-Frobenius operator as a function of K . The black line
corresponds to the momentum-position method, and the red line
corresponds to the Fourier method. These are compared to the values
obtained from the decay rate of |O1| as e−γ /2 (blue circles); the error
bars are least squares errors due to the fit. For the Fourier method
the dimension of the PF approximation was D = 30, and the noise
parameter σ = 0.2, while for the momentum-position method we
used D = 90 and s = 0.001.

evolving for a large enough time, the only remaining points
Nr will be those that were initially inside the regular regions,
which are disconnected from the chaotic ones. After a large
number of time steps, an approximation of the regular area is

Areg ≈ Nr/Ntot. (15)

If the whole phase space is chaotic, then Areg → 0. In Fig. 7
we show how the appearance of islands is manifested in the
bumps of the black lines, and these are directly related to the
bumps that appear in both the calculation of the resonance |λ1|
and the decay rate of |O1|.

Thus, our results suggest that the intermediate times of the
quantum out-of-time order correlator O1 are governed by clas-
sical magnitudes and structures. In this case, the eigenvalues
of the PF operator play a role similar to the Ruelle-Pollicott
resonances in fully chaotic systems. At the same time, these
eigenvalues inherit some characteristics of the phase space

FIG. 7. The black thick line (left y axis) represents an estima-
tion of the area of phase space occupied by regular regions for the
standard map as a function of K . The light blue line (right y axis)
corresponds to the calculation of |λ1| using the momentum-position
method.

structure, as we showed by analyzing the revivals of regular
islands in the chaotic region.

VI. FINAL REMARKS

Although the OTOC has been around for quite some time,
it only recently attracted a lot of attention. The main mo-
tivation is related to understanding scrambling of quantum
information. The other motivation, no less important, is asso-
ciated with the characterization of the deep relation between
chaos and scrambling. As such, there are classical quantities
that can emerge from the time behavior of the OTOC. The
Lyapunov exponent is the most widely known example be-
cause of the butterfly effect. However, the chaotic behavior
is also characterized by relaxation, and this is governed by
the Ruelle-Pollicott resonances. In this work, we have ex-
tended the results obtained in [24] by showing that for a
mixed system, generalized resonances dominate the approach
to equilibrium (or to the asymptotic behavior) of the OTOC for
a wide range of chaos parameter. The results were obtained
for the quantum standard map, which is a kicked system,
which depends on one parameter, which allows us to cover
regions ranging from fully integrable to fully chaotic. In fact,
we have also been able to show that the variations in the decay
rates mimic very well the intricacies and variations of the
resonances that reflect the appearance (and subsequent dis-
appearance) of small regular islands for certain quasiperiodic
values of the kicking strength.

Unveiling the classical skeleton of quantum complex sys-
tems has at least two visible advantages. One is that the
classical quantities determining some aspects of quantum
time behavior may provide conceptually rich insight and, in
some cases, may be easier to compute. Second, in the cases
where there is no clear classical analog, they can provide
powerful tools for semiclassical approaches [57]. We expect
to make advances in that direction in future efforts.
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APPENDIX: EIGENVALUES OF THE
PERRON-FROBENIUS OPERATOR

As we discussed in Sec. I, the different decay rates γ

of the correlator are related to the eigenvalue λ1 of the
Perron-Frobenius operator which has the greatest modulus
such that |λ1| < 1, i.e., the leading eigenvalue inside the unit
circle in the complex plane (|λ0| = 1 > |λ1| > |λ2| > · · · >

0). Therefore, in order to calculate these eigenvalues, the
PF operator is approximated by a finite-dimensional one of
dimension D. Here, we show that, for fixed noise in position
σ = 0.2, the eigenvalues of the Perron-Frobenius operator
converge rapidly using the Fourier method. In Fig. 8 we show
|λ1| in terms of the chaos parameter for increasing matrix
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FIG. 8. Top: Eigenvalues |λ1| of the PF operator computed with
the Fourier method versus the chaos parameter for increasing values
of D and noise σ = 0.2. Bottom: Eigenvalues |λ1| of the PF operator
calculated with the Fourier method without noise (blue dashed lines)
and e−γ /2 obtained from decay rates γ (black dots and solid line)
versus the chaos parameter. The eigenvalues calculated with noise
σ = 0.2 are shown by gray lines. The PF discrete matrix has dimen-
sion D = 30.

dimensions. It is clear that for D � 22 the eigenvalues associ-
ated to the different values of K converge to their asymptotic
value. As we mentioned in the main text, we need to add a
given amount of noise to the calculation in order to converge

FIG. 9. Ulam eigenvalues versus K for different matrix dimen-
sions D. For these values, D = 30, 40, 50 (orange, blue, and green
lines, respectively), we show the eigenvalues calculated with the
addition of noise with normal distribution N (0, h̄eff ) with h̄eff =
1/2πD. We also show the eigenvalues for D = 30 without noise (red
line).

to the value of λ obtained from the decay of O1. This can be
observed in Fig. 8, where we show |λ1| calculated with and
without noise along with the corresponding e−γ /2 obtained
from the decay rate of |O1| [see Eq. (14)]. It can be seen
that in the regions of K where there are bumps in the decay
rates (islands in the classical phase space), the eigenvalues
|λ1| do not converge to the fitted values. For these regions,
the addition of noise is essential.

In Fig. 9 we show |λ1| computed using the Ulam method
for various matrix dimensions. This noise is inspired by a
quantum coarse graining of the map. It can be seen that with
or without noise the approximation of the eigenvalues fails,
mainly in the bumps associated with the recovery of regu-
larity. Although it can be observed that the values obtained
from the Ulam method qualitatively reproduce the bumps that
correspond to the appearance of regular islands, they do not
clearly reproduce the values of the decay rate of |O1| in these
regions (as we pointed out in the main text).
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