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We study the target searches of interacting Brownian particles in a finite domain, focusing on the effect of
interparticle interactions on the search time. We derive the integral equation for the mean first-passage time and
acquire its solution as a series expansion in the orders of the Mayer function. We analytically obtain the leading
order correction to the search time for dilute systems, which are most relevant to target search problems and
prove a universal relation given by the particle density and the second virial coefficient. Finally, we validate our
theoretical prediction by Langevin dynamics simulations for the various types of the interaction potential.
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I. INTRODUCTION

Target search by random walkers is a fundamental process
in a host of phenomena such as diffusion-controlled reactions
[1–10], binding of DNA transcription factors [11–14], animal
foraging [15], the spread of infectious diseases, and fluctu-
ations of stock prices [16]. A central quantity characterizing
the process is the first-passage time, namely, the time taken for
a random walker or a diffusing particle to encounter a target
for the first time. Over the past decades, the random-search
problem has received considerable attention [17–22], in par-
ticular, in the context of optimal search strategies [23–28] and
universal properties in scale-invariant processes [19]; see, e.g.,
recent reviews [29,30] and references therein.

While most studies rely on a single-particle picture, often
a group of particles simultaneously search for a common
target. In this case, the search time manifests the many-
body properties even when searchers are noninteracting: The
order statistic of the first-passage times recorded by indi-
vidual searchers determines the search time and leads to
the characteristic dependence on the number of searchers
[22,23,30–38]. Moreover, searchers often interact with each
other. One example is Mongolian gazelles utilizing acoustic
communication to explore better habitat areas [39]. For such
interacting searchers, one of the fundamental questions is how
intersearcher interaction affects the first-passage time. There
have been several theoretical efforts, mainly in the context
of diffusion-limited reactions, to understand this interaction
effect [40–46]. Most of them are effective coarse-grained
theories, employing several assumptions at hydrodynamic
regimes [40–44], and thus are limited in applicability (which
will be detailed below).

*Corresponding authors: jyi@pusan.ac.kr, y.w.kim@kaist.ac.kr

To address the search problem in interacting systems, we
consider the dynamics of N Brownian particles:

ṙ j = −μ∇r jU +
√

2D ξ j (t ), (1)

where r j is the position of the jth particle, μ is its mobility,
D = μkBT , and ξ j (t ) denotes the Gaussian white noise. The
particles interact with each other via pairwise interaction v(r),
and the total interaction energy reads as U (R) = ∑N

i< j v(ri −
r j ) with R = (r1, r2, . . . , rN ). We regard the target as being
found when one of the searchers reaches the target. Direct
simulations of Eq. (1) for particles, with uniform initial dis-
tribution, interacting via exponential potential show that the
relative change of averaged search time depends on whether
the interaction is attractive or repulsive (see Fig. 1). However,
this observation is a case-specific numerical result and gives
little insight into other situations, for example, where particle
interaction has both attractive and repulsive parts, as observed
in colloidal particles, or where searcher distribution is nonuni-
form.

In what follows, we present a solution to the target search
problem of interacting particles in dilute regimes. To this end,
we obtain the integral equation for the mean first-passage time
(MFPT), which explicitly includes the interaction potentials.
The potential is introduced in the form of the Mayer function,
which allows us to treat the potentials even if they diverge due
to hardcore repulsions at short distances. Then, by solving the
equation iteratively, we find that in the dilute limit the leading
order correction to the MFPT of systems of arbitrary initial
distributions due to interactions is given in the form of virial
expansion, and is independent of the other details of potentials
and search domain shapes.

This paper is organized as follows. In Sec. II, we define
the problem and introduce key quantities. In Sec. III, we in-
troduce the expansion of the MFPT in terms of the interaction
strength, the validity of which is limited to weakly interacting
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FIG. 1. (a) Schematic illustration of Brownian particles (blue
circles) in search of a target (red circle), where the particles interact
with each other via a pairwise interaction v(r). (b) The normalized
relative change in the global mean first-passage time, (τ̄ /τ̄0 − 1)/ρ,
vs the interaction strength v0 when v(r) = kBT v0e−r/σ with σ =
0.5a. τ̄ (τ̄0 ) is the search time averaged over a uniform initial searcher
distribution in the presence (absence) of interactions, and ρ ≡ (N −
1)/V . The solid line represents the theoretical prediction given by
Eq. (23) (see the main text), and symbols are the search times
obtained from Langevin dynamics simulations with N searchers in
a two-dimensional circular domain of radius b, with a target of unit
radius a located at the domain center. Error bars indicate the scale of
statistical error.

systems. To consider arbitrary interaction potentials including
hardcore repulsions, the low-density expansion of the MFPT
is presented in Sec. IV. Assuming short-ranged potential, the
leading-order correction to the MFPT for interacting particles
is explicitly given in Sec. V. Comparison to simulation and
discussion are given in Sec. VI, followed by conclusions in
Sec. VII.

II. SETUP

We consider N Brownian particles searching for a small-
size target T in a d-dimensional finite domain D of volume V .
A schematic presentation of the system is given in Fig. 1(a),
where the Brownian particles and the target are drawn with
blue and red circles, respectively. The stochastic trajectories
of the Brownian particles that start from the initial positions
R0 = (r0;1, r0;2, . . . , r0;N ) are characterized by the N-particle
probability density function (PDF) PN (R, t |R0) of the particle
positions R at time t . The PDF obeys the Fokker-Planck
equation [47–49]:

∂t PN (R, t |R0) = LFP(R)PN (R, t |R0) (2)

with the time derivative ∂t = ∂/∂t and the forward Fokker-
Planck operator

LFP(R) = βD∇ · [∇U (R)] + D∇2, (3)

where β = 1/kBT and ∇ = ∑N
i=1 ∇ri .

The search process terminates when any of the searchers
reach the target boundary, and the particles are restricted from
crossing the domain boundary throughout the process. To im-
plement these conditions, an absorbing boundary condition is
applied at the target boundary ∂T specified as PN (R, t |R0) =
0 when ri ∈ ∂T for any i. Additionally, a reflecting bound-
ary condition is imposed on the domain boundary ∂D as n̂ ·
j(R, t |R0) = 0 when ri ∈ ∂D for any i. Here, n̂ represents a

unit vector normal to the domain boundary, and j(R, t |R0) =
−D(β∇U (R) + ∇ )PN (R, t |R0) denotes the probability cur-
rent.

As mentioned in the introduction, we define the search
time as the MFPT τ (R0), which is a function of the initial
searcher position according to the setup provided above. It is
well known that τ (R0) can be obtained by integrating the PDF
over R and t as

τ (R0) =
∫ ∞

0
dt

∫
dRPN (R, t |R0). (4)

To analyze τ (R0), it is convenient to use the backward
Fokker-Planck equation:

∂t PN (R, t |R0) = L†
FP(R0)PN (R, t |R0) (5)

with the adjoint Fokker-Planck operator

L†
FP(R0) = −βD∇0U (R0) · ∇0 + D∇2

0 , (6)

where ∇0 is the del operator applied on R0. Integrating
Eq. (5) over R and t , we obtain an adjoint equation for τ (R0)
[47–49]:

L†
FP(R0)τ (R0) = −1, (7)

In deriving Eq. (7), we have used the fact that the
target is eventually found in a finite domain, i.e.,
limt→∞

∫
dRPN (R, t |R0) = 0. Then the MFPT can be cal-

culated by solving Eq. (7) with the boundary conditions given
as τ (R0) = 0 if r0,i ∈ ∂T and n̂ · ∇0τ (R0) = 0 if r0,i ∈ ∂D,
which can be derived from the boundary conditions imposed
on the PDF [47].

Solving Eq. (7) directly is challenging due to the interac-
tion potential in the adjoint Fokker-Planck operator Eq. (6).
We aim to make progress in this direction. Before proceeding,
we note that for noninteracting particles, the equation simpli-
fies to D∇2

0τ (R0) = −1, and its solution can be written as
[18]

τ0(R0) = − 1

D

∫
dRG(R|R0), (8)

where G(R|R0) is a dN-dimensional Green function of the
Laplace operator satisfying ∇2G(R|R0) = δ(R − R0) and
the boundary conditions G(R|R0) = 0 if r0;i ∈ ∂T and n̂ ·
∇0G(R|R0) = 0 if r0;i ∈ ∂D [50].

III. INTERACTION STRENGTH EXPANSION

In order to address the interacting searcher problem, we
first introduce a formal expansion of the MFPT in terms of
the interaction strength as follows:

τ (R0) =
∞∑

n=0

τn(R0), (9)

where τn = O(Ũ n) with Ũ = βU and thus the subindex spec-
ifies the order of expansion. By plugging this into Eq. (7) and
collecting the terms according to the order of Ũ , we obtain

∇2
0τn(R0) =

{−D−1 if n = 0,

∇0Ũ (R0) · ∇0τn−1(R0) if n � 1.
(10)

This relationship allows us to establish a mapping between
the search time of interacting searchers to the electrostatic
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problem. As is well known, the search time of noninteract-
ing searchers corresponds to the electrostatic potential arising
from a uniformly distributed charge density, which is captured
by Eq. (10) with n = 0. Moreover, the solution to the order
n equation can also be regarded as the electrostatic potential
generated by the charge distribution prescribed by the interac-
tion potential Ũ (R0) and the solution τn−1(R0) of the order
n − 1 equation, given as

τn(R0) =
∫

dRG(R|R0)[∇Ũ (R) · ∇τn−1(R)]. (11)

By recursively applying Eq. (11) starting from n = 1, the
solution for τn with an arbitrary n can be found [51].

If the interaction strength is weak, the impact of interaction
on the MFPT can be systematically evaluated by calculating
τn order by order. However, particles in most realistic setups
exert excluded volume interactions at close distances, which
are described by diverging potentials. With such potentials,
the integral in Eq. (11) also diverges, and evaluating the MFPT
using a truncated sum of the series Eq. (9) can no longer be
justified. In the following section, we suggest an alternative
approach to resolve this issue.

IV. DENSITY EXPANSION

To evaluate the MFPT of particles interacting with hard-
core potentials, we perform resummation of Eq. (9) in order
to convert it into a perturbative expansion with respect to
density, instead of interaction strength. We accomplish this
goal through two independent approaches. First, we perform
recursive integration by parts on Eq. (11) and isolate the
leading-order term in the dilute density limit. By summing the
terms collected over all orders of n, to our surprise, we arrive
at an expression including the Mayer function of the interac-
tion potential. This can be achieved via a straightforward but
lengthy algebra, which we detail in Appendix A.

Here we instead present a more concise and elegant way
to perform the low-density expansion. To do so, we use the
following identity for the MFPT:

τ (R0) = τ0(R0) + β

∫
dRG(R|R0)∇U (R) · ∇τ (R), (12)

which is obtained by rearranging Eq. (7) as ∇2
0τ (R0) =

−D−1 + β∇0U (R0) · ∇0τ (R0) then by solving it using the
Green function. Defining τ (R0) − τ0(R0) ≡ τU (R0), we
rewrite τU in a manner akin to the virial expansion using
M(R) ≡ e−βU (R) − 1 = ∏

i< j (1 + fi j ) − 1 with the Mayer
function fi j = e−βv(ri−r j ) − 1:

τU (R0) = −β

∫
dRG(R|R0)M(R)∇U (R) · ∇τ (R)

−
∫

dRG(R|R0)∇M(R) · ∇τ (R). (13)

Exploiting the relation −β∇U (R) · ∇τ (R) = −∇2τ (R) −
1/D and integrating by parts, we get

τU (R0) = − 1

D

∫
dRG(R|R0)M(R)

+
∫

dRM(R)∇G(R|R0) · ∇τ (R) (14)

and obtain the integral equation for MFPT as

τ (R0) = τ0(R0) +
∫

dRM(R)G(R|R0), (15)

where G(R|R0) = −G(R|R0)/D + ∇G(R|R0) · ∇τ (R).
Our basic strategy for solving the integral equation (15)

is to expand the search time in the powers of M, whereby
we let τ (R0) = ∑

n=0 τ (n)(R0) with τ (n) containing the nth
power of M. First, neglecting the inter-particle interactions,
the zeroth-order approximation for the MFPT is τ (0)(R0) =
τ0(R0). Replacing τ on the right-hand side of Eq. (15) with
τ (0), we obtain

τ (1)(R0) =
∫

dRM(R)∇ · (G(R|R0)∇τ0(R)). (16)

This agrees with the result of direct resummation presented
in Appendix A [see the derivation of Eq. (A24)]. Continuing
iteration as such, we find τ (n�2) as

τ (n�2)(R0) =
∫

dR1 O1 · · ·
∫

dRn Onτ0(Rn), (17)

where Oi = M(Ri )∇iG(Ri|Ri−1) · ∇i. Summing up, the
modifications of the search time caused by intersearcher in-
teractions rest on Eqs. (16) and (17), and one can truncate the
series upon the degree of pursued accuracy.

In the following sections, we explicitly evaluate the leading
order correction, Eq. (16), and compare it to the results of the
Langevin dynamics simulation.

V. THE LEADING-ORDER CORRECTION TO MEAN
FIRST-PASSAGE TIMES

The Mayer function f (r) becomes negligible at distances
greater than the interaction range σ . Consequently, for di-
lute systems (or, equivalently, short-range interactions) where
nσ d � 1 with density n, the expansion using the Mayer func-
tion fi j is quickly convergent [52]. Collecting terms linear in
f , which only appear in τ (1)(R), we obtain

τ (R0) 	 τ0(R0) +
∫

dR
∑
i< j

fi j∇ · [G(R0|R)∇τ0(R)].

(18)

This equation is one of the main results of our study, which
directly accounts for the impact of interaction on the MFPT
in terms of the Green function, the MFPT of noninteract-
ing searchers, and the interaction potential. The interaction
potential is introduced in the form of the Mayer function,
the validity of which is not restricted to weakly interacting
systems.

To tackle the analytic evaluation of Eq. (18), an instru-
mental element is τ0(R) determined by the Green function
G(R′|R) through the relation (8). The exact expression of
G(R′|R) reads as

G(R′|R) =
∞∑

n1,...,nN =1

(
−1∑N
i=1 λni

)
N∏

i=1

(ψni (r
′
i )ψni (ri )),

where ψk (r) and λk are kth eigenfunction and eigenvalue
of the Laplace operator, respectively [53]. The eigenvalues
are organized in ascending order of magnitude. Noting that
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in the limit of V → ∞, the eigenvalue λ1 with the smallest
magnitude approaches zero, while other eigenvalues remain
finite [54]. Consequently, we can simplify the above expres-
sion considerably if the search domain is much larger than the
target size as

G(R′|R) 	 − 1

Nλ1

∏
i

ψ1(r′
i )ψ1(ri ). (19)

This asymptotic expression of the Green function leads to the
search time of non-interacting searchers as

τ0(R) 	 V N/2

NDλ1

N∏
i

ψ1(ri ), (20)

where we let
∫

dr ψ1(r) 	 V 1/2, using the fact that the nor-
malized eigenfunction ψ1 is nearly constant, except in the
region close to the target. Integrating τ0(R) over a uniform
initial distribution, one obtains the well-known expression of
the first-passage time of noninteracting searchers given as
1/(Nλ1D) [22].

By substituting Eq. (19) into Eq. (18) and performing
the integrations, the interaction effects can be estimated. For
interactions with a range shorter than the system size, σ �
L ∼ V 1/d , by following the steps detailed in Appendix B, we
obtain the second main result, an expression of the MFPT for
searchers with a given R0:

τ (R0) 	 τ0(R0)

[
1 − 4

3

N − 1

V
B2

]
, (21)

where B2 is the second virial coefficient defined as

B2 ≡ −1

2

∫
dd r [e−βv(|r|) − 1]. (22)

As a corollary, the same relation holds for the global
mean first-passage time (GMFPT), i.e., MFPT aver-
aged over arbitrary initial distributions of searchers: τ̄ ≡∫

dR0 τ (R0)P0(R0) with an initial distribution P0(R0):

τ̄ 	 τ̄0

[
1 − 4

3

N − 1

V
B2

]
. (23)

It is important to note that our formulation considers arbitrary
initial distributions of interacting searchers, and we find that
the correction due to interactions is given in a universal way:
Remarkably, the initial position dependence and the interac-
tion effect are decoupled and appear in the factorized form
in determining MFPT. Moreover, the correction arising from
interaction is in the form of a virial expansion, proportional
to the particle density and the second virial coefficient of the
interaction potential, whereby other details, such as domain
shapes, play no role.

The relation (21) predicts how the sign of interaction af-
fects the search time. For repulsive interactions, the second
virial coefficient is positive, and the search time is shorter
than the noninteracting, ideal case and further decreases with
increasing interaction strength. Attractive interactions act op-
positely and slow down the search process. This is consistent
with our numerical results presented in Fig. 1(b) and can be
intuitively understood by considering how the particle distri-
bution close to the target boundary changes as the interaction

−0.02 0.00 0.02
−0.05

0.00

0.05

τ̄
/
τ̄ 0
−
1

FIG. 2. GMFPT vs the second virial coefficient B2 times the
searcher density. Open symbols represent simulation results of
GMFPT for systems with a uniform searcher distribution for three
different types of interactions: exponential (black), hardcore (cyan),
and Sutherland (magenta). In comparison, inhomogeneous searcher
distributions are considered as Gaussian with the width of 16a and
varying center positions (0, 9a, and 18a from the domain center). The
solid line represents our theoretical prediction, Eq. (23). Simulations
were performed over a broad range of parameters, including N =
3–23 and various interaction values of v0 and σ , in a two-dimensional
circular domain of radius b = 15a–35a with a target of radius a (unit
length). For each point, the statistical average is taken over more than
107 ensembles, giving error bars typically smaller than symbol sizes.

turns on. The target area is a cavity devoid of particles, caus-
ing an imbalance in force distributions. Therefore, particles
repelling one another are pushed toward the target, shortening
MFPT, whereas attracting particles get shoved away from the
target and take longer MFPT.

VI. SIMULATIONS AND DISCUSSIONS

To verify our prediction quantitatively, we perform the
overdamped Langevin dynamics simulations, considering
N particles with different initial distributions in a do-
main with a small target at the center. In simulations, we
consider three different potentials: (i) exponential, v(r) =
v0kBT exp(−|r|/σ ) with an interaction strength v0 and a de-
cay length σ ; (ii) hardcore potential of radius σ , v(r) =
∞ for |r| < σ and 0 otherwise; and (iii) Sutherland poten-
tial, v(r) = ∞ for |r| < σ and −v0kBT (σ/r)6 otherwise. In
simulating hardcore interactions, we let the particles repel
along the line connecting their centers until there is no over-
lap between them. To investigate the dependence on initial
searcher distributions, we consider not only a homogeneous
uniform distribution (open symbols) but also an inhomoge-
neous Gaussian distribution (filled symbols) with its center
lying at different radial distances. While GMFPTs change
significantly depending on the initial distribution [55], the
relationship between the search time of interacting particles
and noninteracting particles still holds. In simulations, we
consider the effective volume fraction φ = nσ d up to the
order of 10−1, which covers the most relevant range in target
search problems. To demonstrate the universal feature, we plot
the relative changes in GMFPTs together in Fig. 2 for all
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different distributions and potentials. For various values of the
searcher number N , the domain size b, the interaction range
σ , and the interaction strength v0 considered here, all data
points show a good agreement with the theoretical prediction,
Eq. (23), represented as a straight line, clearly demonstrating
the validity of our theory. Formulated in terms of the Mayer
function, our theory applies to potentials diverging at short
distances, such as the hardcore potential. Intermolecular po-
tentials usually consist of a short-range hardcore repulsion and
a smooth, relatively long-range attraction, as in Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory. For the potential
of such type combining repulsive and attractive interactions,
it is not obvious, even at a qualitative level, to predict the effect
of interactions on the search time. Our result of Eq. (23), how-
ever, provides an explicit answer: the second virial coefficient
determines the search time.

There exists an approach similar to ours called the general-
ized Smoluchowski theory [40–43]. This approach introduces
the collective diffusion coefficient to account for interactions
and relates it to the osmotic pressure derived for equilib-
rium [56]: D(ρ) = M(ρ) d�(ρ)/dρ with a density-dependent
mobility M(ρ) and the equilibrium osmotic pressure �(ρ)
[40–43]. Then, assuming a steady state, ∂tρ = 0 = −∇ · J
with hydrodynamic flux J = −D(ρ)∇rρ(r, t ), one defines
the stationary reaction rate κ = cd (r)J (r) with cd = 2πr for
two dimensions (2D) and cd = 4πr2 for 3D. Integration of
this equation leads to 2πDβ�(ρ∞)/ ln(b/a) for 2D and κ =
4πDaβ�(ρ∞) for 3D with a bulk density ρ∞ [41–43], which
gives the inverse of the mean first-passage time.

The approach described above cannot seize the initial con-
figuration R0 dependence such as Eq. (21) obtained in our
theory, and consequently fails to provide a correct under-
standing of the simulation results. The reason is apparent. As
formulated using the homogeneous steady-state solution, this
approach cannot incorporate (i) nonstationary distributions
and (ii) the contribution of the transient state. In this aspect,
we note that the main result, Eq. (21), provides an essential
picture of the first-passage time of interacting searchers be-
yond the diffusion-limited reaction theory.

Our main result considers the search time in the large vol-
ume limit, or equivalently, the dilute density regime, which is
most relevant in the context of the target search. If the particle
density or the Mayer function is large (e.g., due to strong
attractive interaction), our results are no longer valid, and al-
ternative approaches are necessary. In semidilute regimes, the
GMFPT deviates from the linear, leading order behavior, and
the higher-order terms neglected in Eq. (18) would contribute.
For the case of strongly attracting particles, the aggregation
occurs as particle density increases, and the searching dynam-
ics may show abrupt changes as a result of the clustering of
the particles, as reported in Ref. [46]. In deriving Eq. (21), we

also assumed the short-ranged interaction decaying faster than
r−d . Otherwise, the integral in evaluating B2 is dominated by
large distances and may diverge [52]. Therefore, in the case of
long-range interactions such as Coulomb potential, the search
time cannot be expressed in the form of a virial series.

VII. CONCLUSION

We have studied random target searches by interacting
Brownian particles with arbitrary initial distributions in a
confined space. Target searches become important when the
searcher density is low; therefore, we have considered expan-
sion using the Mayer function and derived the leading order
correction to MFPT in the dilute searcher density limit. The
universal features of the MFPT acquired from such consider-
ation are as follows: The second virial coefficient determines
the correction due to intersearcher interaction, and the effect
of initial searcher distribution appears in the factorized form.
We have verified our theory by comparing the theoretical
expectations with the Langevin dynamics simulations for var-
ious forms of interactions and different initial distributions. In
future studies, it would be interesting to extend the formalism
presented in the current work to consider the random target
searching by polymers and Kramers barrier crossing problem
for interacting particles.
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APPENDIX A: RESUMMATION OF INTERACTION
STRENGTH EXPANSION

In this section, through algebraic manipulations and
volume-order counting, we show that the leading-order term
of the Mayer function expansion, Eq. (16), can be reproduced
by resuming the terms obtained from the interaction strength
expansion, Eq. (11). We start by performing integration by
parts on Eq. (11) and obtain

τn(R0) = I1 + I2 (A1)

with

I1 = −
∫

dR Ũ (R)∇G(R|R0) · ∇τn−1(R), (A2)

I2 = −
∫

dR Ũ (R)G(R|R0)∇2τn−1(R). (A3)

For terms of order n � 2, we plug Eq. (11) for τn−1 into I1 and
I2, which gives

I1 = −
∫

dR
∫

dR′ Ũ (R)[∇G(R|R0) · ∇G(R′|R)][∇′Ũ (R′) · ∇′τn−2(R′)],

I2 = −
∫

dR′ Ũ (R′)G(R′|R0)∇′Ũ (R′) · ∇′τn−2(R′).

Here, R′ = (r′
1, r′

2, · · · , r′
N ) and ∇′ = ∑N

i=1 ∇r′
i
.
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In the following, we show that I1 can be neglected in comparison to I2 in the large domain volume V limit. To achieve this,
we track how I1 and I2 scale with V by employing the large volume asymptotic expression of the Green function, Eq. (19) of the
main text. This leads to

I1 	 − 1

N2λ2
1

�1(R0)

[∫
dR Ũ (R)∇�1(R) · ∇�1(R)

][∫
dR′ �1(R′)∇′Ũ (R′) · ∇′τn−2(R′)

]
,

(A4)

I2 	 1

Nλ1
�1(R0)

[∫
dR′ �1(R′)∇′

(
1

2
U 2(R′)

)
· ∇′τn−2(R′)

]
,

where �1(R) = ∏N
i=1 ψ1(ri ). Here, λ1 = O(V −1) and

�(R0) = O(V −N/2) according to the scaling properties of the
principal eigenvalue and eigenfunction (with an additional
logarithmic factor in two dimensions). For both I1 and I2, the
integrands for dR′ have an identical structure of

�1(R′)∇F (U ) · ∇′τn−2(R′),

where F (U ) is a function of U . Since we consider short-
ranged interactions, F (U ) does not contribute to the scaling
with the volume, and the volume scaling exponents of the
integrals of R′ are the same.

In the meantime, I1 has an additional factor that includes
integration over dR as shown in Eq. (A4). The integrand of
this part can be written as∫

dRU (R)∇�1(R) · ∇�1(R)

=
∫

dR
∑
i< j

ṽi j[∇�1(R) · ∇�1(R)],

= φ(1) + φ(2),

with

φ(1) = N (N − 1)
∫

dR ṽ12∇r1�1(R) · ∇r1�1(R), (A5)

φ(2) = N (N − 1)(N − 2)

2

∫
dR ṽ12∇r3�(R) · ∇r3�(R).

(A6)

Here ṽi j ≡ βv(ri − r j ). In the following, we evaluate how
these factors scale with the volume by going through detailed
calculations.

1. φ(1)

We perform the integration of Eq. (A5) and obtain

φ(1) = N (N − 1)

[∫
dr ψ2

1 (r)

]N−2

×
∫

dr1dr2 ṽ12|∇r1ψ1(r1)|2ψ2
1 (r2), (A7)

= N (N − 1)
∫

dr1dr2 ṽ12|∇r1ψ1(r1)|2ψ2
1 (r2). (A8)

Next, we approximate the short-ranged interaction as ṽ(|r|) =
ṽ0δ(|r|) in the large volume limit with

ṽ0 ≡
∫

dr ṽ(|r|). (A9)

Lastly, we use the following asymptotic relations for the prin-
ciple eigenfunction in the large volume limit:∫

dr |∇ψ1(r)|2ψ2
1 (r) = −λ1

3

∫
dr ψ4

1 (r), (A10)∫
dr ψ4

1 (r) 	 1

V
, (A11)

To obtain Eq. (A10), we have performed integration by parts
and have used the eigenvalue equation ∇2ψ1(r) = −λψ1(r).
For Eq. (A11) we have used the relation ψ1(r) 	 1/

√
V in the

large V limit. Using Eqs. (A11) and (A10), we obtain

φ(1) 	 −λ1ṽ0N (N − 1)

3V
. (A12)

2. φ(2)

Next, we perform integration of Eq. (A6), which leads to

φ(2) = N (N − 1)(N − 2)

2

[∫
dr ψ2

1 (r)

]N−3

×
[∫

dr1dr2 ṽ12ψ1(r1)ψ1(r2)

] ∫
dr3 |∇r3ψ1(r3)|2,

(A13)

= λ1
N (N − 1)(N − 2)

2

∫
dr1dr2 ṽ12ψ1(r1)ψ1(r2), (A14)

	 λ1ṽ0N (N − 1)(N − 2)

2V
. (A15)

Note that both φ(1) and φ(2) are O(V −2).
Gathering all the factors in I1 and I2, we conclude that

I1

I2
= O(V −1), (A16)

and thus I1 can be neglected in the large volume limit: In sum,
it is sufficient to keep I2 in τn(R0). Next, we rewrite I2 as

I2 =
∫

dRG(R|R0)∇
[
−1

2
Ũ 2(R)

]
· ∇τn−2(R). (A17)

By comparing Eq. (11) and (A17), we conjecture that the
dominant part of τn(R0) can be written as

τn(R0) 	 −
∫

dRG(R|R0)∇
[

(−1)kŨ k (R)

k!

]
· ∇τn−k (R).

(A18)

with k is an integer in the interval [1, n]. We verify this con-
jecture with mathematical induction. Assume that Eq. (A18)
is indeed satisfied in the large V limit. We perform integration
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by parts and obtain

τn(R0) 	
∫

dR
[

(−1)kŨ k (R)

k!

]
∇ · [G(R|R0)∇τn−k (R)],

= I (k)
1 + I (k)

2 ,

where

I (k)
1 =

∫
dR

[
(−1)kŨ k (R)

k!

]
∇G(R|R0) · ∇τn−k (R),

(A19)

I (k)
2 =

∫
dR

[
(−1)kŨ k (R)

k!

]
G(R|R0)∇2τn−k (R). (A20)

As is evident from similarity between I1, I2 and I (k)
1 , I (k)

2 in
Eqs. (A2), (A3), (A19), and (A20), I (k)

1 is negligible in com-
parison to I (k)

2 . And, using Eq. (10), we can rewrite Eq. (A20)
as

I (k)
2 =

∫
dRG(R|R0)

[
(−1)kŨ k (R)

k!

]
∇Ũ (R) · ∇τn−k−1(R),

= −
∫

dRG(R|R0)∇
[

(−1)k+1Ũ k+1(R)

(k + 1)!

]
· ∇τn−k−1(R),

where we perform the integration by parts to obtain the last
equality. Therefore, we conclude that if Eq. (A18) is satisfied
for k, it is also satisfied for k + 1. And, according to Eq. (11),
the equation is satisfied for k = 1, and thus Eq. (A18) holds
for any k as long as τn−k (R) is defined. In particular, if k = n,

we obtain

τn(R0) 	 −
∫

dRG(R|R0)∇
[

(−1)nŨ n(R)

n!

]
· ∇τ0(R),

(A21)

=
∫

dR
[

(−1)nŨ n(R)

n!

]
∇ · [G(R|R0)∇τ0(R)].

(A22)

By plugging this into Eq. (9), we obtain

τ (R0) = τ0(R0) +
∞∑

n=1

∫
dR

[
(−1)nŨ n(R)

n!

]
∇

· [G(R|R0)∇τ0(R)] + O(V −2), (A23)

= τ0(R0) +
∫

dR
(
e−βU (R) − 1

)∇
· [G(R|R0)∇τ0(R)] + O(V −2), (A24)

which reproduces Eq. (16).

APPENDIX B: THE LEADING-ORDER CORRECTION
TO MEAN FIRST-PASSAGE TIMES

In this section, we derive the large volume limit asymptotic
expression of the MFPT. We plug Eqs. (19) and (20) into
Eq. (18) and obtain the correction term on the MFPT due to
interparticle interactions as

τ (R0) − τ0(R0) 	
∫

dR
∑
i< j

fi j∇ · [G(R0|R)∇τ0(R)],	 −�(R0)

Nλ1

∫
dR

∑
i< j

fi j∇ · [�(R)∇τ0(R)],

= �(R0)

Nλ1

∫
dR

∑
i< j

fi j

[
1

D
�(R) − ∇�(R) · ∇τ0(R)

]
,

= �(R0)

NDλ1

∫
dR

∑
i< j

fi j�(R) − V N/2�(R0)

N2Dλ2
1

∫
dR

∑
i< j

fi j[∇�(R)]2,

	 τ0(R0)

V N/2

∫
dR

∑
i< j

fi j�(R) − τ0(R0)

Nλ1

∫
dR

∑
i< j

fi j

∑
k

{∇rk �(R)}2.

Using the fact that all particles are identical, we can perform
the sums above to get τ (R0) = τ0(R0)(1 + τ (1) + τ (2) +
τ (3) ) with

τ (1) ≡ N (N − 1)

2V N/2

∫
dR f12�(R), (B1)

τ (2) ≡ −N (N − 1)

Nλ1

∫
dR f12{∇r1�(R)}2, (B2)

τ (3) ≡ −N (N − 1)(N − 2)

2Nλ1

∫
dR f12{∇r3�(R)}2. (B3)

In what follows, we will simplify each term appearing
above by following the procedure similar to Appendices. A 1
and A 2.

1. τ (1)

We first simplify τ (1) as

τ (1) =N (N − 1)

2V N/2

[∫
dr ψ1(r)

]N−2

×
∫

dr1dr2 f12ψ1(r1)ψ1(r2),

	N (N − 1)

2V

∫
dr1dr2 f12ψ1(r1)ψ1(r2), (B4)

where we used the fact that the eigenfunction is almost uni-
form over the space at the large-volume (small-target) limit,
ψ1(r) 	 1/

√
V .
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2. τ (2)

The second contribution made by inter-searcher interac-
tion, τ (2) is given in Eq. (B1). We simplify it as

τ (2) = − N − 1

λ1

[∫
dr ψ2

1 (r)

]N−2

×
∫

dr1dr2 f12[∇r1ψ1(r1)]2ψ2
1 (r2).

Further exploiting the normalization condition for the eigen-
function,

∫
dr ψ2

1 (r) = 1, we find τ (2) as follows:

τ (2) = −N − 1

λ1

∫
dr1dr2 f12[∇r1ψ1(r1)]2ψ2

1 (r2). (B5)

3. τ (3)

Similarly, the third contribution τ (3) given in Eq. (B2) can
be simplified as

τ (3) = − (N − 1)(N − 2)

2λ1

∫
dr1dr2 f12ψ

2
1 (r1)ψ2

1 (r2)

×
∫

dr3 [∇r3ψ1(r3)]2.

Note that the integral over r3 leads to

∫
dr3 [∇r3ψ1(r3)]2 =

∮
dd−1r3 n̂ · [ψ1(r3)∇r3ψ1(r3)]

+ λ1

∫
dd r3 ψ2

1 (r3),= λ1. (B6)

Therefore, we have

τ (3) 	 − (N − 1)(N − 2)

2

∫
dr1dr2 f12ψ

2
1 (r1)ψ2

1 (r2). (B7)

As an interim summary, we conclude that the approximate
search time of interacting searchers is

τ (R0) 	 τ0(R0){1 + τ (1) + τ (2) + τ (3)}, (B8)

	 τ0(R0)

{
1 + N − 1

V

∫
dr1dr2 [e−βv(|r1−r2|) − 1]F (r1, r2)

}
.

(B9)

Here, combining Eqs. (B4), (B5), and (B7), we have defined
F (r1, r2) as

F (r1, r2) ≡ N

2
ψ1(r1)ψ1(r2) − V

λ1
[∇r1ψ1(r1)]2ψ2

1 (r2)

− (N − 2)V

2
ψ2

1 (r1)ψ2
1 (r2). (B10)

4. For short-ranged interactions

Let us now consider a case that the range of interparticle
interactions under one’s consideration, σ , is much shorter than
the size of search domain V 1/d . In this case, one can evaluate
the integral in (B9) analytically. First, we change variable r1 −
r2 = r to get∫

dr1dr2 [e−βv(|r1−r2|) − 1]F (r1, r2)

=
∫

dr [e−βv(|r|) − 1]
∫

dx F (r1, r1 + r). (B11)

Here, the upper limit of the integration over |r| is not a
concern because the Mayer function is appreciable only
for |r| < σ � V 1/d . The function F (r1, r1 + r) can be ex-
panded as F (r1, r1 + r) = F (r1, r1) + r · [∇xF (r1, x)]x=r1 +
· · · . For short-ranged interactions, one can take only
F (r1, r1), neglecting the terms associated with (r · ∇x). The
neglected terms are roughly O(σ/V 1/d ) because the eigen-
function ψ1(r) composing the function F varies over the
length scale of V 1/d . So we can replace F (r1, r2) in (B9) with
F (r1, r1) and get

τ (R)/τ0(R) 	 1 + N − 1

V

∫
dr [e−βv(|r|) − 1]

∫
dr1 F (r1, r1),

	 1 − 2
N − 1

V
CB2,

where B2 is the second virial coefficient given by

B2 = −1

2

∫
dx [e−βv(|x|) − 1],

and, according to Eq. (B10), C is determined by the eigen-
function integrals as

C =
∫

dr
[

N

2
ψ2

1 (r) − V

λ 1
[∇ψ1(r)]2ψ2

1 (r)

− (N − 2)V

2
ψ4

1 (r)

]
.

Lastly, using Eqs. (A10) and (A11), we obtain C = 2/3, lead-
ing to the leading order correction to MFPT given in Eq. (21).
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