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We consider N Brownian motions diffusing independently on a line, starting at x0 > 0, in the presence of an
absorbing target at the origin. The walkers undergo stochastic resetting under two protocols: (A) each walker
resets independently to x0 with rate r and (B) all walkers reset simultaneously to x0 with rate r. We derive
an explicit analytical expression for the mean first-passage time to the origin in terms of an integral which is
evaluated numerically using Mathematica. We show that, as a function of r and for fixed x0, it has a minimum at
an optimal value r∗ > 0 as long as N < Nc. Thus resetting is beneficial for the search for N < Nc. When N > Nc,
the optimal value occurs at r∗ = 0 indicating that resetting hinders search processes. We obtain different values
of Nc for protocols A and B; indeed, for N � 7 resetting is beneficial in protocol A, while for N � 6 resetting is
beneficial for protocol B. Our theoretical predictions are verified in numerical Langevin simulations.
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I. INTRODUCTION

Search processes are ubiquitous in nature and human be-
havior [1–3] with examples ranging from foraging animals
[4,5] to proteins trying to bind on DNA [6–9]. In most of
these examples there is an interest in optimizing the search
process, i.e., minimizing the time taken to reach the target
by varying some underlying parameters of the dynamics. One
preeminent family of efficient search processes is the so-called
intermittent search strategies [10–12]. For these processes, the
searcher or the agent alternates between short- and long-range
steps. During the short-range steps the agent actively searches
for the target. Instead, the long-range steps allow it to explore
new areas of the space. Resetting search processes are exam-
ples of efficient intermittent search processes [13–16], where
after a certain time, random or nonrandom, the agent gives up
on its current path and restarts from some other place; for a
recent review see [17].

While the idea of introducing resetting in a search process
had been used empirically before, a quantitative computation
of the search time was performed first in Refs. [18,19] in
a simple model of a Brownian agent searching for a fixed
target in space. For example, in the simplest case in one
dimension, consider a fixed target at the origin and a Brownian
searcher with diffusion constant D that starts at the initial
position x0 and resets to x0 after an exponentially distributed
random time with rate r. The target is found when the walker
reaches the origin for the first time at t = t f . Hence the
mean search time is just the mean first-passage time (MFPT)
〈t f 〉r (x0) to the origin, starting from x0. One of the main
findings of Ref. [18] was that while the MFPT diverges in
the absence of resetting (r = 0), it is finite for r > 0 and is
given by

〈t f 〉r (x0) = 1

r
(e

√
r/D |x0| − 1). (1)

For a fixed x0, the MFPT in Eq. (1), as a function of r,
has a unique minimum at r = r∗ = R∗ x2

0/D, where the di-
mensionless optimal rate R∗ = 2.53962 . . . is easily found
by minimizing Eq. (1) with respect to r and is given by the
unique root of

√
R − 2 + 2 e−√

R = 0. Thus, not only does the
resetting render the MFPT finite, it can even be optimized by
choosing the resetting rate to be r∗. Subsequently, numerous
models of search processes with resetting found the existence
of an optimal r∗ [20–31]. For simple diffusion with resetting
in one and two dimensions, the optimal r∗ was measured
recently in optical tweezer experiments [32–34].

One naturally wonders if resetting is always advantageous,
i.e., whether the optimal r∗ is strictly positive. This question
has been addressed in several papers for general single-
particle search process subject to resetting. It turns out that in
many search processes, the optimal value of r∗ may undergo
a transition from a nonzero value (resetting is beneficial) to
zero (resetting is detrimental), as one tunes some additional
parameter through a critical value in the underlying search
process [21,24,26,35–44]. A simple example concerns the
diffusive search of a fixed target at the origin in one dimen-
sion as discussed above, but now the searcher, starting and
resetting to x0, is confined in a box [−L, L] with reflecting
boundary conditions [35]. As L → ∞, the MFPT is given by
Eq. (1) with a nonzero r∗. As L decreases, the value of r∗
decreases, and for L � Lc, the optimal resetting rate becomes
zero, i.e., r∗ = 0 [35]. Treating r∗ as an order parameter of this
resetting phase transition, some models exhibit a first-order
transition (where r∗ drops abruptly to zero), but some others
a continuous transition (with r∗ vanishing continuously). In
Ref. [40] a Landau-like theory was developed to study this
resetting phase transition with r∗ as the order parameter.

This issue of the existence of an optimal r∗ has not been
addressed so far, to the best of our knowledge, when the
search for the target is conducted by a team of N searchers
with stochastic resetting. The purpose of this paper is to study
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FIG. 1. Typical trajectories for N = 3 one-dimensional random walkers undergoing independent resetting (protocol A) in the left panel
and simultaneous resetting (protocol B) in the right panel. Different colors correspond to different walkers, and the resetting events are shown
with full black arrows. All the walkers start at x0 > 0 and reset to x0, and t f denotes the first-passage time of the walkers to the target located
at the origin x = 0.

the optimal r∗ as a function of N in a simple model of N
diffusive searchers on a line undergoing stochastic resetting
at a constant rate r. To be precise, we will consider N dif-
fusing particles on a line each with diffusion constant D and
starting at the same initial position x0, with the target fixed
at the origin. Since the search process is symmetric with
respect to the sign of x0, we consider only x0 > 0 without any
loss of generality. For resetting, we will follow two distinct
protocols:

1. Protocol A. In this protocol, each one of the N particles
diffuses and resets to x0 independently with rate r [18]. The
positions of the particles are thus uncorrelated at all times.
For a typical schematic representation of the trajectories see
Fig. 1.

2. Protocol B. Here each one of the N particles diffuses
independently, but they all reset simultaneously to x0 with rate
r [45]. This simultaneous resetting makes the particle posi-
tions correlated at all times t . See Fig. 1 for typical trajectories
under the protocol B.

For N = 1, the two protocols coincide, but they are
different for N > 1. In protocol A, the particles remain non-
interacting at all times. This protocol was first studied in
Ref. [18] with the initial positions of the searchers distributed
uniformly with density ρ (i.e., N → ∞ limit) on one side of
the target at the origin and the authors computed exactly the
Laplace transform of the survival probability of the target up
to time t . From this Laplace transform, the exact asymptotic
behavior of the survival probability at late times was extracted.
In a recent work [46], the two-time correlation function of the
maximum displacement of the N particles (without a target)
was studied numerically. However, the MFPT to a target for
fixed N > 1 has not been studied. Protocol B was recently
introduced in Ref. [45], and it was shown that in the absence
of a target, the system approaches at long times a many-
body nonequilibrium stationary state with strong correlations
between the positions of the particles. The stationary joint
distribution of the positions of the particles was computed
exactly. Despite strong correlations between particles, several

observables such as the distribution of the position of the
kth rightmost particle, the distribution of the successive gaps
between particles, and so on were computed analytically in
the stationary state in the limit of large N [45]. However, the
MFPT to a target for finite N > 1 has not been computed for
protocol B either.

In this paper we compute analytically the MFPT to the
target by N Brownian searchers for both resetting protocols
A and B defined above. For the optimal reset rate r∗, we
find a rather interesting and somewhat surprising result for
both protocols. We show that the MFPT, as a function of the
reset rate r, exhibits a unique minimum at r = r∗. However,
the optimal value r∗ is strictly positive, i.e., the resetting is
beneficial only for N � 7 in protocol A and N � 6 in protocol
B. When N � 8 in protocol A or N � 7 in protocol B, the op-
timal resetting rate becomes r∗ = 0. In those cases the MFPT
is a monotonically increasing function of r with a minimum
at r = 0, implying that resetting will only increase the mean
search time and hence is detrimental to the search process. To
understand the origin of these two magic numbers N = 7 and
N = 6 in the two protocols, it is convenient to continue analyt-
ically our general formula for integer N to real N . Following
the analytic continuation, we show that the actual transitions
take place respectively at Nc = 7.3264773 . . . (for protocol A)
and Nc = 6.3555864 . . . (for protocol B), which turn out to be
the unique roots of two different transcendental equations.

The rest of the paper is organized as follows. In Sec. II
we briefly recall how to compute the MFPT from the survival
probability. In Sec. III and Sec. IV we present the exact
computations of the MFPT, respectively, in protocol A and
protocol B. We conclude in Sec. V and some details of the
computations are presented in the Appendixes.

II. MEAN FIRST-PASSAGE TIME

We consider N Brownian particles that start at x0 > 0 at
t = 0 and undergo stochastic resetting with rate r following
either protocol A or B defined above. We consider a stationary
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target at the origin. Whenever any of the N walkers reach
the origin, the search is terminated. We denote by t f the
first-passage time to the origin by this N-particle process (see
Fig. 1). Clearly t f is a random variable, and we will denote
the MFPT by 〈t f 〉(A)

r,N (x0) for protocol A and 〈t f 〉(B)
r,N (x0) for

protocol B. In order to compute 〈t f 〉(A/B)
r,N (x0) it is useful to

consider the cumulative distribution of t f ,

S(A/B)
r,N (x0, t ) = Prob. [t f � t], (2)

known as the survival probability, i.e., the probability that
none of the walkers have reached the target up to time t . Using
Eq. (2), the MFPT can then be expressed quite generally for
any process as [47–49]

〈t f 〉(A/B)
r,N (x0) =

∫ +∞

0
t

(
−∂S(A,B)

r,N (x0, t )

∂t

)
dt

=
∫ +∞

0
S(A/B)

r,N (x0, t ) dt, (3)

where, in the second equality, we used integration by parts
and assumed that t S(A/B)

r,N (x0, t ) → 0 when t → +∞, which
can be verified a posteriori. Hence to compute the MFPT we
need to compute the survival probability S(A/B)

r,N (x0, t ). We will
now treat protocols A and B separately.

III. PROTOCOL A

In protocol A we have N independent copies of a one-
dimensional resetting random walker (see the left panel of
Fig. 1). These walkers are independent at all times t . Hence

S(A)
r,N (x0, t ) = [Qr (x0, t )]N , (4)

where Qr (x0, t ) is the survival probability of a single walker
in the presence of resetting, starting at x0 > 0 at t = 0. This
survival probability for a single resetting walker has been
extensively studied [18,19]. Let us briefly recall the derivation
here for the sake of completeness.

For a single walker, using a renewal approach, one can
relate the resetting survival probability to the survival prob-
ability without resetting (r = 0), namely [17],

Qr (x0, t ) = e−rt Q0(x0, t ) + r
∫ t

0
dτe−rτ Q0(x0, τ )

× Qr (x0, t − τ ). (5)

This equation can be understood as follows. The first term in
Eq. (5) represents the probability of the event when there are
no resettings in the interval [0, t] and the particle survives up
to t , starting at x0. The probability of no resetting in [0, t] is
e−r t , and it then gets multiplied by the probability Q0(x0, t )
that the particle survives without resetting up to t , leading to
the first term in Eq. (5). In the complementary case when the
walker resets at least once to x0, let us denote by t − τ the time
of the last resetting event before t . Then with probability r dτ

the walker resets at t − τ and with probability e−rτ the walker
does not reset again in [t − τ, t]. In the interval [0, t − τ ] the
survival probability is just Qr (x0, t − τ ), while in [t − τ, t]
the survival probability is Q0(x0, τ ) since there is no resetting
in [t − τ, t]. Using the renewal property of the process we then

take the product of all these probabilities and integrate over all
τ ∈ [0, t], leading to the second term in Eq. (5).

The convolution structure of the renewal equation naturally
calls for the use of Laplace transform with respect t defined as

Q̃r (x0, s) =
∫ ∞

0
Qr (x0, t ) e−s t dt . (6)

Taking the Laplace transform of Eq. (5) and simplifying yields
the result [17]

Q̃r (x0, s) = Q̃0(x0, s + r)

1 − r Q̃0(x0, s + r)
. (7)

Furthermore, the survival probability of a standard one-
dimensional Brownian motion without resetting is given by
the well-known formula [47–49]

Q0(x0, t ) = erf

(
x0√
4Dt

)
, (8)

where erf (z) = (2/
√

π )
∫ z

0 e−u2
du. Its Laplace transform is

given by

Q̃0(x0, s) =
∫ +∞

0
e−st erf

(
x0√
4Dt

)
dt

= 1

s

(
1 − e−x0

√
s
D
)
. (9)

For simplicity, from now on, we rewrite all the variables in
terms of their dimensionless counterparts, i.e.,

S = x2
0

D
s, R = x2

0

D
r, T = D

x2
0

t . (10)

Inserting the result from Eq. (9) in Eq. (7) gives, in terms of
dimensionless variables,

Q̃r (x0, s) = x2
0

D

1 − e−√
S+R

[S + R e−√
S+R]

. (11)

Inverting this Laplace transform formally one gets

Qr (x0, t ) =
∫

�

dS

2π i
eS T 1 − e−√

S+R

S + R e−√
S+R

≡ q(R, T ), (12)

where � denotes the Bromwich contour in the complex
S plane. Plugging this result into Eq. (4) and then using Eq. (3)
we get the dimensionless MFPT

〈Tf 〉(A)(R, N ) = D

x2
0

〈t f 〉(A)
r,N (x0) =

∫ +∞

0
[q(R, T )]N dT . (13)

We inverted the Laplace transform in Eq. (12) numerically and
then evaluated the integral in Eq. (13). In the right panel of
Fig. 2 we compare this theoretical prediction with numerical
Langevin simulation results by plotting 〈Tf 〉(A)(R, N ) as a
function of R, for different values of N . We find excellent
agreement. Physically it is clear that as R → +∞ we expect
the MFPT 〈Tf 〉(A)(R, N ) to diverge since the system constantly
resets and thus never explores the space. This can be seen
by noting that q(R, T ) → 1 as R → +∞ in Eq. (12), and
hence the integral of the MFPT in Eq. (13) diverges. Let
us now investigate the opposite limit R → 0. If the MFPT
decreases at small R, then it is likely that there is a certain
R� > 0 where the curve becomes a global minimum, before
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FIG. 2. Comparison of theoretical and numerical Langevin results for the mean first-passage time as a function of the resetting rate for
protocol A (left panel) and protocol B (right panel). The solid lines with varying markers and colors correspond to the theoretical results given
in Eq. (13) (left panel) and Eqs. (25) and (26) (right panel). The quantity q(R, T ) in Eq. (13) is computed by evaluating the Bromwich integral
in Eq. (12) numerically. The crosses represent the results from numerical Langevin simulations with 105 samples. The different colors and
markers correspond to different values of N , where N goes from 4 to 9 from top to bottom. Notice that in both panels we can observe the
gradual disappearance of the minimum at R� > 0.

starting to increase again and finally diverging as R → ∞ (see
Fig. 2). However, if the MFPT increases for small R, then
clearly R� = 0, provided the MFPT increases monotonically
with increasing R as happens to be the case (see Fig. 2). Thus,
the existence of a minimum R� > 0 can then be investigated
by analyzing the small R behavior of 〈Tf 〉(A)(R, N ).

The small R asymptotic behavior of 〈Tf 〉(A)(R, N ) depends
on the value of N . It can be analyzed using Eqs. (13) and (12),
as shown in detail in Appendix A. In fact, even though the

search process makes sense only for integer N , our analytical
result in Eqs. (12) and (13) can be continued analytically to
real N . Hence, from now on, we will consider N real in this
sense. It turns out that if N � 2, then 〈Tf 〉(A)(R, N ) diverges
as R → 0, if 2 < N � 4, then 〈Tf 〉(A)(0, N ) is finite but the
slope of 〈Tf 〉(A)(R, N ) at R → 0 is negatively divergent, and
finally if N > 4, both the MFPT and its derivative are finite at
R = 0. Let us summarize here the leading small R behavior of
the MFPT for different values of N :

〈Tf 〉(A)(R, N ) ∼
R→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(1−N/2)
πN/2N1−N/2

1
R1−N/2 if N < 2,

− 1
π

ln R if N = 2,

C(A)
N − 2 �(2−N/2)

(N−2) πN/2 NN/2−1 RN/2−1 if 2 < N < 4,

C(A)
N + 4

π2 R ln R if N = 4,

C(A)
N + R

∫ +∞
0 [q(0, T )]N−1 ∂q(R,T )

∂R

∣∣∣
R=0

dT if N > 4,

(14)

where for any N > 2 the constant C(A)
N is given by

C(A)
N = 〈Tf 〉(A)(0, N ) =

∫ +∞

0
erf

(
1√
4T

)N

dT . (15)

For N � 4, the small R behavior of the MFPT above, com-
bined with the divergence as R → ∞, indicates the existence
of a finite R� > 0 for all N � 4. However, for N > 4 one has
to find the condition for a nonzero R� > 0. For N > 4 both the
MFPT and its first derivative with respect to R are finite, and
the sign of the derivative can be either positive or negative,
depending on N . In fact, by taking the derivative of Eq. (13)
and setting R = 0 one gets

∂〈Tf 〉(A)(R, N )

∂R

∣∣∣∣
R=0

= N
∫ +∞

0
[q(0, T )]N−1 ∂q(R, T )

∂R

∣∣∣∣
R=0

dT,

(16)

where, using Eq. (8), one has

q(0, T ) = erf

(
1√
4 T

)
. (17)

Taking the derivative of Eq. (12) with respect to R and setting
R = 0 gives

∂q(R, T )

∂R

∣∣∣∣
R=0

=
∫

�

dS

2π i
eS T

[
1

2 S3/2
e−√

S − 1

S2
(e−√

S − e−2
√

S )

]
.

(18)
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FIG. 3. The derivative of the MFPT at R = 0 in Eq. (16) (pro-
tocol A) and Eq. (29) (protocol B), plotted as a function of N
for 6 < N < 8. The derivatives change sign respectively at Nc =
7.3264773 . . . (protocol A) and Nc = 6.3555864 . . . (protocol B).

This Laplace inversion can be explicitly done to give

∂q(R, T )

∂R

∣∣∣∣
R=0

= (T + 1) erf

(
1√
4 T

)
− (T + 2) erf

(
1√
T

)

+ 2
√

T√
π

(
e− 1

4 T − e− 1
T
) + 1. (19)

Plugging Eqs. (17) and (19) in Eq. (16) gives us the derivative
of the MFPT at R = 0 in terms of a single integral, which
unfortunately is not easy to evaluate explicitly. However, it
can be easily evaluated numerically for all N > 4 using Math-
ematica (see Fig. 3). As N increases beyond 4, the derivative
at R = 0 in Eq. (16) increases, being negative initially, as
can be seen in Fig. 3. As long as this derivative at R = 0
is negative, we have a nonzero R∗ > 0. When the derivative
changes sign and becomes positive, we have R∗ = 0. Using
a dichotomous algorithm, we find that this change of sign
occurs at Nc = 7.3264773 . . . . This is our main result in this
section. It says that the resetting in protocol A is beneficial
for a team of N searchers as long as N < Nc. When N > Nc,
resetting increases the search time and hence is no longer a
useful strategy.

IV. PROTOCOL B

In protocol B the simultaneous resetting (see the right panel
of Fig. 1) induces strong long-range correlations between the
walkers [45]. Hence, the system is not simply N independent
copies of a single resetting random walker. However, since
the resetting happens simultaneously we have a new renewal
equation for the N-particle stochastic process:

S(B)
r,N (x0, t ) = e−rt S(B)

0,N (x0, t ) + r
∫ +∞

0
dτ e−rτ S(B)

0,N (x0, τ ) S(B)
r,N (x0, t − τ ). (20)

The explanation of this renewal equation is exactly similar to Eq. (5), except that one has to think in terms of an N-particle
process as a whole. Now note that without resetting, i.e., for r = 0, the walkers become independent, and hence using Eq. (8)
we have

S(B)
0,N (x0, t ) = [Q0(x0, t )]N =

[
erf

(
x0√
4Dt

)]N

. (21)

As was done in Eq. (5), taking the Laplace transform of Eq. (20) we obtain

S̃(B)
r,N (x0, s) = S̃(B)

0,N (x0, s + r)

1 − rS̃(B)
0,N (x0, s + r)

. (22)

Finally using Eq. (3) we can express the MFPT as

〈t f 〉(B)
r,N (x0) = S̃(B)

r,N (x0, s = 0) = S̃(B)
0,N (x0, r)

1 − rS̃(B)
0,N (x0, r)

. (23)

Inserting Eq. (21) into Eq. (23) we then get an explicit formula

〈t f 〉(B)
r,N (x0) =

∫ +∞
0 dt e−rt

[
erf

( x0√
4Dt

)]N

1 − r
∫ +∞

0 dt e−rt
[
erf

( x0√
4Dt

)]N . (24)

Once again we appropriately rescale the variables to make them dimensionless by setting T = D
x2

0
t and R = x2

0
D r and obtain the

simpler expression

〈Tf 〉(B)(R, N ) = D

x2
0

〈t f 〉(B)
r,N (x0) =

∫ +∞
0 dT e−RT

[
erf

(
1√
4T

)]N

1 − R
∫ +∞

0 dT e−RT
[
erf

(
1√
4T

)]N = h(R, N )

1 − R h(R, N )
, (25)

where for simplicity we introduced the function

h(R, N ) =
∫ +∞

0
dT e−RT

[
erf

(
1√
4T

)]N

. (26)
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We verify this theoretical result by comparing it to numerical Langevin simulations as shown in the right panel of Fig. 2. As
in the case of protocol A, we infer the existence or not of a nonzero optimal R∗ > 0 by analyzing the small R behavior of
Eq. (25). The detailed derivation of the small R behavior for different N is given in Appendix B. Here we summarize these
results:

〈Tf 〉(B)(R, N )
R�1∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�(1−N/2)
πN/2

1
R1−N/2 if N < 2

− 1
π

ln R if N = 2

C(B)
N − �(2−N/2)(2−N/2)

πN/2 RN/2−1 if 2 < N < 4

C(B)
N + 1

π2 R ln R if N = 4

C(B)
N + {[ ∫ +∞

0

[
erf

(
1√
4T

)]N
dT

]2 − ∫ +∞
0 T

[
erf

(
1√
4T

)]N
dT

}
R if N > 4,

(27)

where for any N > 2, C(B)
N is a constant given by

C(B)
N = 〈Tf 〉(B)(0, N ) = 〈Tf 〉(A)(0, N ) =

∫ +∞

0

[
erf

(
1√
4T

)]N

dT . (28)

As in the case of protocol A, it is clear from the small R behavior that there is an optimal R∗ > 0 for all N � 4. For N > 4, both
h(R, N ) and its first derivative are convergent when R → 0. Then the derivative of the MFPT, for N > 4, is given by

∂〈Tf 〉(B)(R, N )

∂R

∣∣∣∣
R=0

= [h(0, N )]2 + ∂Rh(R, N )

∣∣∣∣
R=0

=
{∫ +∞

0

[
erf

(
1√
4T

)]N

dT

}2

−
∫ +∞

0
T

[
erf

(
1√
4T

)]N

dT . (29)

The existence of a finite R� > 0 is uniquely determined by the
sign of the above expression. If it is negative, then there exists
a finite R� > 0. However, if it is positive, then R� = 0 and the
resetting hinders the search process. Once again, the integrals
in Eq. (29) can be easily evaluated using Mathematica (see
Fig. 3), and we find that the critical value of N defined as the
value for which the derivative of the MFPT at R = 0 changes
sign is given by Nc = 6.3555864 . . .. Thus, for protocol B,
resetting benefits the search process as long as N < Nc, but
delays the search process for N > Nc.

The value of Nc is slightly smaller in protocol B than that
of protocol A. It is not easy to guess these values of Nc

a priori from simple physical arguments. However, one can
understand why the value of Nc for protocol B is lower than
that of protocol A from the following argument. As was shown
in [46] in protocol B the simultaneous resetting induces an
effective attraction between all the particles. The simultaneous
resetting pulls the particles together. Hence protocol B not
only restricts the movement of the particles to stay closer to
the origin, but it also creates coordination between the par-
ticles further constraining the movement of the ensemble of
particles. Therefore, the constraints of protocol B are stronger
than those of protocol A leading to resetting becoming inef-
ficient faster for protocol B, which in turn leads to a lower
value of Nc.

V. CONCLUSION

To summarize, in this paper we have studied analytically
the mean first-passage time to a target at the origin in one
dimension by N Brownian walkers all starting at x0 > 0 and
undergoing diffusion with stochastic resetting. We considered
two resetting protocols: (A) where each walker diffuses and
resets to x0 with rate rindependently and (B) each walker
diffuses independently but resets simultaneously to x0 with
rate r. While in protocol A, the walkers remain uncorrelated

at all times, in protocol B they become strongly correlated
dynamically via simultaneous resetting. We showed that in
both protocols, the mean first-passage time, as a function of
the resetting rate r, has a minimum at r = r∗ > 0 as long as
N < Nc, but for N > Nc the optimal resetting rate is r∗ = 0.
The value of Nc is slightly different in the two protocols.
Continuing our results analytically to real N , we showed that
Nc = 7.3264773 . . . for protocol A, while Nc = 6.3555864 . . .

for protocol B. The main conclusion of our work is that
resetting is beneficial for the search process only when
N < Nc. For N > Nc, resetting hinders the search process. Our
analytical results have been verified in numerical Langevin
simulations.

The mean first-passage time for a single N = 1 walker
has already been measured in optical tweezer experiments in
one [32,33] and two dimensions [34]. It would be interesting
to see if these measurements can be extended to the N > 1
case presented here, and in particular to verify our theoretical
predictions for Nc in the two protocols.

There are a number of other interesting directions in which
our work may be extended. A study of higher-order cumulants
of the first-passage time, beyond the mean, might reveal other
interesting differences between the two protocols. It would
also be interesting to find the critical values Nc in higher
dimensions for both resetting protocols. Finally, one may in-
vestigate the mean first-passage time for interacting walkers
and for nondiffusive processes such as Lévy flights, using both
resetting protocols.

APPENDIX A: PROTOCOL A

In these Appendixes we provide a detailed derivation of
the small R behavior of the scaled MFPT 〈Tf 〉(A,B)(R, N ) for
different values of 0 < N � 4. The results for protocols A and
B are derived separately in the two following Appendixes. In
Appendix C we provide some numerical details.
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For protocol A, the MFPT is given by Eq. (13), which reads

〈Tf 〉(A)(R, N ) =
∫ +∞

0
[q(R, T )]N dT, (A1)

where

q(R, T ) =
∫

�

dS

2π i
eS T 1 − e−√

S+R

S + R e−√
S+R

. (A2)

In particular,

q(0, T ) = erf

(
1√
4 T

)
. (A3)

Now, if we put R = 0 in Eq. (A1) and use Eq. (A3), we get

〈Tf 〉(A)(0, N ) =
∫ ∞

0

[
erf

(
1√
4 T

)]N

dT . (A4)

Using erf (z) ≈ (2/
√

π ) z as z → 0, one finds that the inte-
grand in Eq. (A4) behaves as T −N/2 for large T . Hence the
integral is convergent for N > 2 but diverges for N � 2. This
divergence for N � 2 stems from the large T behavior of the
integrand. This indicates that the behavior near R = 0 depends
crucially on N and is delicate to extract analytically. Since
the divergence at R = 0 comes from the large T behavior
of the integrand for N � 2, in order to extract the leading
singular behavior of the MFPT near R = 0, it is necessary
to investigate the scaling limit of q(R, T ) in Eq. (A2) when
R → 0, T → ∞ while keeping the product RT fixed. One
can then substitute this scaling form of q(R, T ) in Eq. (A1)
and investigate the singular behavior of the MFPT as R → 0.

To extract the scaling behavior of q(R, T ), we take the limit
R → 0 and S → 0 in Eq. (A2), while keeping the ratio S̃ =
S/R fixed. Keeping z = R T fixed, we get to leading order for
small R

q(R, T ) ≈ 1√
R

∫
�

dS̃

2π i
eS̃ z 1√

1 + S̃
= 1√

π R z
e−z. (A5)

Consequently, in this scaling limit, we have

q(R, T ) ≈ 1√
T

f (R T ) , where f (z) = 1√
π

e−z. (A6)

Substituting this leading scaling behavior of q(R, T ) in
Eq. (A1), we then compute the small R behavior of the MFPT.
Below we treat the five different cases N < 2, N = 2, 2 <

N < 4, N = 4, and N > 4 separately in five subsections.

1. The case N < 2

In this case, substituting the scaling form of q(R, T ) from
Eq. (A6) in Eq. (A1), we get

〈Tf 〉(A)(R, N ) ≈
∫ +∞

0

[
1√
T

f (RT )

]N

dT

= RN/2−1

πN/2

∫ +∞

0
e−Nuu−N/2du

= �(1 − N/2)

πN/2
NN/2−1 RN/2−1. (A7)

Hence we see that, as long as N < 2, the integral converges in
Eq. (A7) and the MFPT diverges as ∼RN/2−1 as R → 0.

2. The case N = 2

In the N = 2 case we have to be a bit more careful. To start,
we split the integral in Eq. (A1) into three regions: T ∈ [0, 1],
T ∈ [1, 1/R], and T ∈ [1/R,∞). In the third part where T
is large, we can approximate q(R, T ) by its scaling form in
Eq. (A6). This gives

〈Tf 〉(A)(R, N ) ≈
∫ 1

0
[q(R, T )]2 dT +

∫ 1/R

1
[q(R, T )]2 dT

+
∫ +∞

1/R

1

T
[ f (RT )]2dT . (A8)

Changing the variable to z = RT in the third integral, we see
that it is O(1) since f (z) = e−z/

√
π . Hence

〈Tf 〉(A)(R, N ) ≈
∫ 1

0
[q(R, T )]2 dT

+
∫ 1/R

1
[q(R, T )]2 dT + O(1). (A9)

For T � 1/R, the process is typically not resetting, and hence
we can replace q(R, T ) ≈ q(0, T ) = erf (1/

√
4T ) in the first

two integrals. This gives

〈Tf 〉(A)(R, N ) ≈
∫ 1

0
dT

[
erf

(
1√
4T

)]2

+
∫ 1/R

1
dT

[
erf

(
1√
4T

)]2

+ O(1). (A10)

The first integral is clearly O(1), and the principal divergence
comes from the second integral, which is dominated by the
integrand near the upper limit 1/R. Since T  1, we can
now expand erf (1/

√
4T ) as a power series in 1/

√
T . The first

term gives erf (1/
√

4T ) ≈ 1/
√

π T . Substituting this behavior
in the second integral in Eq. (A10) gives the leading order
divergence

〈Tf 〉(A)(R, N ) ≈ 1

π

∫ 1/R

1

dT

T
+ O(1) = − 1

π
ln R + O(1).

(A11)

3. The case 2 < N < 4

In this case the integral in Eq. (A1) is convergent for R = 0
and is given by Eq. (A4). However, the subleading term turns
out to be singular as R → 0. To derive the subleading term, it
is useful to analyze the derivative at R = 0. Indeed, deriving
Eq. (A1) with respect to R gives

∂〈Tf 〉(A)(R, N )

∂R
= N

∫ +∞

0
[q(R, T )]N−1 ∂q(R, T )

∂R
dT .

(A12)

Now we replace q(R, T ) by its scaling form in Eq. (A6) and
make the change of variable z = RT . This gives

∂〈Tf 〉(A)(R, N )

∂R
≈ N RN/2−2

∫ +∞

0
z1−N/2 [ f (z)]N−1 f ′(z) dz.

(A13)
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Using f (z) = e−z/
√

π and performing the integral exactly
gives

∂〈Tf 〉(A)(R, N )

∂R
≈ −�(2 − N/2)

πN/2
�(2 − N/2) RN/2−2. (A14)

Note that this is well defined for N < 4; otherwise the Gamma
function is diverging. Integrating it back with respect to
R gives the small R asymptotic behavior of the MFPT

〈Tf 〉(A)(R, N ) ≈
∫ ∞

0

[
erf

(
1√
4T

)]N

dT

− 2 �(2 − N/2)

(N − 2) πN/2
NN/2−1 RN/2−1. (A15)

Clearly as R increases from 0, the MFPT decreases due to the
negative sign of the second term in Eq. (A15), indicating that
the minimum of the MFPT occurs at R∗ > 0.

4. The case N = 4

In the N = 4 case, the analysis is somewhat similar to the
N = 2 case. In this case the derivative in Eq. (A12) reads

∂〈Tf 〉(A)(R, 4)

∂R
= 4

∫ +∞

0
[q(R, T )]3 ∂q(R, T )

∂R
dT . (A16)

We anticipate in this case, and verify a posteriori, that as
in the case N = 2, the scaling form of q(R, T ) gives only a
O(1) contribution, and the leading divergence as R → 0 in
Eq. (A16) has a different source. So we need to go beyond
the scaling regime and estimate both q(R, T ) and ∂Rq(R, T )
for small R. The first one is simple since we already know ex-
plicitly that q(0, T ) = erf (1/

√
4T ). To estimate the derivative

for small R, we note that for T � 1/R, the diffusing particle
typically hardly resets and hence

q(R, T ) ≈ e−R T q(0, T ) ≈ q(0, T ) − R T q(0, T ). (A17)

Taking a derivative with respect to R gives the estimate

∂q(R, T )

∂R
≈ −T e−R T q(0, T ) ∼ −T q(0, T ). (A18)

To proceed, we now split the integral in Eq. (A16) into three
regimes: [0,1], [1, 1/R], and [1/R,∞),

∂〈Tf 〉(A)(R, 4)

∂R
= 4

∫ 1

0
[q(R, T )]3 ∂q(R, T )

∂R
dT

+ 4
∫ 1/R

1
[q(R, T )]3 ∂q(R, T )

∂R
dT

+ 4
∫ ∞

1/R
[q(R, T )]3 ∂q(R, T )

∂R
dT . (A19)

In the third integral, denoted by I3, we can use the scaling form
of q(R, T ) in Eq. (A6) and get, after the customary change of
variables z = RT ,

I3 ≈ 4
∫ ∞

1

dz

z
[ f (z)]3 f ′(z) ∼ O(1), (A20)

where we used f (z) = e−z/
√

π . In the first two integrals, in
contrast, we cannot use the scaling form. Instead, we can
replace q(R, T ) and ∂Rq(R, T ) by their approximate forms
in Eqs. (A17) and (A18), respectively. It is easy to check

that after this substitution, the first integral I1 over [0,1] in
Eq. (A19) is O(1). Hence the leading divergence in Eq. (A19)
comes from the second integral I2 over [1, 1/R], which then
reads

I2 ≈ 4
∫ 1/R

1
[q(0, T ]3 [−T q(0, T )] dT

= −4
∫ 1/R

1
T

[
erf

(
1√
4T

)]4

dT . (A21)

In this range, since T  1, we can again expand erf (1/
√

4T )
in a Taylor series in powers of 1/

√
T . The first term in this

expansion provides the leading divergence, and we get

I2 ≈ 4

π2

∫ 1/R

1

dT

T
≈ 4

π2
ln R. (A22)

Adding the three integrals, we then find that as R → 0

∂〈Tf 〉(A)(R, 4)

∂R
≈ 4

π2
ln R + O(1). (A23)

Integrating back with respect to R, we then get the leading
small R behavior of the MFPT

〈Tf 〉(A)(R, 4) ≈
∫ ∞

0

[
erf

(
1√
4T

)]4

dT + 4

π2
R ln R.

(A24)

Note that the subleading term is negative for small R, indi-
cating that the MFPT decreases from its R = 0 value as R
increases. This again implies that the MFPT has a nonzero
minimum at some R∗ > 0.

5. The case N > 4

Finally, in the fifth case when N > 4, both the MFPT and
its first derivative are finite at R = 0. Hence, the subleading
behavior for N > 4 is linear as R → 0. As discussed in the
main text, the sign of the subleading linear term changes from
negative to positive as N crosses Nc = 7.7.3264773 . . . from
below.

The different behaviors of 〈Tf 〉(A)(R, N ) for small R are
summarized in Eq. (14).

APPENDIX B: PROTOCOL B

For protocol B, we recall that the MFPT is given by
Eq. (25), namely,

〈Tf 〉(B)(R, N ) = h(R, N )

1 − R h(R, N )
, (B1)

where the function h(R, N ), given in Eq. (26), reads

h(R, N ) =
∫ +∞

0
dT e−RT

[
erf

(
1√
4T

)]N

. (B2)

It is convenient to make a change of variable u = R T in
Eq. (B2) and rewrite it as

h(R, N ) = 1

R

∫ +∞

0
du e−u

[
erf

(√
R

4u

)]N

. (B3)
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Putting directly R = 0 in Eq. (B1) gives the same result as in
Eq. (A4) for protocol A, namely,

〈Tf 〉(B)(0, N ) = h(0, N ) =
∫ ∞

0

[
erf

(
1√
4 T

)]N

dT . (B4)

Again this integral is convergent only for N > 2.
For later purposes, we will also need the first derivative of

h(R, N ) with respect to R, which reads from Eq. (B2)

∂h(R, N )

∂R
= −

∫ +∞

0
dT T e−RT

[
erf

(
1√
4T

)]N

. (B5)

Performing the same change of variable u = RT , one obtains
an alternative expression

∂h(R, N )

∂R
= − 1

R2

∫ +∞

0
du u e−u

[
erf

(√
R

4u

)]N

. (B6)

Our goal is to extract the asymptotic small R behavior of
h(R, N ) in Eq. (B2) or equivalently in Eq. (B3) for different
N and then use these results in Eq. (B1) to derive the small R
behavior of the MFPT. As in protocol A, we consider the five
cases N < 2, N = 2, 2 < N < 4, N = 4 and N > 4 separately
in the five subsections below.

1. The case N < 2

When N < 2 the integral h(R, N ) in Eq. (B3) becomes
divergent as R → 0 and the divergence ensues from the large u
regime of the integrand. To compute this small R divergence,
we use erf (z) ≈ (2/

√
π ) z for small z in Eq. (B3) and carry

out the integral. This gives, to leading order as R → 0,

h(R, N ) ≈ RN/2−1

πN/2

∫ +∞

0
e−u u−N/2 du

= �(1 − N/2)

πN/2
RN/2−1. (B7)

Note that this result is valid only for N < 2, as otherwise
the Gamma function becomes divergent. Substituting this be-
havior of h(R, N ) in Eq. (B1) we get, to leading order for
small R,

〈Tf 〉(B)(R, N ) ≈ �(1 − N/2)

πN/2

1

R1−N/2
. (B8)

This divergence of the MFPT as R → 0, along with its diver-
gence as R → ∞, indicates that the minimum of the MFPT
occurs at a nonzero R∗ > 0 for N < 2.

2. The case N = 2

For N = 2 we need to make a finer analysis of h(R, N ). In
this case we split the integral in Eq. (B3) into two regimes:

u < R � 1 and u > R. This leads to

h(R, 2) = 1

R

∫ R

0
du e−u

[
erf

(√
R

4u

)]2

+ 1

R

∫ +∞

R
du e−u

[
erf

(√
R

4u

)]2

. (B9)

Then in the integrand in the first term, to leading order, the erf
function can be replaced by 1, and hence the integral remains
O(1) as R → 0. The divergence comes from the second inte-
gral, where we can use erf (z) ≈ (2/

√
π ) z for small z. This

gives

h(R, N ) ≈ 1

π

∫ +∞

R

du

u
e−u + O(1). (B10)

Integrating by parts, one immediately finds the leading order
behavior for small R,

h(R, N ) ≈ − 1

π
ln R + O(1). (B11)

Finally, substituting this in Eq. (B1), we get

〈Tf 〉(B)(R, 2) ≈ − 1

π
ln R + O(1). (B12)

Hence, the MFPT diverges logarithmically as R → 0, indicat-
ing that for N = 2, we will again have a nonzero R∗.

3. The case 2 < N < 4

For N > 2, putting R = 0 in Eq. (B2), one finds
that h(0, N ) is finite and is given by Eq. (B4). Hence
〈Tf 〉(B)(0, N ) = h(0, N ) < +∞ from Eq. (B1). To extract the
dominant subleading term, it is convenient to first find how the
derivative of h(R, N ) diverges as R → 0 by analyzing Eq. (B5)
or equivalently Eq. (B6). We insert the asymptotic small z
behavior erf (z) ≈ (2/

√
π ) z in Eq. (B6) to get the leading

small R behavior

∂h(R, N )

∂R
≈ −RN/2−2

πN/2

∫ +∞

0
du e−u u1−N/2

= −�(2 − N/2)

πN/2
RN/2−2. (B13)

Note that the Gamma function is well defined for N < 4.
Integrating it back with respect to R, we then get, up to the
first subleading term,

h(R, N ) ≈ h(0, N ) − 2 �(2 − N/2)

(N − 2) πN/2
RN/2−1. (B14)

Finally, substituting this result for h(R, N ) in Eq. (B1) we get,
noting that (N/2 − 1) < 1, the following result:

〈Tf 〉(B)(R, N ) ≈ h(R, N ) ≈ h(0, N ) − 2 �(2 − N/2)

(N − 2) πN/2
RN/2−1.

(B15)

Note that the subleading term is negative for 2 < N < 4,
indicating that the MFPT decreases from its value at R = 0
as R increases. This again implies that the optimal R∗ > 0.
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4. The case N = 4

In this case h(0, 4) in Eq. (B2) is finite. To extract the sub-
leading behavior as R → 0, we again analyze the derivative in
Eq. (B6) by splitting the integral into two regimes u < R � 1
and u > R

∂h(R, 4)

∂R
= − 1

R2

∫ R

0
du u e−u

[
erf

(√
R

4u

)]4

− 1

R2

∫ +∞

R
du u e−u

[
erf

(√
R

4u

)]4

. (B16)

We can replace the erf by 1 in the integrand in the first term,
leading to an O(1) result for the first integral as R → 0. In
the second integral, we use the small z behavior of the error
function erf (z) ≈ (2/

√
π ) z, which then gives

∂h(R, 4)

∂R
≈ O(1) − 1

π2

∫ ∞

R

du

u
e−u. (B17)

Integrating by parts, one gets the leading order behavior for
small R,

∂h(R, 4)

∂R
≈ 1

π2
ln R. (B18)

Integrating it back with respect to R gives

h(R, 4) ≈ h(0, 4) + 1

π2
R ln R. (B19)

Finally, substituting this result in Eq. (B1) gives the small R asymptotics of the MFPT

〈Tf 〉(B)(R, 4) ≈ h(0, 4) + 1

π2
R ln R. (B20)

Since the second term is negative as R → 0, we again see that the MFPT decreases from its value at R = 0 as R increases,
indicating that the optimal R∗ > 0.

5. The case N > 4

Finally, in the fifth case when N > 4, both h(0, N ) in Eq. (B2) and its first derivative h′(0, N ) in Eq. (B5) are finite. Expanding
Eq. (B1) up to O(R), we then get as R → 0

〈Tf 〉(B)(R, N ) ≈ h(0, N ) + [
h(0, N + h′(0, N )

]
R

=
∫ ∞

0

[
erf

(
1√
4 T

)]N

dT +
⎛
⎝{∫ +∞

0

[
erf

(
1√
4T

)]N

dT

}2

−
∫ +∞

0
T

[
erf

(
1√
4T

)]N

dT

⎞
⎠ R. (B21)

Hence, the subleading behavior of the MFPT for N > 4 is linear as R → 0, as in protocol A. The sign of the subleading linear
term is negative for N < Nc and is positive for N > Nc where Nc = 6.3555864 . . ..

The different behaviors of 〈Tf 〉(B)(R, N ) for small R are summarized in Eq. (27).

APPENDIX C: NUMERICAL DETAILS

The numerical results in this paper were obtained by numerical Langevin simulations, where we simulate numerically the
evolution of either protocol A or protocol B in discrete time and space by making microscopic discrete jumps or long resetting
motions at fixed microscopic time intervals. In practice, we by initializing a vector of positions �x(t ) = (x1(t ), x2(t ), . . . , xN (t )) =
(0, 0, . . . , 0). We then make the system evolve according to the following rule for protocol A

For every i from 1 to N, xi(t + dt ) =
{

0 with probability rdt

xi(t ) + ηi(t ) with probability 1 − rdt
, (C1)

and respectively for protocol B

�x(t + dt ) =
{

(0, 0, . . . , 0) with probability rdt

[x1(t ) + η1(t ), x2(t ) + η2(t ), . . . , xN (t ) + ηN (t )] with probability 1 − rdt
, (C2)

where the variables ηi(t ) are random Gaussian numbers such that 〈ηi(n1dt )η j (n2dt )〉 = 2Ddtδi jδn1n2 . We then let the system
evolve for 3 million time steps, where the step size is given by dt = 10−5. We interrupt the evolution as soon as one of the
variables xi(t ) crosses over a fixed target and we record the time at which this occurred, which is the first-passage time. We
repeat this whole process 105 times and average all the obtained first-passage times to obtain the numerical first-passage time.
The control parameters of our numerical experiments are the values of N, dt , D, r and the position of the target. For more details,
the code used to produce the results can be found in [50].

Furthermore, to find the exact continuous value of Nc we use a dichotomous algorithm to find where the first derivative
changes sign. This algorithm consists in starting from a lower and upper bound estimate L and U of the value of Nc. We compute
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the first derivative of the MFPT evaluated at r = 0 for N = L and check that it is negative, as well as computing the value of
the function at N = U and checking that it is positive. If this is the case, since we are dealing with continuous functions we
know that the function must cancel for a certain Nc ∈ [L,U ]. We can therefore proceed with the algorithm, and we compute
the first derivative of the MFPT at the center of the interval M = (L + U )/2. If it is positive, then we know that Nc ∈ [L, M[, if
it is negative, we know that Nc ∈]M,U ], and if it is exactly 0, then Nc = M. We iterate this argument until we reach a desired
precision; in our case we chose U − L ∼ 10−8 = ε, which gives us a value for Nc, which is accurate up to ε.
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