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While the one-point height distributions (HDs) and two-point covariances of (2 + 1) Kardar-Parisi-Zhang
(KPZ) systems have been investigated in several recent works for flat and spherical geometries, for the cylindrical
one the HD was analyzed for few models and nothing is known about the spatial and temporal covariances. Here,
we report results for these quantities, obtained from extensive numerical simulations of discrete KPZ models,
for three different setups yielding cylindrical growth. Beyond demonstrating the universality of the HD and
covariances, our results reveal other interesting features of this geometry. For example, the spatial covariances
measured along the longitudinal and azimuthal directions are different, with the former being quite similar to
the curve for flat (2 + 1) KPZ systems, while the latter resembles the Airy2 covariance of circular (1 + 1) KPZ
interfaces. We also argue (and present numerical evidence) that, in general, the rescaled temporal covariance
A(t/t0) decays asymptotically as A(x) ∼ x−λ̄ with an exponent λ̄ = β + d∗/z, where d∗ is the number of
interface sides kept fixed during the growth (being d∗ = 1 for the systems analyzed here). Overall, these results
complete the picture of the main statistics for the (2 + 1) KPZ class.
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I. INTRODUCTION

Since the seminal work by Prähofer and Spohn [1],
demonstrating that the asymptotic one-point (1-pt) height
distributions (HDs) for the growth regime (GR) of the one-
dimensional [1D or (1 + 1)] polynuclear growth model are
given by different probability density functions (PDFs), de-
pending on whether the initial condition (IC) of the growth is
a long flat line, a single seed (yielding a dropletlike interface),
or stationary, we have witnessed a significant advance in the
understanding of 1D Kardar-Parisi-Zhang (KPZ) [2] systems.
In fact, motivated by Ref. [1], a large number of theoret-
ical [3], experimental [4] and numerical works [5–8] have
confirmed that the HDs for the 1D KPZ class are universal,
but dependent on the ICs or geometry. More specifically, the
asymptotic temporal evolution of the 1-pt height, during the
GR, is given by [1,9]

h(�x, t ) � v∞t + sλ(�t )βχ, (1)

where the asymptotic growth velocity v∞, the signal of the
nonlinear coefficient (λ) in the KPZ equation sλ, and-
the amplitude � are system-dependent parameters; whereas
the growth exponent β and the PDFs P(χ ) for the random
variable χ are universal. When the growth starts from a flat
substrate with fixed size L [a single seed, such that L(t ) ∼ t],
the HD P(χ ) is given by the Tracy-Widom (TW) distribu-
tion from a Gaussian orthogonal [unitary] ensemble (GOE)
[(GUE)], while the Baik-Rains [10] distribution is found for
stationary 1D KPZ systems [1]. As demonstrated in Ref. [11],
the TW GUE HD is found even when L(t ) varies nonlinearly
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in time, provided that it increases faster than the lateral corre-
lation length ξ ∼ t1/z, where z is the dynamic exponent.

Besides the HDs, the dependence on geometry also man-
ifests in 2-pt correlators. For example, in the GR, the spatial
covariance,

CS (r, t ) = 〈h̃(�x, t )h̃(�x + �r, t )〉 � (�t )2β�[Ahr/(�t )2β], (2)

has a scaling function �[s] given by different Airy processes
for 1D KPZ interfaces with flat and single seed ICs [12,13].
In Eq. (2), h̃ = h − h̄, with h̄ being the mean height of the
interface at a given time, and Ah is related to the ampli-
tude A of the height-difference correlation function G2(r, t ) =
〈[h(�x, t ) − h(�x + �r, t )]2〉 � Ar2α , where α is the roughness
exponent. Moreover, the temporal covariance,

CT (t, t0) = 〈h̃(�x, t0)h̃(�x, t )〉 � (�2t0t )βA(t/t0), (3)

has A(y) ∼ y−λ̄ for large y, with λ̄ being conjectured to be
λ̄ = β − d/z for flat interfaces of dimension d [14] and λ̄ = β

for (hyper)spherical interfaces (of any d) [15].
For 2D interfaces, beyond the stationary, the flat ones, and

those that expand radially starting from a single seed (spheri-
cal geometry), there also exists the interesting situation where
the radial growth starts from a long straight line, yielding a
cylindrical deposit [see Fig. 1(b)]. The HDs for these ICs were
investigated by Halpin-Healy [16,17], numerically demon-
strating their geometry dependence. Subsequent works have
confirmed the universality of the HD for the 2D flat KPZ sub-
class both numerically [7,18,19] and experimentally [20–23].
Moreover, the universality of the HD for the spherical ge-
ometry has been verified for models with height restrictions
deposited on a corner [18] and in the growth of (2 + 1) Eden
clusters [17,18], as well as for deposition on enlarging (flat)
substrates, whose average lateral sizes increase isotropically
as 〈Ly〉 = 〈Lz〉 ∼ t [7,8]. The same HD is also found when

2470-0045/2023/107(6)/064140(9) 064140-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2013-0967
https://orcid.org/0000-0001-5675-7430
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.064140&domain=pdf&date_stamp=2023-06-27
https://doi.org/10.1103/PhysRevE.107.064140


ISMAEL S. S. CARRASCO AND TIAGO J. OLIVEIRA PHYSICAL REVIEW E 107, 064140 (2023)

FIG. 1. Examples of KPZ interfaces obtained in the three growth
setups yielding (2 + 1)-cylindrical geometry: (a) V-shaped groove,
(b) Eden cluster grown from a seed-line (on the z axis), and (c) rect-
angular (flat) substrates where the smaller side enlarges at rate ω.
Note that, in all cases, the interface expands in a single direction,
while its other side is kept fixed and has a very large size Lz 	 1.
The interfaces in (a) and (c) are for the RSOS model.

〈Ly〉 = 〈Lz〉 ∼ tγ , provided that γ > 1/z [24]. Furthermore,
the spatial covariance for 2D flat KPZ systems has been
numerically [7,21] and experimentally [21,23] studied, while
the one for the spherical case was also numerically analyzed
in Ref. [7]. These results strongly suggest that, similarly to
the 1D case, the scaling functions �[s] are universal, but
dependent on the geometry of the system. The very same con-
clusion was obtained for the temporal covariances of 2D KPZ
models with flat and spherical geometries [7]. However, to the
best of our knowledge, these spatial and temporal correlators
were never investigated in the literature for cylindrical KPZ
growth.

To address this important issue, we present here a thorough
analysis of the HD and covariances for the cylindrical case.
Results from extensive numerical simulations of three types
of systems are reported: (i) models with height restrictions
deposited inside long V-shaped grooves (VG), (ii) (2 + 1)
Eden clusters growing radially on the cubic lattice from a
long straight line, and (iii) deposition on rectangular enlarging
substrates (ESs) where Lz 	 1 is kept fixed, while Ly expands
as 〈Ly〉 = L0 + ωt . An illustration of these three growth setups
is depicted in Fig. 1. Accounting for the interface anisotropy
present in the VG and Eden systems, in all cases, we find cu-
mulants (and ratios of them) for the HDs in striking agreement
with the values previously estimated in Refs. [16,17], confirm-
ing the universality of this HD. Importantly, we demonstrate
that the spatial covariances measured in the y and z directions
are not identical in these systems, though �y[x] and �z[x]
are also universal and present intriguing similarities with co-
variances previously found for other KPZ subclasses. Strong
evidence of universality is also found for the temporal covari-
ance, where a general expression (valid for all geometries in
any dimension d) is conjectured for the exponent λ̄ related to

its asymptotic decay, which is numerically confirmed here for
the cylindrical case.

The rest of the paper is organized as follows. In Sec. II,
we define the investigated models and the different growth
setups analyzed, as well as the kinetic Monte Carlo methods
used for simulating them. Section III brings results for the
roughness scaling and HDs, while those for the covariances
are presented in Sec. IV. Our final discussions and conclusions
are summarized in Sec. V.

II. MODELS

We study the restricted solid-on-solid (RSOS) [25], the
single step (SS) [26], and the Eden model [27], which are
paradigmatic systems belonging to the KPZ class [28]. In
the first two models, particles are randomly and sequentially
released toward a substrate (which has lateral sizes Ly × Lz

here) and may be reflected back or aggregate at a given
site (i, j) depending on the local height difference δhi j =
hi j − h∂i j , where ∂i j denotes a nearest neighbor (NN) site of
(i, j). More specifically, in the RSOS model, the height at a
randomly sorted site (i, j) is changed by hi j → hi j + 1 if the
condition |δhi j | � 1 is satisfied for all NNs ∂i j ; while in the
SS case, the height is incremented by hi j → hi j + 2, provided
that |δhi j | = 1, always.

We investigate the RSOS and SS models on two types
of substrates: V-shaped grooves and flat rectangular domains
whose smaller side (Ly) expands. In the former case, depo-
sition is performed on long 1D grooves, of length Lz, with
periodic boundary conditions (PBCs) in the z direction. These
grooves have wedgelike cross sections, such that hi j (t = 0) =
| j| for all i = 1, . . . , Lz in the RSOS case, where j = −(Ly −
1)/2, . . . , (Ly − 1)/2 for odd Ly. To allow for a SS growth on
it, the substrate sites have to satisfy the SS condition |δhi j | = 1
and, thus, we consider hi j (t = 0) = | j| + [1 + (−1)i]/2, with
even Lz. Note that, due to the restrictions in δhi j , depositions
are initially accepted only at the bottom line of the grooves
and, as time evolves, the width y,i(t ) of the active zone (where
aggregation occurs) increases as y,i ∼ t . We work here with
an effectively infinite Ly, in the sense that y,i < Ly even for
the longest deposition times considered. As usual, the time
unity corresponds to the deposition (attempt) of one mono-
layer (i.e., LyLz particles) over the whole substrate, which may
be done by depositing only in the area A(t ) = ∑Lz

i=1 y,i(t ) of
the active zone and updating the time by t → t + 1/A(t ) after
each deposition attempt.

Although the interfaces obtained in the grooves are trans-
lation invariant in the z direction, this is not the case in the y
direction. So, to obtain interfaces that expand in one direction
and whose sites are all statistically equivalent, we investigate
the RSOS and SS models also on flat substrates where Lz is
large and fixed, while Ly expands linearly in time as 〈Ly〉 =
L0 + ωt , with PBCs in both directions. Flat [hi j (t = 0) = 0]
and checkerboard [hi j (t = 0) alternating between 0 and 1]
ICs are used for the RSOS and SS models, respectively. Fol-
lowing Refs. [7,11,24], the substrate expansion is performed
by stochastically mixing particle deposition, which occurs
with probability Pdep = LyLz/(LyLz + ω), with duplications of
randomly chosen columns (in the z direction), occurring with
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complementary probability: Pdup = ω/(LyLz + ω). After each
such event, the time is updated by t → t + 1/(LyLz + ω).

We also investigate version A of the Eden model, starting
from a straight line with Lz occupied sites. This seed line is
located on the z axis, which is placed in the middle of a simple
cubic lattice with lateral sizes L × L × Lz. PBC is considered
in the z direction, while L is effectively infinite; namely, the
diameters of the radially growing clusters are always smaller
than L in our analyses. The simulation proceeds as follows:
at each time step, one of the Np sites at the periphery of the
cluster [note that Np(t = 0) = 4Lz] is randomly chosen and
occupied with a new particle, with the time being increased as
t → t + 1/Np(t ).

The simulations on enlarging flat substrates were per-
formed for ω = 1 and L0 = 4. Since we are interested in
analyzing the asymptotic fluctuations, for Lz → ∞, large val-
ues of Lz were considered in the simulations for V-shaped
grooves and expanding substrates, up to Lz = 215. In the Eden
case, however, one has to deal with 3D clusters in the cubic
lattice, which would require a prohibitively large amount of
RAM memory to be simulated for the same sizes and times
considered in the other models. Therefore, the Eden simula-
tions were limited to Lz = 211 and short times. In all cases,
the number of samples grown was such that the total number
of surface sites considered in the statistics was �107.

III. RESULTS FOR THE HEIGHT DISTRIBUTIONS

In this section, we study the HDs of (2 + 1) cylindrical sys-
tems, aiming to demonstrate that they all belong to the same
KPZ subclass and, conversely, to confirm the universality of
this HD. We start by recalling that, as pointed out above, the
interfaces obtained in the VG case are not translation invariant
along the y direction and, as a consequence of this, only the
height fluctuations at the central (bottom) line will be analyzed
for these systems. Moreover, we remark that Eden clusters
growing radially in hypercubic lattices are long known
to acquire anisotropic shapes because the growth velocity
v(t ) = ∂t 〈h〉 is slightly larger along the lattice directions (see,
e.g., Refs. [6,18] for discussions on this, respectively, for 2D
and 3D clusters starting from a single seed). The same issue
appears in the cylindrical clusters analyzed here, since their
average height (or radius) grows slightly faster in the xz and
yz planes (i.e., in the 〈100〉 directions) than in other radial
directions. This is demonstrated in Fig. 7(a) of Appendix A,
where one sees that v(t ) is always larger in the 〈100〉 case than
in the diagonal planes (i.e., the 〈110〉 directions). Thereby,
the clusters’ cross sections parallel to the xy plane acquire
asymptotic diamondlike shapes, similarly to what happens
with Eden clusters on the square lattice, and thus we will
analyze their height fluctuations considering only the four
statistically equivalent lines in the xz and yz planes (referred
to as Eden 〈100〉) and also the four ones in the diagonal planes
(Eden 〈110〉).

Before investigating the HDs, it is important to confirm that
all systems analyzed here scale with the 2D KPZ exponent
β. The best estimates in the literature for this exponent (β =
0.2415(15) [29], β = 0.2414(2) [30], and β = 0.2399(8)
[24]) give an average value β ≈ 0.241, which also agrees with
the recent rational conjecture β = 7/29 [31]. Figure 2 shows

FIG. 2. Effective growth exponents, βeff, versus time, t , for the
different models and setups analyzed, as shown in the legend. The
dashed line indicates the KPZ value β = 0.241.

the temporal evolution of effective growth exponents, βeff,
calculated as the successive slopes in curves of ln w2 versus
ln t , where w2 = 〈h2〉c = 〈h2〉 − 〈h〉2 is the second cumulant
of the HDs (whose nth cumulant will be denoted here as
〈hn〉c). We may see a clear convergence, and a good agree-
ment at long times in some cases, of the exponents for the
RSOS and SS models, for both the VG and ES growth setups,
with the expected value. On the other hand, for the Eden
model, the effective exponents are still appreciably smaller
than β = 0.241 even at the longest times analyzed. This is
certainly a consequence of the smaller times simulated in this
case, since the Eden exponents are very close to those for the
other models at short times, strongly indicating that they shall
also converge to the KPZ value when t → ∞.

Even more compelling evidence that all systems analyzed
here belong to the same universality class is provided in
Figs. 3(a) and 3(b), where extrapolations to the t → ∞ limit
of the skewness S = 〈h3〉c/〈h2〉c = 〈χ3〉c/〈χ2〉3/2

c and (ex-
cess) kurtosis K = 〈h4〉c/〈h2〉2

c = 〈χ4〉c/〈χ2〉2
c of the HDs are,

respectively, shown. In fact, the extrapolated values of each
of these ratios are very close for all investigated systems,
demonstrating that they have the same asymptotic HD. By
considering the average and standard deviations of such ex-
trapolated values, we obtain |S| = 0.402(6) and K = 0.30(1).
These results agree quite well with S = 0.40(1) and K =
0.31(2), corresponding to the averages of the data reported by
Halpin-Healy in Table III of Ref. [17], mostly from models for
directed polymers in random media with point-line boundary
conditions. This confirms the universality of such cumulant
ratios for the KPZ HD for (2 + 1) cylindrical geometry.

To fully characterize the first HDs’ cumulants, we also
have to determine the average 〈χ〉 and variance 〈χ2〉c of the
PDF P(χ ). According to the ansatz in Eq. (1), to access these
quantities, first we need to know the nonuniversal parameters
v∞ and � for each model and growth setup. As discussed in
Refs. [16,17], these parameters are not expected to change
with the geometry of the system, so values obtained for flat
substrates are expected to also hold in the spherical and cylin-
drical cases. Indeed, it was observed in Ref. [7] that such
parameters, for the RSOS and SS models, are the same when
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FIG. 3. HDs’ skewness |S| (a) and kurtosis K (b), and
rescaled growth velocity (∂t 〈h〉 − v∞)/(sλβ�βtβ−1) (c) and variance
〈h2〉c/(�t )2β (d) versus t−�, for the models and setups indicated by
the legends in (a). The dashed lines are linear fits used to extrapolate
the data to the t → ∞ limit. In (a) � = 0.33, 0.66, and 0.4 for the
Eden, RSOS, and SS models, respectively; while in (b) � = 0.25,
0.75 and 0.5, respectively, for the same models. The exponents used
in (d) were � = 0.75, 0.5 and 0.33 for the RSOS-VG, SS-VG, and
both models in ES case, respectively. In (c), � = β for all systems.

they are deposited on 2D flat substrates with Ly = Lz = const
(flat) or 〈Ly〉 = 〈Lz〉 ∼ t (spherical geometry). Therefore, the
values v∞ = 0.31270(1) and � = 0.68(6) for the RSOS, and
v∞ = 0.341368(3) and � = 1.2(1) for the SS model, as es-
timated in Ref. [7] and references therein, will be used for
these models here. The consistency of the data obtained below
confirms that such values also hold in the cylindrical case.
Due to the anisotropy in the Eden clusters, the nonuniversal
parameters may depend on the radial direction considered
and, thus, the logic of using the parameters for the flat case
does not apply here. Hence, we will estimate 〈χ〉 and 〈χ2〉c

considering only the RSOS and SS models. Then, using these
cumulants (i.e., assuming their universality), we estimate the
nonuniversal parameters for the Eden clusters along the 〈100〉
and 〈110〉 planes in Appendix A.

With the values of v∞ and � at hand, we can ob-
tain 〈χ〉, according to Eq. (1), by extrapolating (∂t 〈h〉 −
v∞)/(sλβ�βtβ−1) to the t → ∞ limit. Figure 3(c) shows
such extrapolations, where one sees that the data for the VG
case converge quite fast, indicating the existence of weak
corrections in the ansatz (1) for these systems, while impor-
tant corrections exist for the expanding substrates. Despite
this, in all cases, the outcomes from the extrapolations are
very similar, yielding 〈χ〉 = −1.49(1). From Eq. (1), the
squared roughness is given by 〈h2〉c � (�t )2β〈χ2〉c, meaning
that 〈χ2〉c can be obtained by extrapolating 〈h2〉c/(�t )β to
t → ∞. These extrapolations are shown in Fig. 3(d), from
which we obtain the average result 〈χ2〉c = 0.251(7). This
value, as well as the one for 〈χ〉, are both in good agreement

TABLE I. Mean 〈χ〉, variance 〈χ 2〉c, their ratio
R = 〈χ〉/√〈χ 2〉c, skewness S, and kurtosis K of the (2 + 1)
KPZ HDs P(χ ) for the three main geometries. The data for the cy-
lindrical case were obtained by averaging the ones found here with
those from Ref. [17]. The results for the flat geometry are averages
of the data reported in Refs. [16,18], while those for the spherical
case were extracted from Refs. [7,17,18].a

Geometry 〈χ〉 〈χ 2〉c R |S| K

Flat −0.75(5) 0.234(15) −1.55(15) 0.424(6) 0.345(8)
Cylindrical −1.48(3) 0.250(6) −2.96(8) 0.401(8) 0.31(2)
Spherical −2.32(6) 0.335(15) −4.0(2) 0.329(10) 0.211(6)

a〈χ〉 and 〈χ 2〉c were not reported in Ref. [18].

with the previous estimates from Ref. [17] [〈χ〉 = −1.47(2)
and 〈χ2〉c = 0.249(5)], confirming their universality.

Table I presents a summary of these cumulants and the
ratios S and K , considering the values estimated here and
in previous works [16,17], comparing them with the aver-
ages of estimates for such quantities in the literature for flat
and spherical geometries [7,16–18]. Note that, as expected,
the results for the cylindrical case have intermediate values,
between those for flat and spherical systems. However, while
〈χ2〉c, |S| and K for spherical geometry present an appreciable
difference from the others, the differences between the values
for the flat and cylindrical cases are only ∼10%. This means
that very accurate estimates for these quantities are needed to
distinguish between these two geometries, which may be hard
to obtain, e.g., in experiments. Thereby, a better adimensional
ratio for this matter is R = 〈χ〉/

√
〈χ2〉c [i.e., the inverse of the

coefficient of variation of P(χ )], whose values are quite dif-
ferent for each geometry (see Table I). Note, however, that v∞
is required to access R, since sλ[〈h〉(t ) − v∞t]/

√
〈h2〉c(t ) →

R as t → ∞. This contrasts with S and K , which can
be estimated without any knowledge of the nonuniversal
parameters.

We end this section comparing the PDFs of the HDs
for the different models, measured at the longest simulation
times in each case. According to Eq. (1), we could access
the distribution of P(χ ) by rescaling the HDs as q = (h −
v∞t )/[sλ(�t )β] and P(q) = P(h)(�t )β . It turns out, however,
that important finite-time corrections exist in ansatz (1), as
already noticed above, which cannot be disregarded in this
analysis. Therefore, we will investigate the rescaled HDs
P(q∗), where q∗ = [h − v∞t − f (t )]/[sλ(�t )β] and f (t ) ac-
counts for the relevant corrections in each model and growth
setup. A detailed analysis of such corrections is presented
in Appendix B, where one finds that f (t ) has a logarith-
mic behavior in most cases, besides a constant term (see
Table II). Figure 4 presents the rescaled HDs for the dif-
ferent models, where a striking data collapse is observed,
providing additional confirmation of their universality. For
the sake of comparison, the rescaled HDs for flat and spher-
ical geometries—obtained from simulations of the RSOS
model on substrates with Lz = Ly = const. and 〈Lz〉 = 〈Ly〉 ∼
t , respectively, in Ref. [7]—are also shown in Fig. 4, demon-
strating the clear geometry dependence of the PDFs P(χ ).
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TABLE II. Corrections in the KPZ ansatz for the different mod-
els and growth setups.

System f (t )

Eden 〈100〉 +2.0(1) − 0.42(3) ln(t )
Eden 〈110〉 +1.15(9) − 0.35(4) ln(t )
RSOS - ES −1.45(2) − 0.15(1) ln(t )
SS - ES −1.20(3) − 0.18(1) ln(t )
RSOS - VG −1.10(2) − 0.18(6)t−0.39(7)

SS - VG −0.84(1) − 0.40(5)t−0.55(8)

IV. RESULTS FOR THE COVARIANCES

Now we investigate the two-point correlators of the 2D
KPZ interfaces with cylindrical geometry. We start with the
spatial covariance, defined in Eq. (2), and then analyze the
temporal covariance from Eq. (3).

A. Spatial covariances

As discussed in the Introduction, the scaling function �[s]
[see Eq. (2)] is expected to assume universal but different
forms in each geometry. This has been indeed demonstrated in
numerical works for the spherical [7] and flat [7,21] geome-
tries, as well as experimentally in the flat case [21,23]. We
remark that in these two geometries the correlations parallel
to the interface spread equally in both substrate directions,
so CS (r, t ) is the same if one measures it along the y or z
directions or along a circle of radius r. In the cylindrical case,
on the other hand, the expansion of a single interface side
breaks this symmetry, so different functions �y[s] and �z[s]
can be obtained by measuring the covariance along lines in the
azimuthal (y) and longitudinal (z) directions. Therefore, we
will analyze each of these directions separately here. Given
the lack of translation invariance in the y direction of the

FIG. 4. Rescaled HDs for all models and setups yielding cylin-
drical growth (symbols). The inset shows the same data as the main
plot in linear-linear scale, highlighting the peaks’ behavior. The data
shown here follow the same symbol and color schemes of Figs. 2 and
3. The (2 + 1) KPZ HDs for flat and spherical geometries, obtained
from simulations of the RSOS model in Ref. [7], are also shown for
comparison.

FIG. 5. (a), (b) Rescaled spatial covariance CS/(�t )2β against
Ahr2α/(�t )2β ; the only difference between these panels is the log-
arithmic scale in the abscissa in (b). Results for the longitudinal (z)
[azimuthal (y)] direction are represented by open [closed] symbols.
(c), (d) Rescaled spatial covariances CS/w

2 versus r/a. In (c), the
curve for the z direction (represented by the SS-ES data) is compared
with those for flat geometry, in both 1D (Airy1) and 2D (flat). An
analogous comparison, between the curve for y direction (repre-
sented by the RSOS-ES data) and those for spherical geometry in
1D (Airy2) and 2D (spherical), is presented in (d). The results for
(2 + 1) flat and spherical systems were numerically obtained for the
RSOS model in Ref. [7].

interfaces obtained in the grooved substrates, as well as in the
Eden clusters, we are able to explore the azimuthal covari-
ances only in the ES systems. We also notice that, due to the
small times attained in the Eden simulations, large deviations
(from the rest) are found in its longitudinal covariances. For
this reason, these results for the Eden clusters will be omitted
here.

To unveil the forms of the scaling functions �y[s] and
�z[s], we analyze the rescaled curves of CS/(�t )2β versus
Ahr2α/(�t )2β for both directions, which are compared in
Figs. 5(a) and 5(b). There, the open and closed symbols rep-
resent the longitudinal and azimuthal directions, respectively,
and one can see that the data from different models and growth
setups collapse very well, for a given direction, demonstrating
the universality of these covariances. However, as expected,
different functions �y[s] and �z[s] exist for each direction.
Indeed, although both functions start at the same value at the
origin, since CS/(�t )2β = 〈χ2〉c at r = 0—and there exists a
single HD P(χ ) for these cylindrical systems—they have a
very different behavior for large r, namely, while the longitu-
dinal correlator saturates at �z[s] ≈ 0 for Ahr2α/(�t )2β 	 1
(corresponding to r 	 ξ ), in the expanding direction �y[s] is
always a decreasing function of s. These behaviors are anal-
ogous to those found for the covariance of flat and spherical
2D KPZ interfaces, respectively, as can be seen in Figs. 5(a)
and 5(b), where the curves for these two geometries are also
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shown for comparison. We may note in these figures that
�z[s] is somewhat close to the covariance of the flat case, but
it lays between the curves for flat and spherical systems, as
clearly observed in Fig. 5(b), where the abscissa is presented
in logarithmic scale. Such in-betweeness of the cylindrical
covariances is even more evident in �y[s].

It may be argued that this simple comparison of the � ′s for
different geometries is not so fair because they have different
values of 〈χ2〉c, starting thus at different points. Therefore,
to better compare the forms of the scaling functions, we ana-
lyze them under the rescaling G[u] = CS/w

2 versus u = r/a,
where a is the value that forces the curves to pass at Cs/w

2 =
0.2 at r/a = 1. In this way, all curves have the same value at
r/a = 1 and also at r/a = 0, where CS/w

2 = 1. Figures 5(c)
and 5(d) show such curves, where, for the sake of clarity, we
only present data for a single model in each direction, in the
cylindrical case. This makes it quite evident that the curve
for the longitudinal direction, Gz[u], is indeed very similar to
the one for the flat geometry, since they agree very well for
r/a � 0.4, having only a slight deviation for smaller u [see
Fig. 5(c)]. On the other hand, we may observe in Fig. 5(d)
that the curve for the azimuthal direction does not agree with
the one for the spherical case neither for small nor large r/a.
We also present in these figures the curves for flat and circular
1D KPZ interfaces, i.e., the Airy1 and Airy2 processes, respec-
tively. While the Airy1 curve is quite different from Gz[u] for
small u, the difference is not so large between the Airy2 and
Gy[s] curves, particularly for r/a � 0.5. This indicates that,
considering a single line in the direction with fixed size (i.e.,
the longitudinal direction in the cylindrical KPZ system or any
direction in the flat case), the 2-pt correlations on it are not so
sensitive to what is happening in the other direction. On the
other hand, the correlations measured along an expanding line
presents a stronger variation depending on whether the other
direction is fixed or expanding.

B. Temporal covariance

As noticed in Sec. I, the rescaled temporal covariance
A(t/t0) in Eq. (3) scales as A(t/t0) ∼ (t/t0)−λ̄ when t 	 t0.
With bases on exact calculations for linear growth equa-
tions [32] and a simple geometric argument, Kallabis and
Krug [14] conjectured that λ̄ = β + d/z is valid in general
for flat interfaces of dimension d . This was indeed verified
for 1D [7,14,33] and 2D KPZ systems [7], as well as for
the Villain-Lai-Das Sarma (VLDS) [34] class in d = 1 and
2 [35]. The explanation for this behavior is as follows [14]:
“A(t/t0) measures the overlap of the height configurations at
times t and t0, and this overlap is the product of two factors:
(i) the lateral overlap between domains in the d-dimensional
substrate space, which is of order [ξ (t0)/ξ (t )]d ∼ (t/t0)−d/z;
and (ii) the horizontal overlap W (t0)/W (t ) ∼ (t/t0)−β .”

For hyperspherical linear interfaces, however, Singha [15]
demonstrated that λ̄ = β. Relying on simulations and ana-
lytical approaches for KPZ systems, it was conjectured in
Ref. [15] that λ̄ = β is valid in general for radially grow-
ing systems. This has been indeed confirmed for the KPZ
[7,15,33] and VLDS [35] classes. This behavior can be under-
stood in light of the reasoning above (by Kallabis and Krug
[14]) by noting that in expanding systems the lateral overlap

FIG. 6. Rescaled temporal covariance CT /(�2t0t )β against the
ratio t/t0, for the (2 + 1) cylindrical systems indicated by the legend
(symbols). The dashed line has the indicated slope. The initial times
are t0 = 25 for the Eden, and 187 and 204 for the other models in
ES and VG cases, respectively. Numerical estimates of the curves
A(t/t0), obtained for the (2 + 1) RSOS model in Ref. [7] for spheri-
cal and flat geometries, are also shown for comparison.

[factor (i)] becomes irrelevant, so that the decay is ruled out
solely by the horizontal contribution (ii).

By the same token, if d∗ of the d interface directions are
kept fixed during the growth, while the other (d − d∗) expand
radially, the lateral overlap shall matter only for the d∗ ones,
leading to the generalized exponent:

λ̄ = β + d∗

z
. (4)

Therefore, in flat geometry, where all lateral substrate sizes
are fixed, one has d∗ = d , as proposed in Ref. [14]. In the
hyperspherical case, on the other hand, all directions expand,
so d∗ = 0, yielding the Singha’s result [15]. Importantly, in
the cylindrical systems analyzed here, d∗ = 1 and, then, as-
suming that β ≈ 0.241 (as discussed above) and then z =
2/(β + 1) ≈ 1.611, one obtains λ̄ ≈ 0.862. We notice that,
considering the rational exponents proposed in Ref. [31] (β =
7/29 and z = 29/18) in Eq. (4), one gets λ̄ = (7 + 18d∗)/29
for 2D KPZ systems, which gives λ̄ = 25/29 = 0.86206 in
the cylindrical case.

Figure 6 shows the rescaled temporal covariances for all
models analyzed here, where a striking data collapse is ob-
served, demonstrating that the finite-time corrections in this
quantity are much weaker than those observed above in the
HDs and spatial covariances. Substantially, for long times
one finds a behavior consistent with A(t/t0) ∼ (t/t0)−0.862,
strongly indicating that our conjecture for the exponent λ̄ in
Eq. (4) is correct.

For comparison, Fig. 6 presents also the rescaled co-
variances for (2 + 1) KPZ systems with flat and spherical
geometries (as obtained in Ref. [7] from simulations of the
RSOS model on substrates with Ly = Lz = const and 〈Ly〉 =
〈Lz〉 ∼ t , respectively). As expected, the curves are quite dif-
ferent for each geometry, since they decay asymptotically
with the exponents λ̄spher ≈ 0.241, λ̄cylind ≈ 0.862, and λ̄flat ≈
1.482.

064140-6



ONE-POINT HEIGHT FLUCTUATIONS AND TWO-POINT … PHYSICAL REVIEW E 107, 064140 (2023)

V. SUMMARY

We have presented a thorough study of the universal prop-
erties of the statistics of the (2 + 1) cylindrical KPZ subclass.
In all investigated systems, the roughness scales with growth
exponents in agreement or very close to the value expected
for 2D KPZ systems, confirming that these models belong
to the KPZ class for all growth setups considered here. The
cumulants (and their adimensional ratios) obtained here for
the HDs agree quite well among the different models, as well
as with those reported in Ref. [17], providing solid evidence
of the universality of this limit distribution. In this context,
we emphasize that the HDs’ skewness and kurtosis for the
flat and cylindrical cases are somewhat close, so a better
ratio to distinguish between these HDs is the inverse of the
coefficient of variation, R = 〈χ〉/

√
〈χ2〉c, since it has quite

different values in each geometry, as demonstrated in Table I.
The spatial covariances have different forms when mea-

sured in the longitudinal and azimuthal directions, with the
curve for the former case being very similar to the one for
(2 + 1) flat KPZ systems. The curve for the azimuthal di-
rection resembles the Airy2 covariance for circular 1D KPZ
interfaces, when appropriately rescaled. This demonstrates
how important the role of the interface expansion is during
the growth process, since it not only changes the statistics of
systems with different geometries (or ICs), but it can yield
different spatial correlators even in the same interface, if it
expands anisotropically. Hence, the spatial covariance is more
sensitive to details of the system than the HDs, as expected
and recently observed also in the context of KPZ systems that
expand isotropically but nonlinearly in time [11,24].

For the temporal covariance, previous conjectures for its
long time decay in flat and spherical geometries [14,15]
were generalized here, and we argue that the related expo-
nent is λ̄ = β − d∗/z, with d∗ being the number of interface
sides whose size is kept fixed during the growth. This is
quite well supported by the numerical results for the (2 + 1)
cylindrical systems. Thinking of the aging dynamics of KPZ
systems (and other interface growth as well), one expects that
CT (t, t0) = t−2β

0 FC (t/t0), where FC (y) ∼ y−λC/z [21,30,36–
38]. Therefore, our conjecture implies that the autocorrela-
tion exponent is λC = d∗. While a mathematically rigorous
confirmation of this behavior for the KPZ class is a difficult
task, demonstrating this for linear growth equations (e.g., the
Edwards-Wilkinson [39] and Mullins-Herring ones [40]) is an
interesting project.

Unveiling the complete picture of the KPZ statistics for
higher dimensions is another interesting point to be tackled
in the future. Although the HDs for flat geometry have been
analyzed in some recent works up to d = 6 [8,41–43], it seems
that no result exists for other geometries and nothing is known
for the spatial covariances. The results here and elsewhere
for d = 2 strongly suggest that d + 1 different limit HDs and
temporal covariances shall exist, depending on whether the
radial growth starts from a single seed (i.e., the hyperspherical
case, where d∗ = 0), from a seed line (hypercylindrical case,
where d∗ = 1), and so on until the flat case (where d∗ = d).
Moreover, an even larger number of spatial covariances (mea-
sured along the various substrate directions, as done here) are
expected.

FIG. 7. (a) Growth velocity ∂t 〈h〉 versus t−(1−β ) and (b) rescaled
HDs’ variance [〈h2〉c/〈χ 2〉c]1/2β/t as a function of t−0.33, for the
cylindrical Eden clusters, measured along lines parallel to the z axis
in the lattice planes (Eden 〈100〉) and in the diagonal planes (Eden
〈110〉). The dashed lines are linear fits used to extrapolate the data to
t → ∞.
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APPENDIX A: NONUNIVERSAL PARAMETERS
OF THE CYLINDRICAL EDEN CLUSTERS

Eden clusters growing radially on the lattice acquire
anisotropic shapes because each radial direction evolves with
a different growth velocity v(t ) = ∂t 〈h〉. This is confirmed in
Fig. 7(a), which shows v(t ) measured in lines parallel to the z
axis (i.e., the longitudinal direction of the cylinder) on the xz
and yz planes, denoted by v〈100〉, and on the diagonal planes,
v〈110〉. From Eq. (1), one expects that v(t ) = v∞ + bt−(1−β )

and indeed v(t ) versus t−(1−β ) presents a good linear behavior
at long times, as demonstrated in Fig. 7(a). The extrapolations
of these data to the t → ∞ limit return the asymptotic growth
velocities v〈100〉,∞ = 3.4020(6) and v〈110〉,∞ = 3.2984(8). As
an aside, we note that, as expected, these velocities are
considerably larger than those reported in Ref. [6] for two-
dimensional Eden clusters grown from a single seed on
the square lattice, which are v〈10〉 = 2.1824(3) and v〈11〉 =
2.1401(3) for the lattice and diagonal directions, respectively.

To obtain the parameter �, we consider the second cu-
mulant of the HDs, which [according to Eq. (1)] is expected
to behave asymptotically as 〈h2〉c � (�t )2β〈χ2〉c. Hence, we
estimate � by extrapolating [〈h2〉c/〈χ2〉c]1/2β/t to the t → ∞
limit, considering that 〈χ2〉c = 0.250(6), as estimated for the
other models in Sec. III. Figure 7(b) shows such extrapola-
tions, which yield �〈100〉 = 41(3) and �〈110〉 = 26(2). Despite
the strong finite-time corrections in this figure, the nice col-
lapses observed in Figs. 4-6 between the data for the Eden and
the other models confirm the reliability of these estimates for
the nonuniversal parameters of the cylindrical Eden clusters
in both directions considered. (Note that other values for v∞
and � should be found if one analyzed them for other radial
directions.)

APPENDIX B: CORRECTIONS IN THE KPZ ANSATZ

The KPZ ansatz, as presented in Eq. (1), is valid asymptoti-
cally (i.e., for t → ∞), while important finite-time corrections
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FIG. 8. Temporal evolutions of the differences (a) D〈h〉 and
(b) �〈h〉 (see the text for definitions) for the SS model in the ES
setup. The dashed line in (a) has the indicated slope.

may exist at short times. As observed in the experiments
by Takeuchi et al. [4], as well as in subsequent theoretical
and numerical works (see, e.g., Refs. [3,5,7,18]), one such
correction is an additive variable η. Moreover, evidence that
another additive term of type ζ t−a is also present has been
reported in some works [5,7,18]. Hence, one may expect that

h � v∞t + sλ(�t )βχ + η + ζ t−a, (B1)

where a > 0 is a constant, and η and ζ are, in principle,
stochastic variables. Note that these additional terms are con-
sidered corrections because they both become irrelevant in
〈h〉, as well as in 〈hn〉c as t → ∞.

To estimate these corrections, it is convenient to start from
the last term in Eq. (B1), since 〈η〉 can be eliminated by a

derivative of 〈h〉 with respect to time, so D〈h〉 ≡ ∂t 〈h〉 − v∞ −
sλβ�βtβ−1〈χ〉 � −a〈ζ 〉t−a−1. Therefore, we may estimate a
and 〈ζ 〉 from a power law fit in a log-log plot of D〈h〉 versus t .
Figure 8(a) shows an example of such a plot for the SS model
in the ES setup, where one finds that D〈h〉 decays consis-
tently with ∼t−1. This indicates the existence of a logarithmic
correction in the ansatz, as indeed expected for KPZ growth
on substrates that enlarge linearly in time [7,11,24]. Hence,
in this case D〈h〉 ∼ 〈ζ 〉t−1 and 〈ζ 〉 can be obtained from the
scaling amplitude in Fig. 8(a). Similar logarithmic behaviors
are found for the RSOS model in the ES setup, as well as for
the Eden models, whereas power-law corrections are obtained
in the VG case (see Table II).

Once the last correction term in Eq. (B1) is determined, one
simply has to plot �〈h〉 ≡ 〈h〉 − v∞t − sλ(�t )β〈χ〉 − 〈ζ 〉t−a

versus t (with t−a replaced by ln t when a = 0) to obtain the
value of 〈η〉. Figure 8(b) presents this plot for the SS model
in the ES case, where one can see a fast convergence of the
curve to an approximately constant value. Besides confirming
that the logarithmic behavior obtained in Fig. 8(a) is correct,
this also demonstrates that further corrections in the ansatz are
negligible. The temporal average of the curve at the plateau
gives us an estimate for 〈η〉.

Table II presents a summary of the obtained corrections for
each model and growth setup. Note that such corrections were
denoted simply as functions f (t ) in Sec. III and, since they
were used in the rescale of Fig. 4, the very good data collapse
observed there is a strong evidence of their correctness.
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