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We obtain the phase diagram of fully packed hard plates on the cubic lattice. Each plate covers an elementary
plaquette of the cubic lattice and occupies its four vertices, with each vertex of the cubic lattice occupied by
exactly one such plate. We consider the general case with fugacities sμ for “μ plates,” whose normal is the μ

direction (μ = x, y, z). At and close to the isotropic point, we find, consistent with previous work, a phase with
long-range sublattice order. When two of the fugacities sμ1 and sμ2 are comparable, and the third fugacity sμ3 is
much smaller, we find a spontaneously layered phase. In this phase, the system breaks up into disjoint slabs of
width two stacked along the μ3 axis. μ1 and μ2 plates are preferentially contained entirely within these slabs,
while plates straddling two successive slabs have a lower density. This corresponds to a twofold breaking of
translation symmetry along the μ3 axis. In the opposite limit, with μ3 � μ1 ∼ μ2, we find a phase with long-
range columnar order, corresponding to simultaneous twofold symmetry breaking of lattice translation symmetry
in directions μ1 and μ2. The spontaneously layered phases display critical behavior, with power-law decay of
correlations in the μ1 and μ2 directions when the slabs are stacked in the μ3 direction, and represent examples
of “floating phases” discussed earlier in the context of coupled Luttinger liquids and quasi-two-dimensional
classical systems. We ascribe this remarkable behavior to the constrained motion of defects in this phase, and
we sketch a coarse-grained effective field theoretical understanding of the stability of power-law order in this
unusual three-dimensional floating phase.

DOI: 10.1103/PhysRevE.107.064137

I. INTRODUCTION

Fully packed dimer models have been studied for several
decades. On the one hand, they provide fascinating examples
of entropically driven ordering, closely analogous to Villain’s
“order-by-disorder” phenomena in frustrated magnets [1]. On
the other hand, on bipartite lattices, they also host highly
correlated liquid phases [2]. These “Coulomb phases” admit
a natural description in terms of a field theory for polariza-
tion fields. This is a coarse-grained version of a lattice-level
description in which each fully packed dimer configuration
of the bipartite lattice is mapped to a divergence-free vector
field on links of the lattice [3,4]. In the two-dimensional cases
of square and honeycomb lattices, this effective field theory
correctly describes [5–9] the power-law columnar-ordered
state of the fully packed dimer model on these lattices. In the
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three-dimensional cases of the cubic and diamond lattice, this
correctly predicts that the fully packed dimer model on these
bipartite lattice displays a Coulomb liquid phase with dipolar
power-law correlations between the dimers [10].

Here we study a fully packed lattice gas of plates. Each
plate covers an elementary plaquette of the cubic lattice and
occupies its four vertices. At full-packing, each site of the
lattice is occupied by exactly one plate. The key question then
is whether such a lattice gas displays a correlated liquid phase
that could be understood in coarse-grained field-theoretical
language in terms of tensor-valued analogs of the fluctuat-
ing polarization fields that describe the behavior of the fully
packed dimer model. This is a natural speculation since one
may view each plate as a pair of parallel dimers on the
corresponding plaquette, which translates to two antiparallel
dipoles that form a quadrupole. Such a liquid phase would
control properties of the corresponding resonating plaquette
liquid states of SU(4) magnets [11] in much the same way as
the Coulomb liquid phase of the interacting two-dimensional
dimer model provides a description of energy correlations of
resonating short-range valence bond wave functions [12,13]
of SU(N) magnets [14]. Motivated perhaps by this natural line
of thought, previous work [15] used Monte Carlo simulations
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to study fully packed hard plates on the cubic lattice, with
equal fugacities for plates of all orientations. It was found
however that fully packed hard plates on the cubic lattice
exhibit long-range sublattice order [15], instead of this kind
of correlated liquid behavior.

Here, we explore the rich phase diagram of this fully
packed lattice gas of hard plates in the general case with
fugacities sμ for “μ plates,” i.e., with normal in direction μ

(μ = x, y, z). At and close to the isotropic point (sx = sy =
sz), we find a phase with long-range sublattice order, i.e.,
with twofold (Z2) symmetry breaking of lattice translation
symmetry in all three directions, consistent with the previous
results alluded to earlier. When two of the fugacities sμ1 and
sμ2 are comparable, and the third fugacity sμ3 is much smaller,
we find a spontaneously layered phase. In this phase, the
system breaks up into disjoint slabs of width two stacked
along the μ3 axis. μ1 and μ2 plates are preferentially con-
tained entirely within these slabs, while plates straddling two
successive slabs have a lower density. This corresponds to a
twofold symmetry breaking of translation symmetry along the
μ3 axis, leading to “occupied slabs” stacked in the layering di-
rection with a separation of one lattice spacing. In the opposite
limit, with μ3 � μ1 ∼ μ2, we find a phase with long-range
columnar order, corresponding to simultaneous Z2 symmetry
breaking of lattice translation symmetry in directions μ1 and
μ2. The spontaneously layered phases display critical behav-
ior, with power-law decay of correlations in the μ1 and μ2

directions when the slabs are stacked in the μ3 direction.
The spontaneously layered phase represents an example of a
“floating phase,” of the type discussed earlier in the context of
coupled Luttinger liquids and quasi-two-dimensional classical
systems [16,17].

To understand the stability of this unusual phase, we
identify the key ingredients of an effective field theory for
this phase. This builds on a coarse-grained description used
earlier for mixtures of dimers and hard squares on the two-
dimensional square lattice [18]. The basic idea is as follows:
Consider the limit of a perfectly layered phase, with layering
along (say) the z direction. When the layering is perfect, x
and y plates are entirely contained within disjoint slabs of
width two along the z axis, with no x or y plates straddling
two successive slabs. Viewed along the z axis, each occupied
slab looks like a system of dimers and hard squares on a
two-dimensional square lattice. Interslab plates that straddle
two successive slabs give rise to defects. We argue that these
interslab plates are bound in pairs in the layered phase.

We develop an effective field theory description in which
such pairs of interslab plates correspond to quadrupolar cou-
plings between two successive two-dimensional systems. The
quadrupolar nature of these couplings render them irrelevant
at the critical fixed point that describes each power-law-
ordered two-dimensional layer, leading to a stable floating
phase. Thus, this perspective leads us to identify the binding of
dipolar defects into quadrupoles as being the key to the stabil-
ity of this floating layered phase. Microscopically, this arises
from the full-packing condition, which leads to constraints on
existence and motion of interslab defects in this layered phase.

The mechanism that stabililizes this phase is thus closely
related to the physics of fractonic phases that have attracted a
great deal of attention recently [19–22]. These considerations

also suggests that this lattice gas of hard plates may have
interesting behaviors in the presence of a small density of
vacancies, due to restrictions on the configuration and motion
of vacancies. The effect of vacancies has been studied in a
parallel work [23].

The rest of this paper is organized as follows: In Sec. II
we first define the model and the order parameters used to
identify its phases, and provide an overview of the phase
diagram deduced from the results of our Monte Carlo simu-
lations. Sec. III is devoted to a summary of our Monte Carlo
simulation method. In Sec. IV we present the computational
evidence for the phase diagram described in Sec. II. Sec. V is
devoted to a closer look at the unusual structure of correlations
exhibited by the layered phase, and a sketch of a coarse-
grained field-theoretical description of this phase. Finally, we
conclude in Sec. VI with a brief discussion of some questions
that may be interesting to address in follow-up work.

II. MODEL, PHASE DIAGRAM, AND ORDER
PARAMETERS

As already outlined in Sec. I, we study a fully packed
lattice gas of hard plates that each occupy all four sites of
an elementary plaquette of the cubic lattice. We consider
the general case with fugacities sμ for μ plates, i.e., with
normal in direction μ (μ = x, y, z). With periodic boundary
conditions, the L3 sites of an L × L × L cubic lattice, where
L is even, are covered by L3/4 hard plates in every such fully
packed configuration. We adopt the convention that the plate
fugacities obey the constraint:

sx + sy + sz = 3. (1)

The partition function of the system is now given as

Z =
∑

C

snx
x s

ny
y snz

z , (2)

where the sum is over all the fully packed configurations of
such a cubic lattice and nx, ny, and nz are the total number
of x, y, and z plates in the configuration C. An illustrative
example of a configuration of the L = 4 cubic lattice with
periodic boundary conditions is shown in Fig. 1.

The parameter space of this fully packed lattice gas is
conveniently represented by an equilateral fugacity triangle,
with the three vertices corresponding to sx = 3, sy = 3, and
sz = 3, respectively, as shown in Fig. 2. The sides of this
triangle then correspond to the sx = 0, sy = 0, and sz = 0
lines. The centroid of this triangle represents the isotropic
point where sx = sy = sz = 1. In our computational work, we
have focused on obtaining results along the two cuts shown
in Fig. 2. With the parameter e defined as e ≡ sx − sy, these
two cuts through the phase diagram correspond to e = 0 and
e = 0.3 (dashed and dotted vertical lines in Fig. 2). Using
results from simulations along these two cuts, we have been
able to map out the overall structure of the phase diagram in
this fugacity triangle. This is discussed in more detail below
after introducing the various observables that allow us to char-
acterize the different phases.

In our computational work, it is convenient to adopt a
convention whereby each plate is assigned to a unique lattice
site i as follows: Any plate occupies four lattice sites. Each
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FIG. 1. A configuration of hard plates at full packing on the
L = 4 cubic lattice with periodic boundary conditions. Each plate
occupies exactly four sites of an elementary square plaquette of the
cubic lattice, and each site of the cubic lattice is occupied by exactly
one such plate in the fully packed case.

FIG. 2. The fugacity triangle shown in the figure represents the
parameter space of the fully packed hard square lattice gas. Note
that the fugacities sμ (μ = x, y, z) satisfy sx + sy + sz = 3 in our
convention. Then, the corners of the triangle correspond to the points
sx = 3, sy = 3, and sz = 3, respectively, while the sides correspond
to the lines sx = 0, sy = 0, and sz = 0, respectively. The dashed and
dotted vertical lines correspond to sx − sy = 0 and 0.3, respectively.
They represent the cuts along which our most detailed numerical
results have been obtained. There are three kinds of phases: A
sublattice-ordered phase, with lattice translation symmetry broken in
all three Cartesian directions, layered phases with lattice translation
symmetry broken only along one Cartesian direction, and columnar-
ordered phases with lattice translation symmetry broken along two
of the three Cartesian directions.

plate in the bulk is assigned to the site i (chosen from these
four sites) that has the minimum value of all three Cartesian
coordinates x(i), y(i), and z(i). For plates that wrap around,
this rule is modified in the obvious way for the Cartesian
coordinate(s) along which periodicity is being imposed. In the
fully packed limit, this implies that one-fourth of the lattice
sites are assigned to plates and the rest are occupied by plates
assigned to an adjacent lattice site.

Using this convention, we define two kinds of occupation
variables on each site of the lattice: the single plate occupa-
tion φμ(i), which takes a value 1 if a μ plate is assigned to
the site i and 0 otherwise, and the double plate occupation
number defined as φμμ(i) = φμ(i)φμ(i + μ̂), where μ̂ is the
unit translation along the positive μ axis (the definition of
μ̂ also incorporates periodic boundary conditions in all three
directions).

We mainly use three different order parameters to quan-
titatively probe the nature of the various phases. These are
the layering order parameter vector �L, the columnar order
parameter vector �C and the scalar sublattice order parameter
ω. We now define each of these.

The layering vectors Lμ and Lμμ are defined to measure
translation symmetry breaking along direction μ. For Lμ,
we have

Lx = 1

L3

∑
i

lx(i),

lx(i) = (−1)x(i)[φx(i) + φy(i) + φz(i)], (3)

and similarly for Ly and Lz. The layering vector Lμμ is
defined in an entirely analogous manner, with all φγ in the
above replaced by φγγ . The corresponding definition of the
columnar vectors Cμ and Cμμ is chosen to ensure that these
vector order parameters are sensitive to translation symmetry
breaking in the two Cartesian directions perpendicular to μ.
Thus, we define

Cx = 1

L3

∑
i

cx(i),

cx = (−1)y(i)+z(i)[φx(i) + φy(i) + φz(i)], (4)

and cyclically for the other components Cy and Cz. The lay-
ering vector Cμμ is again defined as above, but with all φγ

replaced by φγγ .
In addition, we define the scalar sublattice order parameter

ω to measure the simultaneous breaking of translation invari-
ance along all three directions:

ω = 27LxLyLz, (5)

where the factor of 27 is simply a convenient convention. This
product probes the presence of sublattice order. It differs from
the other order parameters defined here in an important way:
Unlike the layering and columnar vectors, it is not defined as
a sum over a corresponding local density field on the lattice.
Instead, it is simply the product of three components of the
layering vector Lμ. This has implications for its finite-size
scaling properties, which will be discussed in Sec. IV.
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FIG. 3. The behavior of the three Cartesian components of the layering vector �L [defined in Eq. (3)] as a function of z plate fugacity sz at
L = 72 provides a convenient signature of the different ordered phases in various parts of the phase diagram. The left (right) figure corresponds
to the e = 0 (e = 0.3) cut shown as a dashed (dotted) line in Fig. 2. To interpret these L = 72 results, it is useful to note the theoretical
expectations outlined in Sec. II. Guided by these theoretical considerations, one can recognize at a glance the presence of various ordered
states in different parts of the phase diagram; the existence of these ordered states can then be verified by more detailed analysis of the L
dependence of various observables, as outlined in Sec. II (and discussed in detail in subsequent sections). Notation: z-col refers to columnar
ordering along z, while z-lay refers to layering order along z, and likewise for other directions. s refers to sublattice ordering. Shown in the insets
are schematic depictions of the system in the z-layered phase, the sublattice-ordered phase, and the z columnar-ordered phase. In this schematic
depiction, the hard plates are free to rearrange (while respecting the full-packing constraint) only within the gray regions. Representative x, y,
and z plates have been shown in red, green, and blue, respectively.

Before proceeding further, we comment on this unusual
choice for the sublattice order parameter. A more natural and
conventional choice would have been to use the double-plate
occupation variables φμμ(i) to define a sublattice order pa-
rameter obtained as a sum of a local order parameter density
as follows:

Q = 1

L3

∑
i

q(i),

q = (−1)x(i)+y(i)+z(i)[φxx(i) + φyy(i) + φzz(i)]. (6)

Indeed, the naturalness of this choice of Q as a probe for
sublattice symmetry breaking was our original rationale for
introducing the double-plate occupation variables and corre-
sponding versions of L and C in the first place. However, it
turns out that there is an unexpected difficulty with using Q
to probe sublattice symmetry breaking: Q appears to tend to
zero in the thermodynamic limit even in the sublattice-ordered
phase. Although this is an interesting feature of the sublattice-
ordered phase in its own right, it is peripheral to the main
focus of our present study. We therefore use the sublattice
order parameter ω in what follows, and only return to the
unexpected behavior of Q in Sec. VI at the end of this paper.

In a layered phase with broken translation symmetry along
exactly one Cartesian direction, only one component of the
layering vector (corresponding to the layering direction) is
expected to tend to a nonzero value in the thermodynamic
limit. In the sublattice-ordered phase with broken translation

symmetry in all three Cartesian directions, all three com-
ponents of the layering vector are expected to tend to a
nonzero value in the thermodynamic limit, and the three com-
ponents are expected to be equal in magnitude at the isotropic
point (e = 0 and sz = 1). In a columnar-ordered phase

TABLE I. Table showing various order parameters (OP) and the
long-range-ordered phases probed by these order parameters. Each
row of the table corresponds to an order parameter, and each column
corresponds to a long-range-ordered phase. Each entry in the table is
a binary label “1” (“0”) that indicates a nonzero (vanishing) thermo-
dynamic limit for the order parameter that labels the row of that entry
in the phase that labels its column. x-col refers to a columnar-ordered
phase with columns along x, while x-lay refers to a layered phase
with layering along x, and likewise for other directions. The order
parameters constructed using the alternate double-plate definitions
behave in the same manner. See Sec. II for details.

OP x-col y-col z-col x-lay y-lay z-lay Sublattice

L2
x 0 1 1 1 0 0 1

L2
y 1 0 1 0 1 0 1

L2
z 1 1 0 0 0 1 1

C2
x 1 0 0 0 0 0 1

C2
y 0 1 0 0 0 0 1

C2
z 0 0 1 0 0 0 1

ω2 0 0 0 0 0 0 1
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with translation symmetry breaking along two directions,
two components of the layering vector, corresponding to the
two directions perpendicular to the orientation of columns of
the columnar phase, are expected to tend to a nonzero value in
the thermodynamic limit. Similar considerations hold for the
columnar vector.

We summarize the various order parameters and the order-
ing patterns they probe in Table I. The layering and columnar
ordering vectors defined using double plate occupation vari-
ables have been observed to behave exactly as their single
plate counterparts and have therefore been omitted in Table I.

In the same spirit, a convenient way to summarize our
findings along the two cuts shown in Fig. 2 is to plot the
behavior of the three components of the layering vector �L
along these cuts. This is shown in Fig. 3. The accompanying
insets of Fig. 3 provide a schematic depiction of the nature of
symmetry breaking in the different ordered states detected in
our simulations along these two representative scans. Supple-
menting the information depicted in Fig. 3 with results for the
L dependence of all the order parameters and the correspond-
ing Binder coefficients (discussed separately in Sec. IV), and
using the threefold symmetry of the phase diagram, allows
us to deduce the structure of the phase diagram in the whole
equilateral triangle, as shown in Fig. 2.

As shown in Fig. 2, we find a phase with long-range sublat-
tice order at and close to the isotropic point, i.e., when all three
fugacities are comparable to each other, and the corresponding
densities are likewise comparable. This finding is consistent
with a previous study of isotropic fully packed plates, which
found in favor of a sublattice-ordered state [15]. Our study
allows us to go beyond this and study the competition between
this sublattice-ordered phase and the layered and columnar-
ordered phases for general values of the fugacities.

Indeed, when two of the fugacities sμ1 and sμ2 are com-
parable, and the third fugacity sμ3 is much smaller, we find
a spontaneously layered phase with Z2 symmetry breaking of
lattice-translation symmetry in the μ3 direction. In this phase,
the system breaks up into disjoint slabs of thickness two, such
that a majority of the μ1 and μ2 plates are fully within one
of the slabs. In the opposite limit, with μ3 � μ1 ∼ μ2, we
find a phase with long-range columnar order, corresponding
to simultaneous Z2 symmetry breaking of lattice translation
symmetry in directions μ1 and μ2.

III. COMPUTATIONAL METHODS

Our Monte Carlo simulations use a combination of local
updates, supplemented by a cluster algorithm to improve the
equilibration and reduce autocorrelation times. We use two
types of local updates: a ring exchange move, and a shift
exchange move.

A. Ring exchange

The ring exchange move, shown in Fig. 4, relies on the fact
that all eight vertices of an elementary cube can be occupied
by two plates that cover two opposite faces of the cube. There
are three such “perfect covers” of any elementary cube. To
implement the ring exchange move, we pick an elementary
cube at random and if it is perfectly covered, we choose afresh

FIG. 4. All the possible local moves in a ring exchange move.

a fully packed configuration for the cube with probabilities
that satisfy detailed balance [24].

B. Shift exchange

The shift exchange starts by picking a random pair of adja-
cent elementary cubes sharing a face of the lattice with each
other. Let the shared face have a normal in the μ direction.
If one of the elementary cubes is perfectly covered by a pair
of ν plates, where ν �= μ, and the other elementary cube
has its remaining four sites occupied by a μ plate, then the
configurations of the two elementary cubes are interchanged
(see Fig. 5). Since this does not change the orientation of the
three plates involved, the shift exchange is implemented with
probability 1, whenever the chosen pair of elementary cubes
has an eligible configuration.

FIG. 5. All the possible local moves in a shift exchange.
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To supplement these two updates and improve autocorre-
lation times of the Monte Carlo algorithm, particularly in the
presence of periodic boundary conditions, one can use two
kinds of nonlocal updates. The first uses a transfer matrix
method to update an entire one dimensional tube, keeping the
rest of the configuration fixed. This generalizes the approach
used previously for simulations of a mixture of hard squares
and dimers in two dimensions [18]. The other is a cluster
algorithm that generalizes the pocket cluster algorithm [25]
used previously to study fully packed dimer models.

Here, we show results obtained using the second approach
to supplement local moves, i.e., using a generalization of the
pocket cluster algorithm [25]. However, parallel work [23]
that studies the effect of vacancies uses the transfer matrix
update [18] since the presence of vacancies improves its per-
formance. We note that the pocket cluster algorithm leads to
slightly better error bars for various order parameters in the
fully packed case.

In the cluster update scheme, we rely on the existence
of O(L) different reflection symmetries of the system, each
of which square to the identity operation. For this to be the
case, periodic boundary conditions are essential. To begin, a
reflection is specified by picking a randomly chosen reflection
plane. Six kinds of reflection planes, each perpendicular to one
of the three Cartesian directions and either containing sites
of the lattice or bisecting bonds of the lattice, always define
valid symmetry operations for general values of fugacities.
Of these, we choose to use the 3L planes that contain sites
of the lattice. In addition, one can consider reflections about
“diagonal” reflection planes, specified by a normal that lies
either in the xy plane and makes an angle of ±π/4 with the
x and y axis, or does the same in the yz or zx plane. These
six kinds of additional reflections are all symmetries of the
system only at the isotropic point when all the fugacities
are equal. Elsewhere in the fugacity triangle, at most two of
them are symmetries.

The cluster update begins by randomly choosing (with
equal probability) one of the possible reflection symmetries
of the system, say a reflection about the symmetry plane S .
In addition, a plate is chosen at random as the seed. Apart
from the physical system, one constructs a “pocket lattice,”
which is empty to begin with. The seed plate is acted on by
the reflection operation corresponding to the randomly chosen
symmetry plane S . This can change its location, and, possibly
its orientation too. Thus transformed, the plate is moved to
the pocket lattice and placed in its possibly new location
(and possibly new orientation). Next, this transformed plate
is moved back to the physical lattice so that it now occupies
a transformed location with a transformed orientation in the
physical lattice. As a result, it touches some other plates in
the physical lattice. These other plates are now removed from
the physical lattice, transformed according to the symmetry
operation S , and moved to the pocket lattice.

The rest of the update consists of repeating this process
until the pocket lattice is empty. In other words, at each step,
we take a plate from the pocket lattice, move it back to the
physical lattice so that it occupies a transformed location
with a transformed orientation, and then remove the plates
it touches in the physical lattice, transform them, and move
them to the pocket lattice. Once the pocket lattice is emptied

at the end of this process, the physical lattice again has a fully
packed configuration that does not violate any constraints.
This new configuration can be accepted with probability one
since the weight of the configuration has not changed in this
process.

We simulate the system using a combination of these local
and cluster updates. Each Monte Carlo step (MCS) involves
L3 ring exchanges, L3 shift exchanges in the x̂, ŷ, and ẑ
directions each, and a number of cluster updates, each involv-
ing a randomly chosen symmetry plane and a random seed
plate (this number is chosen to ensure that a total of O(L3)
plates are involved in these cluster updates as a whole). The
Monte Carlo routine was tested against exact enumeration
on a 4 × 4 × 2 periodic lattice with fully packed hard plates
using Martin’s backtracking algorithm [26].

At each set of fugacity parameters, simulations were car-
ried out on lattices of size L = 48, 60, 72, 96, and 120. Some
intralayer and interlayer observables (Figs. 7–9) have also
been estimated at L = 144. Simulations at each set of param-
eter values usually involved at least 10 random initial seeds,
a random initial configuration, a warmup of 2 × 105 MCS for
each seed, followed by a run length of 2 × 106 MCS for each
seed. The data shown in the zoomed-in plot of Binder ratios in
Fig. 10 involved averaging over runs from 50 random initial
seeds. Independent simulations at each set of parameter values
were parallelized using GNU Parallel. After warmup, mea-
surements were made at alternate MCS in each Monte Carlo
run. 103 such measurements were binned to create one no-
tionally independent measurement. Error bars were estimated
by rebinning these notionally independent measurements in
sets of 5, 50, and 100 and using the rebinned estimators to
calculate three different estimates of the statistical error. The
actual error bar assigned to each data point was taken to be the
maximum of these three estimates.

IV. COMPUTATIONAL RESULTS

The overview presented in Fig. 3 shows the fugacity de-
pendence of the different components of the layering order
parameter at a fixed size L = 72 along two cuts through the
fugacity triangle, and provides a direct graphic indication of
the nature of the phases in different parts of the phase diagram.

To go beyond this and quantify the symmetry breaking and
pin down the phase boundaries, we study the L dependence
of various observables. For each order parameter O defined
in Sec. II, we monitor the L dependence of 〈O2〉 to determine
whether the phase in question is characterized by the corre-
sponding long-range ordering behavior. Since our definitions
of all the order parameters include a normalization by a factor
of L3 to render them intensive, 〈O2〉 is expected to vanish as
L−3 in a phase with no such ordering tendency at all, but tend
to a finite nonzero value in the thermodynamic limit in the
presence of long-range order.

The one exception to this is 〈ω2〉, which is expected to
have a somewhat different fall off in phases without sublattice
order: If the phase breaks lattice translation symmetry along
two Cartesian axes and has columnar order, then one expects
a 1/L3 fall off, but a layered phase (which breaks lattice trans-
lation symmetry in only one direction) is expected to display a
1/L6 fall off of 〈ω2〉. As we will see below, the layered phase
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FIG. 6. 〈C2
xx + C2

yy〉 (top) and 〈L2
x + L2

y〉 (bottom) as a func-
tion of the system size L for sz ∈ [0.3, 0.6] along the e = 0 cut
(dashed line in Fig. 2) that crosses the phase boundary between
the z-layered phase and the sublattice-ordered phase. Both axes are
plotted on a logarithmic scale. At sz = 0.3, 0.4, and 0.5 the system
is in the z-layered phase. Straight lines represent power-law fits of
the form c/L1+η3d . In the layered phase, the best-fit values are in
the range 1 < η3d < 2. This unambiguously signals the presence
of three-dimensional power-law correlations of the corresponding
transverse symmetry breaking order parameters, although there is
true long-range order only in the z-layering order parameter (as
already suggested by the data in Fig. 3). At sz = 0.6, both quan-
tities appear to extrapolate to a nonzero value in the large-L limit,
indicating that translation symmetry is broken in all three Cartesian
directions. See Secs. II and IV for details.

that arises in our hard-plate system has power-law order in the
transverse directions in addition to breaking lattice translation
symmetry along the layering direction. As a result of this, we
expect 〈ω2〉 to display a power-law fall off with an exponent
somewhat smaller than 6.

In a phase with three-dimensional power-law order, we
expect the mean-square order parameter 〈O2〉 to vanish as
L−(d−2+η3d ) whenever the correlation function of the corre-
sponding order parameter density falls off as 1/rd−2+η3d with
η3d < 2 (d = 3 here). Note that 〈O2〉 cannot distinguish be-
tween a disordered phase and a power-law-ordered phase
with η3d > 2, since 〈O2〉 ∼ 1/L3 in both cases; however, the
two can still be distinguished by measuring the correlation
function of the local order parameter density. Naturally, these

FIG. 7. G(L) (top) and g(L/4) (bottom) as a function of L on the
e = 0 cut (dashed line in Fig. 2) for sz ∈ [0.3, 0.5]. Both axes are
plotted on a logarithmic scale. At sz = 0.3, 0.4, and 0.5 the system is
in the z-layered phase. Straight lines represent power-law fits of the
form c/Lη2d (0). Since the best-fit values are in the range 1 < η2d(0) <

2, this provides an unambiguous signature of power-law intraslab
correlations of the transverse symmetry-breaking order parameters
in the layered phase. See Secs. II and IV for details.

expectations do not apply in the case of the sublattice order
parameter ω, which is not the sum of a local order parameter
density.

For each of these order parameters, we also monitor the
Binder ratio UO2 :

UO2 = 〈O4〉
〈O2〉2

. (7)

In an ordered state, this ratio tends to unity in the thermody-
namic limit. In a disordered state, it tends to a value larger
than one, which depends on the number of independently
fluctuating components that make up O. Thus, the Binder ratio
of a scalar order parameter tends to a limiting value of 3, while
that of a two-component vector tends to 2, and so on.

To probe the nature of the z-layered phase in more detail,
we also study the intraslab and interslab correlation functions
of the transverse components of the layering order parameter.
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FIG. 8. The normalized interslab correlator G(L, �z)/G(L, 0) of
the transverse components of the layering order parameter (inte-
grated over each slab) at e = 0 and sz = 0.4 at each fixed size L
plotted against the interslab distance �z. The data at each fixed
L fits well to an exponentially decaying form. The corresponding
exponential fit is shown explicitly for one value of L (note that the
y axis is on a logarithmic scale). But data at a fixed nonzero �z do
not appear to converge to a limiting thermodynamic value even at the
largest size L accessible to our numerics. This is explored further in
Fig. 9. See Secs. II and IV for details.

To this end, we first define

lx⊥(z) = 1

L2

∑
x,y

lx(x, y, z),

ly⊥(z) = 1

L2

∑
x,y

ly(x, y, z). (8)

In terms of lx⊥ and ly⊥, we can now define

G(L,�z) = 1

L

∑
z

〈(lx⊥(z)lx⊥(z + �z) + ly⊥(z)ly⊥(z + �z)〉.

(9)

In what follows, we will use G(L) as shorthand for G(L,�z =
0), while retaining the second argument when �z is nonzero.
In principle, the sum over z in the definition of G(L,�z)
should be taken only over “occupied” slabs, with the con-
vention that all z plates are assigned to the occupied slabs.
However, we have checked that summing over all z, which
is computationally simpler, gives qualitatively similar results.
This motivates the definition above.

As an independent check on this way of looking at the in-
traslab correlations, we have also measured the r dependence
of g(r,�z = 0), defined as the connected intraslab correlation
function of lx and ly within a single slab at a transverse
distance of r. Power-law columnar order within each occu-
pied slab, with intraslab correlator scaling as g(r,�z = 0) ∼
1/rη2d(0), is expected to correspond to G(L) ≡ G(L,�z =
0) ∼ 1/Lη2d(0) if η2d(0) < 2, and G(L) ∼ 1/L2 if η2d(0) > 2.
As we show below, our results are consistent with this expec-
tation. Similarly, when the correlations of lx and ly at a fixed
nonzero �z decay as g(r,�z) ∼ 1/rη2d(�z) with transverse
distance r, we expect G(L,�z) ∼ 1/Lη2d(�z) if η2d(�z) < 2,
and a measured G(L,�z) ∼ 1/L2 if η2d(�z) > 2.

FIG. 9. The interslab correlators G(L, 2) (top) and G(L, 4)
(bottom) of the transverse components of the layering order param-
eter (integrated over each slab) as a function of the system size L on
the e = 0 cut (dashed line in Fig. 2) for sz ∈ [0.3, 0.5]. Both axes are
plotted on a logarithmic scale. At sz = 0.3, 0.4, and 0.5, the system
is in the z-layered phase. Straight lines represent power-law fits of
the form 1/Lη2d (2) (top) and 1/Lη2d (4) (bottom). This is the origin of
the L-dependent drift seen in Fig. 8. See Secs. II and IV for details.

With this background, we now present some representative
results of such a study, focusing on the two cuts through the
phase diagram displayed in Fig. 2.

A. e = 0

Along the e = 0 cut, we have sx = sy = (3 − sz )/2. The
data shown earlier in Fig. 3 strongly suggests that the system
is in a layered phase for small sz and a sublattice-ordered state
near sz = 1. Figure 6 shows the L dependence of the trans-
verse columnar order parameter 〈C2

xx + C2
yy〉 and the transverse

layering order parameter 〈L2
x + L2

y〉 for various sz in the
vicinity of the transition from the z-layered phase to the
sublattice-ordered phase. Note that both these order param-
eters behave in the same way, although one of them uses the
double-plate definition of the columnar vector and the other
relies on the single-plate definition of the layering vector. At
sz = 0.3, 0.4, and 0.5, we see that both these order parameters
go to zero with increasing L, confirming that translational
symmetry is only broken in the z direction. At sz = 0.6, how-
ever, both these order parameters appear to extrapolate to a
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FIG. 10. The Binder ratios UL2
x+L2

y
(top) and UC2

xx+C2
yy

(bottom)
plotted as a function of the system size L on the e = 0 cut (dashed
line in Fig. 2) across the transition from the z-layered phase to the
sublattice-ordered phase for sz ∈ [0.5, 0.8] (top) and in a zoomed-in
region for sz ∈ [0.5, 0.54] (bottom). Curves for various L appear to
stick together for sz � 0.535, and splay away from each other above
this threshold. This threshold is identified with the phase transition
along the e = 0 cut. The dotted vertical lines (top and bottom) are
at sz = 0.535. The data for the bottom plot has been obtained by
averaging over a larger number of seeds to reduce the error bars. See
Secs. II and IV for details.

nonzero value in the large-L limit, signaling that symmetry is
broken in all three directions, as expected in the sublattice-
ordered state.

The L dependence of these transverse order parame-
ters also provides evidence for an interesting aspect of the
z-layered phase, namely, the presence of power-law order in
the transverse directions. In Fig. 6, this is inferred from the
power-law falloff ∝ 1/L1+η3d of these quantities at large L.
The best-fit value of η3d is in the range 1 < η3d < 2 and
varies smoothly with sz. To explore this further, we have also
studied the transverse order within each occupied slab by
measuring G(L,�z = 0) [Eq. (9)] as well as the correspond-
ing connected correlation function g(r,�z = 0) evaluated at
r = L/4. From Fig. 7, we see that both of these decay with
L as a power-law ∼1/Lη2d (0). In the layered phase, the two-
dimensional exponent η2d(0) is seen to vary smoothly with
sz in the range 1 < η2d(0) < 2. These transverse power-law
correlations point to the unusual and interesting nature of this
layered phase, which is discussed in more detail in Sec. V.

If the transverse components of the layering vectors within
different occupied slabs separated by �z along the z axis
had only been coupled to each other via weak correlations
decaying exponentially with increasing �z, then the mea-
sured η3d would have satisfied the equality η3d = 1 + η2d(0).
However, we find that the measured η3d and η2d(0) always
satisfy η3d < 1 + η2d(0). To explore this further, we have
also measured G(L,�z) for various �z and L in the layered
phase. As shown in Fig. 8, the normalized interslab correlator
G(L,�z)/G(L, 0) at sz = 0.4 does indeed appear to fall off
exponentially with �z at fixed L. However, at fixed nonzero
�z, data for different L do not appear to converge to a limiting
value even at the largest L accessible to our numerical study.

To understand this drift better, we study the L dependence
of G(L,�z) for �z = 2, 4 at various sz in the layered phase.
This is shown in Fig. 9. We find that G(L,�z) decays as a
power law with increasing L for fixed �z. The corresponding
exponent η2d(�z) depends on �z in addition to its dependence
on the fugacity sz. Indeed, it appears to decrease with increas-
ing �z. This is the underlying reason for the drift seen earlier
(Fig. 8) in G(L,�z)/G(L, 0).

Thus, as we increase sz, the system initially remains in a
z-layered phase with power-law correlations of the transverse
components of the layering and columnar vectors. Beyond a
threshold value, translational symmetry is broken in all three
directions and there is a transition to a sublattice-ordered
state. To locate this transition, we monitor the sz and L
dependence of Binder ratios of the transverse order param-
eters. A second order critical point between a conventional
z-layered phase (with no power-law transverse order) and the
sublattice-ordered phase is expected to give rise to a crossing
of the Binder ratio curves corresponding to different sizes L,
whereas a first order transition between two such phases is
expected to lead to nonmonotonic behavior of these curves
near the transition.

However, we see neither of these behaviors. Instead, we see
in Fig. 10 that the Binder ratios for different L seem to stick
together for sz � 0.535, and splay apart for sz � 0.535. This
sticking of the transverse Binder ratio curves corresponding
to different L is what one expects in a phase with power-law
correlations of the transverse order parameters. Indeed, the
stick and splay behavior of the Binder ratios in Fig. 10 is
reminiscent of similar behavior of the Binder ratio of the
columnar order parameter in the vicinity of the transition
between long-range columnar order and power-law columnar
order in the two-dimensional fully packed lattice gas of hard
squares and dimers [18]. Thus, from the data shown in this
figure, we estimate that the transition from the z-layered phase
to the sublattice-ordered phase occurs at sz ≈ 0.535 on the
e = 0 cut.

It is important to emphasize that the behavior of the layer-
ing and columnar order parameters at the isotropic point (sz =
1, e = 0) does not by itself provide unambiguous evidence of
sublattice ordering. This is because an ergodic Monte Carlo
simulation that can access all the symmetry related ordered
configurations of a columnar or layered state at the isotropic
point would also lead to nonzero values in the thermodynamic
limit for all three components of the layering and columnar
vectors. To obtain a direct confirmation of the sublattice-
ordered nature of the phase, we have therefore studied the L
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FIG. 11. 〈ω2〉 for sz ∈ [0.3, 0.6] as a function of the system size
L along the e = 0 cut across the transition from the z-layered phase
to the sublattice-ordered phase. The x and y axes are plotted on
a logarithmic scale. At sz = 0.3, 0.4, and 0.5 the system is in the
z -layered phase. In this regime, 〈ω2〉 falls off with L in a power-law
manner, but somewhat slower than c/L6 (dashed straight line) due
to the presence of power-law correlations of the transverse layering
order parameters within the occupied slabs. At sz = 0.6, 〈ω2〉 appears
to extrapolate to a nonzero value in the large-L limit, signaling the
presence of sublattice order. See Secs. II and IV for details.

dependence of 〈ω2〉. In Fig. 11, we display this L dependence
for a few values of sz on either side of the threshold identified
in Fig. 10. From this data, we see that 〈ω2〉 decays to zero
as a power-law ∝ 1/Lp at large L with p < 6 in the layered
phase, but appears to extrapolate to a nonzero value in the
large L limit for sz = 0.6. This establishes that the phase in
the vicinity of the isotropic point has sublattice order. It is
also consistent with the fact that the layered phase has power-
law transverse correlations which cause 〈ω2〉 to fall off with
increasing size slower than ∼1/L6.

As sz is increased further along the e = 0 cut, the
sublattice-ordered phase terminates in a transition to a
z columnar-ordered phase, which breaks lattice translation
symmetry in the x and y directions, but has full lattice
translation symmetry in the z direction. This can be seen
from the sz dependence of the Binder ratios of the relevant
order parameter 〈L2

z 〉 for various values of L. This is shown
in the top panel of Fig. 12, from which one sees that the
Binder ratios cross at a critical fugacity sz ≈ 1.095. Since
the Z2 symmetry of lattice translations in the z direction
is restored upon crossing this transition, while translation
symmetry in other directions remains broken on either side
of the transition, one expects this transition to be in the
three-dimensional Ising universality class.

To confirm this expectation, we use the known correlation
length exponent [27] ν ≈ 0.63 for the Ising universality class
in three dimensions and attempt a collapse of the Binder ratio
data in the vicinity of this crossing point. This is shown in the
middle panel of Fig. 12. In addition, we check if 〈L2

z 〉, when
rescaled by a factor of L1+ηcrit. (using the three-dimensional
Ising value ηcrit ≈ 0.0363 [27] of the anomalous exponent)
shows a similar crossing at the critical fugacity sz ≈ 1.095.
This is shown in the bottom panel of Fig. 12. Our conclusion,

FIG. 12. (top) UL2
z

as a function of sz on the e = 0 cut (dashed
line in Fig. 2) for sz ∈ [1, 1.2] across the sublattice-ordered to z
columnar-ordered transition. The Binder ratio curves for various L
cross at sz ≈ 1.095 giving us an estimate of the critical fugacity.
(middle) Scaling collapse of UL2

z
as a function of εL1/ν with ε =

(sz − 1.095) and ν = 0.63. (bottom) 〈L2
z 〉 is rescaled by a factor of

L1+ηcrit. (with ηcrit. = 0.0363) and plotted as a function of sz. Curves
corresponding to different L are seen to cross close to sz ≈ 1.095,
consistent with the crossing seen in the Binder ratio curves. The
dotted vertical lines (top and bottom) are at sz = 1.095. Values of
ν and ηcrit. correspond to the three-dimensional Ising universality
class [27]. See Secs. II and IV for details.

based on the data displayed in these figures, is that the transi-
tion is indeed in the Ising universality class.
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In summary, along the e = 0 cut shown in Fig. 2, the
system is in a z-layered phase with power-law transverse
correlations for 0 � sz � 0.535, undergoes a transition at sz ≈
0.535 to a sublattice-ordered phase, remains in this sublattice-
ordered phase for 0.535 � sz � 1.095, undergoes a transition
to a z columnar-ordered phase at sz ≈ 1.095, and remains
columnar-ordered beyond this as sz approaches the sz = 3
corner of the fugacity triangle. The universality class of the
first transition, from layered to sublattice-ordered, has not
been determined in our work. The second transition has prop-
erties consistent with expectations for a three-dimensional
Ising transition. The schematic phase diagram shown in Fig. 2
was drawn using this information along with inputs from the
other scan (discussed next) along the e = 0.3 cut through the
fugacity triangle.

B. e = 0.3

Along the e = 0.3 cut, we have sx = sy + 0.3, sy =
(2.7 − sz )/2. The data (shown in Fig. 3) for the various com-
ponents of the layering order parameter strongly suggests
that the system goes through a sequence of four phases as
sz is increased along this cut from sz = 0 to sz = 2.7. In
order of increasing sz these are the z-layered phase, the x
columnar-ordered phase, the sublattice-ordered phase, the z
columnar-ordered phase, and finally, the y-layered phase. This
can be confirmed by a detailed analysis of the L dependence
of the corresponding order parameters and Binder ratios, as
we describe below.

Figure 13 shows the L dependence of the x component of
the columnar order parameter 〈C2

x 〉 and the y component of
the layering order parameter 〈L2

y〉 for various sz in the vicinity
of the transition from the z-layered phase to the x columnar-
ordered phase. Note that we are now displaying our data for
the single-plate definition of the columnar order parameter
(unlike the analogous data displayed along the e = 0 cut). At
sz = 0.3, 0.4, and 0.5, we see that both these order parameters
go to zero, confirming that translational symmetry is only
broken in the z direction. At sz = 0.6, however, both these
order parameters appear to extrapolate to a nonzero value in
the large-L limit, establishing that symmetry is broken in the
y direction in addition to the z direction, as expected in the x
columnar-ordered state.

In the z-layered phase, we see that 〈C2
x 〉 and 〈L2

y〉 go to zero
with increasing L in a power-law manner. The values of the
exponent η3d that describes this power-law behavior are some-
what different from the corresponding values along the e = 0
cut at the same values of sz. This is not unexpected, since
the strength of the power-law correlations in the transverse
direction can of course depend on the value of e.

A more precise estimate of the critical value of sz for the
transition from the z-layered phase to the x columnar-ordered
state can be obtained from the stick and splay behavior of the
appropriate Binder ratios as in the e = 0 case. The Binder
ratios corresponding to both the order parameters splay for
sz � 0.56 as shown in Fig. 14, giving us an estimate of the
critical fugacity associated with this transition.

As sz is increased further along this e = 0.3 cut, the sys-
tem transitions from the x columnar-ordered phase to the
sublattice-ordered phase at sz ≈ 1.065. One expects this tran-

FIG. 13. 〈C2
x 〉 (top) and 〈L2

y〉 (bottom) as a function of the sys-
tem size L on the e = 0.3 cut (dotted line in Fig. 2) across the
z layered to x columnar-ordered transition for sz ∈ [0.3, 0.6]. In both
top and bottom panels, both axes are plotted on a logarithmic scale.
At sz = 0.3, 0.4, and 0.5 the system is in the z-layered phase and
〈C2

x 〉 (top) and 〈L2
y〉 (bottom) decay to zero in a power-law manner

with increasing L. Straight lines represent power-law fits of the form
C/L1+η3d , with 1 < η3d < 2. This is a clear signature of power-law
correlations of the corresponding components of the columnar and
layering order parameter densities. Note that the values of η3d for
these two order parameters are very close to each other for a given
sz but show clear variation with sz in this regime. At sz = 0.6, the
system is in the x columnar-ordered phase and both these quantities
appear to extrapolate to a nonzero value in the thermodynamic limit.
See Secs. II and IV for details.

sition to be in the three-dimensional Ising universality class
since the two phases differ only by the Z2 symmetry breaking
of lattice translations in the x direction. Our results (which are
not displayed here to avoid repetition) are indeed consistent
with this expectation, and our analysis of this transition is
entirely analogous to our earlier analysis of the transition
between the z columnar-ordered phase and the sublattice-
ordered phase along the e = 0 cut.

When we move further along the e = 0.3 cut, we find
that the sublattice-ordered phase terminates in a transition to
the z columnar-ordered phase at sz ≈ 1.125. We determine
the location of the transition point and analyze the scaling
behavior in its vicinity in a manner entirely analogous to our
study of the sublattice-ordered to z columnar transition on the
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FIG. 14. The Binder ratios UC2
x

(top) and UL2
y

(bottom) as a
function of sz on the e = 0.3 cut (dotted line in Fig. 2) across the
z layered to x columnar-ordered transition for sz ∈ [0.5, 0.8]. Curves
corresponding to different L stick to each other for sz � 0.56 in the
z-layered phase. For sz � 0.56, curves corresponding to different L
start splaying apart, giving us an estimate of the critical fugacity for
the z layered to x columnar-ordered phase transition on the e = 0.3
cut. The dotted vertical lines (top and bottom) are at sz = 0.56. See
Secs. II and IV for details.

e = 0 cut in the previous subsection. This is shown in Fig. 15,
where we see that our results are consistent with the behavior
expected of the three-dimensional Ising universality class.

For even larger values of sz the system undergoes yet
another transition, from the z columnar-ordered phase to a y-
layered phase. We omit a detailed study of this transition since
the physics is entirely analogous to the previously presented
results for the first transition between the z-layered phase
and the x columnar-ordered phase along the e = 0.3 cut. A
rough estimate of the critical fugacity of this transition can be
obtained by looking at the value of sz at which 〈L2

x〉 goes to
zero in Fig. 3. It is sz ≈ 1.55.

In summary, along the e = 0.3 cut shown in Fig. 2, the sys-
tem is in a z-layered phase for 0 � sz � 0.56 and undergoes a
transition at sz ≈ 0.56 to an x columnar-ordered phase which
persists in the range 0.560 � sz � 1.065. Next the system
undergoes a transition at sz ≈ 1.065 to a sublattice-ordered
phase which exists in the range 1.065 � sz � 1.125. Beyond
sz ≈ 1.125, the system has z columnar order in the range
1.125 � sz � 1.55. Finally, the system undergoes a transition

FIG. 15. (top) UL2
z

as a function of sz on the e = 0.3 cut (dotted
line in Fig. 2) for sz ∈ [1.08, 1.16] across the sublattice-ordered to
z columnar-ordered transition. The Binder ratio curves for various
L cross at sz ≈ 1.125 giving us an estimate of the critical fugacity.
(middle) Scaling collapse of UL2

z
as a function of εL1/ν with ε =

(sz − 1.125) and ν = 0.63. (bottom) 〈L2
z 〉 is rescaled by a factor of

L1+ηcrit. (with ηcrit. = 0.0363) and plotted as a function of sz. Curves
corresponding to different L are seen to cross close to sz ≈ 1.125,
consistent with the crossing seen in the Binder ratio curves. The
dotted vertical lines (top and bottom) are at sz = 1.125. Values of
ν and ηcrit. correspond to the three-dimensional Ising universality
class [27]. See Secs. II and IV for details.

at sz ≈ 1.55 to a y-layered phase that is established beyond
this threshold. The schematic phase diagram shown in Fig. 2
reflects these phases and phase boundaries.
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Unlike for the Ising transitions between the sublattice-
ordered phase and various columnar-ordered phases, we do
not have a detailed understanding of the universality class
of the transitions between the various layered phases and
the sublattice-ordered phase, and between the various layered
phases and columnar-ordered phases. This is because of the
unusual nature of the layered phase, which displays power-law
transverse ordering perpendicular to the layering direction.

What is the correct coarse-grained field-theoretical de-
scription of universal features of these continuous transitions?
Although we are unable to answer this question, we note that
the eventual answer would need to build on the answer to
a related question: How can we understand the transverse
power-law order of the layered phase itself within a coarse-
grained effective field theory approach? Although our work
does not fully answer this question either, the broad contours
of an answer are sketched in Sec. V.

V. POWER LAWS IN THE LAYERED PHASE

Each occupied slab in the z-layered phase is power-
law-ordered in the transverse directions, with power-law
correlations of Lx and Ly. To understand this better, we start
in the sz → 0 limit. When sz = 0, there are only x and y plates
present, and these clearly organize themselves into occupied
slabs separated from each other by one lattice spacing along
the z axis. Viewed along the z axis, each such occupied slab
is seen to be equivalent to a fully packed square lattice dimer
model, with x plates represented by dimers along y links of the
equivalent square lattice, and y plates represented by dimers
along x links of this square lattice. The transverse power-law
order of the occupied layers is simply understood in this limit
as being a consequence of the power-law columnar order of
the fully packed dimer model on the square lattice. Thus, at
sz = 0, we expect power-law columnar order with power-law
exponent η2d = 2.

As mentioned in Sec. I, the power-law correlations of the
fully packed square lattice dimer model can be understood
via a coarse-grained field theory whose action is written in
terms of a fluctuating scalar height field that represents the
electrostatic potential of a system of fluctuating dipoles:

S2d = πg
∫

d2r(∇⊥h)2,

Z ∝
∫

Dh exp(−S), (10)

with g = 1/2. In this description the local density
of x dimers (which represent y plates) is given by
(−1)x+y∂yh + A(−1)x cos(2πh), while the local density of
y dimers (which represent x plates) is given by
(−1)x+y+1∂xh + A(−1)y sin(2πh).

When sz = ε, with ε > 0 but very small, z plates are al-
lowed. However, and this is key, the only configurations that
contribute to the partition function in the thermodynamic limit
have pairs of z plates, stacked one above the other in the
z direction. When two such z plates are stacked one above
the other in an occupied slab, they can be represented in the
equivalent two dimensional system by a small admixture of
hard squares introduced into the fully packed square lattice
dimer model. The fugacity of these hard squares is of order ε2.

This small density of hard squares increases the stiffness of the
fluctuating height field, so that g(ε) = 1/2 + O(ε2), leading
to a decrease in the value of η2d, so that η2d = 2 − O(ε2) [18].

If such a pair of z plates straddles two neighboring oc-
cupied slabs, then it can be replaced by a pair of parallel
x or y plates that straddle the two occupied slabs. To O(ε2),
these are the leading defects that destroy perfect layering and
couple neighboring occupied slabs. Crucially, single x or y
plates straddling neighboring occupied slabs do not contribute
in the thermodynamic limit. Such plates can be viewed as a
pair of holes in one layer of each of the two adjacent occupied
slabs. The full-packing constraint ensures that this pair of
holes, which is a dipolar defect from the point of view of
the equivalent problem of hard squares and dimers, cannot
move on its own. In effect, the full-packing constraint ensures
that these dipolar defects come in nearest-neighbor pairs.
Thus, dipolar defects are confined into quadrupoles. This is
very different from the purely two-dimensional problem of
hard-squares and dimers. The fact that each occupied layer is
actually part of a fully three-dimensional system is therefore
crucial for understanding the nature of the defects, although
our description is in terms of an equivalent two dimensional
system.

We now argue that this confinement of the dipolar defects
into quadrupoles is the reason that the power-law correla-
tions within each occupied slab survive the coupling between
neighboring occupied slabs. To see this, represent each oc-
cupied slab in the small ε limit as a two-dimensional system
of hard-squares and dimers. Ignoring the coupling between
neighboring occupied slabs for the moment, this can be de-
scribed by the effective action:

S0 = πg
∑

z

∫
d2r(∇⊥hz )2. (11)

The quadrupolar defects that couple the neighboring occu-
pied slabs can then be represented by attractive interactions
between one pair of parallel dimers in a layer and another
such pair in the neighboring layer. This leads to terms in the
effective action that couple the height fields of neighboring
slabs:

S = S0 + S1 + S2,

S1 = λ
∑

z

∫
d2r

[(
∂2

x hz
)(

∂2
x hz+1

) + (
∂2

y hz
)(

∂2
y hz+1

)]

+ λ′ ∑
z

∫
d2r

(
∂2

xyhz
)(

∂2
xyhz+1

)
,

S2 = λ′′ ∑
z

∫
d2r cos{4π [hz(r) − hz+1(r)]}, (12)

with λ, λ′, and λ′′ all vanishing in the ε → 0 limit. Along the
renormalization group (RG) fixed line with action S0 param-
eterized by g, all three perturbations that constitute S1 and
S2 are seen to be irrelevant so long as 8/g > 4, i.e., g < 2.
The quadrupolar nature of the defects coupling neighboring
power-law-correlated slabs is now seen to be the key reason
for the stability of these power-law-correlated slabs at nonzero
sz: In the absence of the constraints that force the dipolar
defects to be confined into quadrupoles, a cosine term of
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FIG. 16. The mean-square scalar sublattice order parameter 〈Q2〉
on the e = 0 cut (dashed line in Fig. 2) plotted as a function of
the inverse system size 1/L for sz ∈ [0.8, 1.2], with a logarithmic
scale for the 1/L axis. From the displayed data, we see that 〈Q2〉
decreases to a very small value at the largest size studied, and appears
to extrapolate to zero in the thermodynamic limit. This behavior
persists even in the sublattice-ordered phase. On the e = 0 cut, the
sublattice-ordered phase exists between sz ∼ 0.535 (Fig. 10) and
sz ∼ 1.095 (Fig. 12). See Secs. II and VI for details.

the form cos{2π [hz(r) − hz(r + 1)]}, representing a single x
or y plate straddling two neighboring occupied slabs, would
have been allowed. This term is relevant unless 2/g > 4, i.e.,
g < 1/2, which is never the case since g = 1/2 for sz = 0,
and a small O(ε) value of sz only increases the value g from
g = 1/2 to g = 1/2 + O(ε2). Thus, the transverse power-law
correlations in this layered phase are stabilized by constraints
imposed by full-packing, which confine dipolar interslab de-
fects into quadrupoles.

VI. OUTLOOK

We conclude by highlighting some unresolved questions
that may be worth addressing in follow-up studies. The first
question has to do with our choice of sublattice order param-
eter ω defined in Eq. (5). As we have already discussed in
Sec. II, one might a priori expect that the order parameter
Q defined in Eq. (6) provides a natural measure of sublattice
order. However, our results indicate that 〈Q2〉 defined in this
way goes to a very small number in the thermodynamic limit
even in the sublattice-ordered phase, and cannot be used to
draw any reliable conclusions. This is illustrated in Fig. 16.
Why this is the case is not entirely clear. Since we have
been able to use ω to unambiguously detect the presence of
sublattice order independent of this behavior of Q, it does not
affect our results. This curious behavior of Q is an interesting
unsolved puzzle.

The second set of questions has to do with the coarse-
grained description discussed in Sec. V, which provides a
natural explanation of the power-law correlations within each
occupied slabs in the layered phase. It should be possible to
develop this analysis further, to also describe the nature of the
correlations between two different occupied slabs separated
by a distance �z in the layering direction. In particular, it
would be interesting to develop a theory for the relationship
between the intraslab power-law correlation exponent and the
power-law exponent characterizing the L dependence of the
three-dimensional transverse layering order parameter 〈L2

x +
L2

y〉. Also worth pursuing is the effect of a small repulsive
interaction between x and y plates in this layered phase with
sz � sx = sy. If this preserves the layered phase, then it would
be interesting to explore its effects on the transverse columnar
ordering.

Finally, we note that we have also explored in closely
related work [23] a somewhat different layered phase, ac-
cessed by introducing vacancies into the isotropic fully packed
system. Studying the effect of introducing a small density
of vacancies in the layered phase (sz � sx = sy) of the fully
packed problem is a promising area for further study.
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